Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 15.652
1.
Molecules ; 29(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38731447

Neuromuscular blocking agents (NMBAs) are routinely used during anesthesia to relax skeletal muscle. Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels; NMBAs can induce muscle paralysis by preventing the neurotransmitter acetylcholine (ACh) from binding to nAChRs situated on the postsynaptic membranes. Despite widespread efforts, it is still a great challenge to find new NMBAs since the introduction of cisatracurium in 1995. In this work, an effective ensemble-based virtual screening method, including molecular property filters, 3D pharmacophore model, and molecular docking, was applied to discover potential NMBAs from the ZINC15 database. The results showed that screened hit compounds had better docking scores than the reference compound d-tubocurarine. In order to further investigate the binding modes between the hit compounds and nAChRs at simulated physiological conditions, the molecular dynamics simulation was performed. Deep analysis of the simulation results revealed that ZINC257459695 can stably bind to nAChRs' active sites and interact with the key residue Asp165. The binding free energies were also calculated for the obtained hits using the MM/GBSA method. In silico ADMET calculations were performed to assess the pharmacokinetic properties of hit compounds in the human body. Overall, the identified ZINC257459695 may be a promising lead compound for developing new NMBAs as an adjunct to general anesthesia, necessitating further investigations.


Molecular Docking Simulation , Molecular Dynamics Simulation , Neuromuscular Blocking Agents , Receptors, Nicotinic , Neuromuscular Blocking Agents/chemistry , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/chemistry , Humans , Drug Discovery/methods , Protein Binding , Binding Sites , Ligands
2.
J Phys Chem B ; 128(19): 4577-4589, 2024 May 16.
Article En | MEDLINE | ID: mdl-38696590

The binding affinity of nicotinoids to the binding residues of the α4ß2 variant of the nicotinic acetylcholine receptor (nAChR) was identified as a strong predictor of the nicotinoid's addictive character. Using ab initio calculations for model binding pockets of increasing size composed of 3, 6, and 14 amino acids (3AA, 6AA, and 14AA) that are derived from the crystal structure, the differences in binding affinity of 6 nicotinoids, namely, nicotine (NIC), nornicotine (NOR), anabasine (ANB), anatabine (ANT), myosmine (MYO), and cotinine (COT) were correlated to their previously reported doses required for increases in intracranial self-stimulation (ICSS) thresholds, a metric for their addictive function. By employing the many-body decomposition, the differences in the binding affinities of the various nicotinoids could be attributed mainly to the proton exchange energy between the pyridine and non-pyridine rings of the nicotinoids and the interactions between them and a handful of proximal amino acids, namely Trp156, Trpß57, Tyr100, and Tyr204. Interactions between the guest nicotinoid and the amino acids of the binding pocket were found to be mainly classical in nature, except for those between the nicotinoid and Trp156. The larger pockets were found to model binding structures more accurately and predicted the addictive character of all nicotinoids, while smaller models, which are more computationally feasible, would only predict the addictive character of nicotinoids that are similar to nicotine. The present study identifies the binding affinity of the guest nicotinoid to the host binding pocket as a strong descriptor of the nicotinoid's addiction potential, and as such it can be employed as a fast-screening technique for the potential addiction of nicotine analogs.


Brain , Receptors, Nicotinic , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/metabolism , Humans , Binding Sites , Brain/metabolism , Nicotine/chemistry , Nicotine/analogs & derivatives , Nicotine/metabolism , Anabasine/chemistry , Anabasine/metabolism , Anabasine/analogs & derivatives , Models, Molecular , Protein Binding , Pyridines/chemistry , Pyridines/metabolism , Cotinine/chemistry , Cotinine/metabolism , Cotinine/analogs & derivatives , Alkaloids
3.
Brain Nerve ; 76(5): 562-568, 2024 May.
Article Ja | MEDLINE | ID: mdl-38741497

Autoimmune autonomic ganglionopathy (AAG) and acute autonomic sensory neuropathy (AASN) are immune-mediated neuropathies that affect the autonomic and/or dorsal root ganglia. Autoantibodies against the nicotinic ganglionic acetylcholine receptor (gAChR) detected in the sera of patients with AAG play a key role in the pathogenesis of this condition. Notably, gAChR antibodies are not detected in the sera of patients with AASN. Currently, AAG and AASN are not considered to be on the same spectrum with regard to disease concept based on clinical symptoms and laboratory findings. However, extra-autonomic brain symptoms (including psychiatric symptoms and personality changes) and endocrine disorders occur in both diseases, which suggests shared pathophysiology between the two conditions.


Autoantibodies , Autonomic Nervous System Diseases , Ganglia, Autonomic , Humans , Ganglia, Autonomic/immunology , Autoantibodies/immunology , Autonomic Nervous System Diseases/immunology , Autonomic Nervous System Diseases/etiology , Autonomic Nervous System Diseases/diagnosis , Autoimmune Diseases of the Nervous System/immunology , Autoimmune Diseases of the Nervous System/diagnosis , Receptors, Nicotinic/immunology , Acute Disease , Autoimmune Diseases/immunology
4.
Int J Mol Sci ; 25(10)2024 May 13.
Article En | MEDLINE | ID: mdl-38791353

Acetylcholine-activated receptors are divided broadly into two major structurally distinct classes: ligand-gated ion channel nicotinic and G-protein-coupled muscarinic receptors. Each class encompasses several structurally related receptor subtypes with distinct patterns of tissue expression and post-receptor signal transduction mechanisms. The activation of both nicotinic and muscarinic cholinergic receptors has been associated with the induction and progression of gastrointestinal neoplasia. Herein, after briefly reviewing the classification of acetylcholine-activated receptors and the role that nicotinic and muscarinic cholinergic signaling plays in normal digestive function, we consider the mechanics of acetylcholine synthesis and release by neuronal and non-neuronal cells in the gastrointestinal microenvironment, and current methodology and challenges in measuring serum and tissue acetylcholine levels accurately. Then, we critically evaluate the evidence that constitutive and ligand-induced activation of acetylcholine-activated receptors plays a role in promoting gastrointestinal neoplasia. We focus primarily on adenocarcinomas of the stomach, pancreas, and colon, because these cancers are particularly common worldwide and, when diagnosed at an advanced stage, are associated with very high rates of morbidity and mortality. Throughout this comprehensive review, we concentrate on identifying novel ways to leverage these observations for prognostic and therapeutic purposes.


Acetylcholine , Gastrointestinal Neoplasms , Humans , Gastrointestinal Neoplasms/metabolism , Gastrointestinal Neoplasms/pathology , Acetylcholine/metabolism , Animals , Signal Transduction , Receptors, Muscarinic/metabolism , Receptors, Nicotinic/metabolism
5.
Arch Dermatol Res ; 316(6): 269, 2024 May 25.
Article En | MEDLINE | ID: mdl-38795191

Skin cutaneous melanoma (SKCM) is the skin malignancy with the highest mortality rate, and its morbidity rate is on the rise worldwide. Smoking is an independent marker of poor prognosis in melanoma. The α5-nicotinic acetylcholine receptor (α5-nAChR), one of the receptors for nicotine, is involved in the proliferation, migration and invasion of SKCM cells. Nicotine has been reported to promote the expression of a disintegrin and metalloproteinase 10 (ADAM10), which is the key gene involved in melanoma progression. Here, we explored the link between α5-nAChR and ADAM10 in nicotine-associated cutaneous melanoma. α5-nAChR expression was correlated with ADAM10 expression and lower survival in SKCM. α5-nAChR mediated nicotine-induced ADAM10 expression via STAT3. The α5-nAChR/ADAM10 signaling axis was involved in the stemness and migration of SKCM cells. Furthermore, α5-nAChR expression was associated with ADAM10 expression, EMT marker expression and stemness marker expression in nicotine-related mice homograft tissues. These results suggest the role of the α5-nAChR/ADAM10 signaling pathway in nicotine-induced melanoma progression.


ADAM10 Protein , Amyloid Precursor Protein Secretases , Cell Movement , Disease Progression , Melanoma , Membrane Proteins , Nicotine , Receptors, Nicotinic , STAT3 Transcription Factor , Signal Transduction , Skin Neoplasms , ADAM10 Protein/metabolism , ADAM10 Protein/genetics , Skin Neoplasms/pathology , Skin Neoplasms/chemically induced , Skin Neoplasms/metabolism , STAT3 Transcription Factor/metabolism , Humans , Animals , Amyloid Precursor Protein Secretases/metabolism , Amyloid Precursor Protein Secretases/genetics , Nicotine/adverse effects , Signal Transduction/drug effects , Melanoma/pathology , Melanoma/metabolism , Melanoma/chemically induced , Mice , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/genetics , Cell Line, Tumor , Cell Movement/drug effects , Membrane Proteins/metabolism , Membrane Proteins/genetics , Gene Expression Regulation, Neoplastic/drug effects , Male , Melanoma, Cutaneous Malignant , Female , Cell Proliferation/drug effects
6.
J Agric Food Chem ; 72(20): 11331-11340, 2024 May 22.
Article En | MEDLINE | ID: mdl-38721769

Research on mesoionic structures in pesticide design has gained significant attention in recent years. However, the 1-position of pyridino[1,2-a]pyrimidine is usually designed with 2-chlorothiazole, 2-chloropyridine, or cyano moieties commonly found in neonicotinoid insecticides. In order to enrich the available pharmacophore library, here, we disclose a series of new pyridino[1,2-a]pyrimidine mesoionics bearing indole-containing substituents at the 1-position. Most of these target compounds are confirmed to have good insecticidal activity against aphids through bioevaluation. In addition, a three-dimensional structure-activity relationship model is established to allow access to optimal compound F45 with an LC50 value of 2.97 mg/L. This value is comparable to the property achieved by the positive control triflumezopyrim (LC50 = 2.94 mg/L). Proteomics and molecular docking analysis suggest that compound F45 has the potential to modulate the functioning of the aphid nervous system through its interaction with neuronal nicotinic acetylcholine receptors. This study expands the existing pharmacophore library for the future development of new mesoionic insecticides based on 1-position modifications of the pyridino[1,2-a]pyrimidine scaffold.


Aphids , Drug Design , Indoles , Insecticides , Molecular Docking Simulation , Pyrimidines , Insecticides/chemistry , Insecticides/chemical synthesis , Insecticides/pharmacology , Animals , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrimidines/chemical synthesis , Aphids/drug effects , Indoles/chemistry , Indoles/pharmacology , Indoles/chemical synthesis , Structure-Activity Relationship , Molecular Structure , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/drug effects
7.
Environ Pollut ; 351: 124111, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38710360

Pesticides are substances used for controlling, preventing, and repelling pests in agriculture. Among them, neonicotinoids have become the fastest-growing class of insecticides because of their efficiency in targeting pests. They work by strongly binding to nicotinic acetylcholine receptors (nAChRs) in the central nervous system of insects, leading to receptor blockage, paralysis, and death. Despite their selectivity for insects, these substances may be hazardous to non-target creatures, including earthworms. Although earthworms may be invasive in some regions like north America, they contribute to the development of soil structure, water management, nutrient cycling, pollution remediation, and cultural services, positively impacting the environment, particularly in the soil ecosystem. Thus, this study aimed to develop a novel earthworm behavior assay since behavior is a sensitive marker for toxicity assay, and demonstrated its application in evaluating the toxicity of various neonicotinoids. Here, we exposed Eisenia fetida to 1 and 10 ppb of eight neonicotinoids (acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram pestanal, thiacloprid, thiametoxam, and sulfoxaflor) for 3 days to observe their behavior toxicities. Overall, all of the neonicotinoids decreased their locomotion, showed by a reduction of average speed by 24.94-68.63% and increment in freezing time movement ratio by 1.51-4.25 times, and altered their movement orientation and complexity, indicated by the decrement in the fractal dimension value by 24-70%. Moreover, some of the neonicotinoids, which were acetamiprid, dinotefuran, imidacloprid, nitenpyram, and sulfoxaflor, could even alter their exploratory behaviors, which was shown by the increment in the time spent in the center area value by 6.94-12.99 times. Furthermore, based on the PCA and heatmap clustering results, thiametoxam was found as the neonicotinoid that possessed the least pronounced behavior toxicity effects among the tested pesticides since these neonicotinoid-treated groups in both concentrations were grouped in the same major cluster with the control group. Finally, molecular docking was also conducted to examine neonicotinoids' possible binding mechanism to Acetylcholine Binding Protein (AChBP), which is responsible for neurotransmission. The molecular docking result confirmed that each of the neonicotinoids has a relatively high binding energy with AChBP, with the lowest binding energy was possessed by thiametoxam, which consistent with its relatively low behavior toxicities. Thus, these molecular docking results might hint at the possible mechanism behind the observed behavior alterations. To sum up, the present study demonstrated that all of the neonicotinoids altered the earthworm behaviors which might be due to their ability to bind with some specific neurotransmitters and the current findings give insights into the toxicities of neonicotinoids to the environment, especially animals in a soil ecosystem.


Insecticides , Locomotion , Neonicotinoids , Oligochaeta , Soil Pollutants , Animals , Oligochaeta/drug effects , Neonicotinoids/toxicity , Locomotion/drug effects , Insecticides/toxicity , Soil Pollutants/toxicity , Nitro Compounds/toxicity , Toxicity Tests , Receptors, Nicotinic/metabolism , Guanidines/toxicity , Thiazines , Thiazoles
8.
Pharmacol Res ; 204: 107190, 2024 Jun.
Article En | MEDLINE | ID: mdl-38704107

Nicotinic acetylcholine receptors (nAChRs) are widely expressed in the central nervous system and play an important role in the control of neural functions including neuronal activity, transmitter release and synaptic plasticity. Although the common subtypes of nAChRs are abundantly expressed throughout the brain, their expression in different brain regions and by individual neuronal types is not homogeneous or incidental. In recent years, several studies have emerged showing that particular subtypes of nAChRs are expressed by specific neuronal populations in which they have major influence on the activity of local circuits and behavior. It has been demonstrated that even nAChRs expressed by relatively rare neuronal types can induce significant changes in behavior and contribute to pathological processes. Depending on the identity and connectivity of the particular nAChRs-expressing neuronal populations, the activation of nAChRs can have distinct or even opposing effects on local neuronal signaling. In this review, we will summarize the available literature describing the expression of individual nicotinic subunits by different neuronal types in two crucial brain regions, the striatum and the prefrontal cortex. The review will also briefly discuss nicotinic expression in non-neuronal, glial cells, as they cannot be ignored as potential targets of nAChRs-modulating drugs. The final section will discuss options that could allow us to target nAChRs in a neuronal-type-specific manner, not only in the experimental field, but also eventually in clinical practice.


Neurons , Prefrontal Cortex , Receptors, Nicotinic , Receptors, Nicotinic/metabolism , Humans , Animals , Prefrontal Cortex/metabolism , Neurons/metabolism , Corpus Striatum/metabolism
9.
J Agric Food Chem ; 72(21): 11968-11979, 2024 May 29.
Article En | MEDLINE | ID: mdl-38759145

With the aim of identifying novel neonicotinoid insecticides with low bee toxicity, a series of compounds bearing thiazolidine moiety, which has been shown to be low bee toxic, were rationally designed through substructure splicing strategy and evaluated insecticidal activities. The optimal compounds A24 and A29 exhibited LC50 values of 30.01 and 17.08 mg/L against Aphis craccivora, respectively. Electrophysiological studies performed on Xenopus oocytes indicated that compound A29 acted on insect nAChR, with EC50 value of 50.11 µM. Docking binding mode analysis demonstrated that A29 bound to Lymnaea stagnalis acetylcholine binding protein through H-bonds with the residues of D_Arg55, D_Leu102, and D_Val114. Quantum mechanics calculation showed that A29 had a higher highest occupied molecular orbit (HOMO) energy and lower vertical ionization potential (IP) value compared to the high bee toxic imidacloprid, showing potentially low bee toxicity. Bee toxicity predictive model also indicated that A29 was nontoxic to honeybees. Our present work identified an innovative insecticidal scaffold and might facilitate the further exploration of low bee toxic neonicotinoid insecticides.


Insecticides , Neonicotinoids , Thiazolidines , Animals , Insecticides/chemistry , Insecticides/toxicity , Bees/drug effects , Neonicotinoids/chemistry , Neonicotinoids/toxicity , Thiazolidines/chemistry , Thiazolidines/toxicity , Molecular Docking Simulation , Insect Proteins/genetics , Insect Proteins/chemistry , Insect Proteins/metabolism , Insect Proteins/toxicity , Aphids/drug effects , Aphids/genetics , Structure-Activity Relationship , Molecular Structure , Receptors, Nicotinic/genetics , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/chemistry
10.
J Acoust Soc Am ; 155(5): 3183-3194, 2024 May 01.
Article En | MEDLINE | ID: mdl-38738939

Medial olivocochlear (MOC) efferents modulate outer hair cell motility through specialized nicotinic acetylcholine receptors to support encoding of signals in noise. Transgenic mice lacking the alpha9 subunits of these receptors (α9KOs) have normal hearing in quiet and noise, but lack classic cochlear suppression effects and show abnormal temporal, spectral, and spatial processing. Mice deficient for both the alpha9 and alpha10 receptor subunits (α9α10KOs) may exhibit more severe MOC-related phenotypes. Like α9KOs, α9α10KOs have normal auditory brainstem response (ABR) thresholds and weak MOC reflexes. Here, we further characterized auditory function in α9α10KO mice. Wild-type (WT) and α9α10KO mice had similar ABR thresholds and acoustic startle response amplitudes in quiet and noise, and similar frequency and intensity difference sensitivity. α9α10KO mice had larger ABR Wave I amplitudes than WTs in quiet and noise. Other ABR metrics of hearing-in-noise function yielded conflicting findings regarding α9α10KO susceptibility to masking effects. α9α10KO mice also had larger startle amplitudes in tone backgrounds than WTs. Overall, α9α10KO mice had grossly normal auditory function in quiet and noise, although their larger ABR amplitudes and hyperreactive startles suggest some auditory processing abnormalities. These findings contribute to the growing literature showing mixed effects of MOC dysfunction on hearing.


Acoustic Stimulation , Auditory Threshold , Evoked Potentials, Auditory, Brain Stem , Mice, Knockout , Noise , Receptors, Nicotinic , Reflex, Startle , Animals , Noise/adverse effects , Receptors, Nicotinic/genetics , Receptors, Nicotinic/deficiency , Perceptual Masking , Behavior, Animal , Mice , Mice, Inbred C57BL , Cochlea/physiology , Cochlea/physiopathology , Male , Phenotype , Olivary Nucleus/physiology , Auditory Pathways/physiology , Auditory Pathways/physiopathology , Female , Auditory Perception/physiology , Hearing
11.
J Environ Sci Health B ; 59(5): 277-284, 2024.
Article En | MEDLINE | ID: mdl-38600794

The organophosphate insecticide chlorpyrifos (CPF), an acetylcholinesterase inhibitor, has raised serious concerns about human safety. Apart from inducing synaptic acetylcholine accumulation, CPF could also act at nicotinic acetylcholine receptors, like the α7-isoform (α7-nAChR), which could potentially be harmful to developing brains. Our aims were to use molecular docking to assess the binding interactions between CPF and α7-nAChR through, to test the neurocytotoxic and oxidative effects of very low concentrations of CPF on SH-SY5Y cells, and to hypothesize about the potential mediation of α7-nAChR. Docking analysis showed a significant binding affinity of CPH for the E fragment of the α7-nAChR (ΔGibbs: -5.63 to -6.85 Kcal/mol). According to the MTT- and Trypan Blue-based viability assays, commercial CPF showed concentration- and time-dependent neurotoxic effects at a concentration range (2.5-20 µM), ten-folds lower than those reported to have crucial effects for sheer CPF. A rise of the production of radical oxygen species (ROS) was seen at even lower concentrations (1-2.5 µM) of CPF after 24h. Notably, our docking analysis supports the antagonistic actions of CPF on α7-nAChR that were recently published. In conclusion, while α7-nAChR is responsible for neuronal survival and neurodevelopmental processes, its activity may also mediate the neurotoxicity of CPF.


Chlorpyrifos , Neuroblastoma , Receptors, Nicotinic , Humans , Chlorpyrifos/toxicity , Molecular Docking Simulation , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Acetylcholinesterase/metabolism , Receptors, Nicotinic/metabolism
12.
Mar Drugs ; 22(4)2024 Mar 27.
Article En | MEDLINE | ID: mdl-38667766

Macrocyclic imine phycotoxins are an emerging class of chemical compounds associated with harmful algal blooms and shellfish toxicity. Earlier binding and electrophysiology experiments on nAChR subtypes and their soluble AChBP surrogates evidenced common trends for substantial antagonism, binding affinities, and receptor-subtype selectivity. Earlier, complementary crystal structures of AChBP complexes showed that common determinants within the binding nest at each subunit interface confer high-affinity toxin binding, while distinctive determinants from the flexible loop C, and either capping the nest or extending toward peripheral subsites, dictate broad versus narrow receptor subtype selectivity. From these data, small spiroimine enantiomers mimicking the functional core motif of phycotoxins were chemically synthesized and characterized. Voltage-clamp analyses involving three nAChR subtypes revealed preserved antagonism for both enantiomers, despite lower subtype specificity and binding affinities associated with faster reversibility compared with their macrocyclic relatives. Binding and structural analyses involving two AChBPs pointed to modest affinities and positional variability of the spiroimines, along with a range of AChBP loop-C conformations denoting a prevalence of antagonistic properties. These data highlight the major contribution of the spiroimine core to binding within the nAChR nest and confirm the need for an extended interaction network as established by the macrocyclic toxins to define high affinities and marked subtype specificity. This study identifies a minimal set of functional pharmacophores and binding determinants as templates for designing new antagonists targeting disease-associated nAChR subtypes.


Imines , Marine Toxins , Nicotinic Antagonists , Receptors, Nicotinic , Marine Toxins/chemistry , Marine Toxins/pharmacology , Marine Toxins/toxicity , Imines/chemistry , Imines/pharmacology , Nicotinic Antagonists/pharmacology , Nicotinic Antagonists/chemistry , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/drug effects , Animals , Macrocyclic Compounds/pharmacology , Macrocyclic Compounds/chemistry , Structure-Activity Relationship
13.
Toxins (Basel) ; 16(4)2024 Mar 22.
Article En | MEDLINE | ID: mdl-38668589

Coralsnakes (Micrurus spp.) are the only elapids found throughout the Americas. They are recognized for their highly neurotoxic venom, which is comprised of a wide variety of toxins, including the stable, low-mass toxins known as three-finger toxins (3FTx). Due to difficulties in venom extraction and availability, research on coralsnake venoms is still very limited when compared to that of other Elapidae snakes like cobras, kraits, and mambas. In this study, two previously described 3FTx from the venom of M. corallinus, NXH1 (3SOC1_MICCO), and NXH8 (3NO48_MICCO) were characterized. Using in silico, in vitro, and ex vivo experiments, the biological activities of these toxins were predicted and evaluated. The results showed that only NXH8 was capable of binding to skeletal muscle cells and modulating the activity of nAChRs in nerve-diaphragm preparations. These effects were antagonized by anti-rNXH8 or antielapidic sera. Sequence analysis revealed that the NXH1 toxin possesses eight cysteine residues and four disulfide bonds, while the NXH8 toxin has a primary structure similar to that of non-conventional 3FTx, with an additional disulfide bond on the first loop. These findings add more information related to the structural diversity present within the 3FTx class, while expanding our understanding of the mechanisms of the toxicity of this coralsnake venom and opening new perspectives for developing more effective therapeutic interventions.


Cloning, Molecular , Coral Snakes , Elapid Venoms , Muscle, Skeletal , Receptors, Nicotinic , Animals , Elapid Venoms/chemistry , Elapid Venoms/toxicity , Elapid Venoms/genetics , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Amino Acid Sequence , Male
14.
Toxins (Basel) ; 16(4)2024 Apr 04.
Article En | MEDLINE | ID: mdl-38668601

The evolutionary interplay between predator and prey has significantly shaped the development of snake venom, a critical adaptation for subduing prey. This arms race has spurred the diversification of the components of venom and the corresponding emergence of resistance mechanisms in the prey and predators of venomous snakes. Our study investigates the molecular basis of venom resistance in pythons, focusing on electrostatic charge repulsion as a defense against α-neurotoxins binding to the alpha-1 subunit of the postsynaptic nicotinic acetylcholine receptor. Through phylogenetic and bioactivity analyses of orthosteric site sequences from various python species, we explore the prevalence and evolution of amino acid substitutions that confer resistance by electrostatic repulsion, which initially evolved in response to predatory pressure by Naja (cobra) species (which occurs across Africa and Asia). The small African species Python regius retains the two resistance-conferring lysines (positions 189 and 191) of the ancestral Python genus, conferring resistance to sympatric Naja venoms. This differed from the giant African species Python sebae, which has secondarily lost one of these lysines, potentially due to its rapid growth out of the prey size range of sympatric Naja species. In contrast, the two Asian species Python brongersmai (small) and Python bivittatus (giant) share an identical orthosteric site, which exhibits the highest degree of resistance, attributed to three lysine residues in the orthosteric sites. One of these lysines (at orthosteric position 195) evolved in the last common ancestor of these two species, which may reflect an adaptive response to increased predation pressures from the sympatric α-neurotoxic snake-eating genus Ophiophagus (King Cobras) in Asia. All these terrestrial Python species, however, were less neurotoxin-susceptible than pythons in other genera which have evolved under different predatory pressure as: the Asian species Malayopython reticulatus which is arboreal as neonates and juveniles before rapidly reaching sizes as terrestrial adults too large for sympatric Ophiophagus species to consider as prey; and the terrestrial Australian species Aspidites melanocephalus which occupies a niche, devoid of selection pressure from α-neurotoxic predatory snakes. Our findings underline the importance of positive selection in the evolution of venom resistance and suggest a complex evolutionary history involving both conserved traits and secondary evolution. This study enhances our understanding of the molecular adaptations that enable pythons to survive in environments laden with venomous threats and offers insights into the ongoing co-evolution between venomous snakes and their prey.


Boidae , Static Electricity , Animals , Boidae/genetics , Boidae/physiology , Neurotoxins/genetics , Neurotoxins/chemistry , Phylogeny , Elapid Venoms/genetics , Elapid Venoms/chemistry , Elapid Venoms/toxicity , Receptors, Nicotinic/genetics , Receptors, Nicotinic/metabolism , Predatory Behavior , Snake Venoms/genetics , Snake Venoms/chemistry
15.
ACS Chem Neurosci ; 15(9): 1738-1754, 2024 May 01.
Article En | MEDLINE | ID: mdl-38613458

Iboga alkaloids, also known as coronaridine congeners, have shown promise in the treatment of alcohol and opioid use disorders. The objective of this study was to evaluate the effects of catharanthine and 18-methoxycoronaridine (18-MC) on dopamine (DA) transmission and cholinergic interneurons in the mesolimbic DA system, nicotine-induced locomotor activity, and nicotine-taking behavior. Utilizing ex vivo fast-scan cyclic voltammetry (FSCV) in the nucleus accumbens core of male mice, we found that catharanthine or 18-MC differentially inhibited evoked DA release. Catharanthine inhibition of evoked DA release was significantly reduced by both α4 and α6 nicotinic acetylcholine receptors (nAChRs) antagonists. Additionally, catharanthine substantially increased DA release more than vehicle during high-frequency stimulation, although less potently than an α4 nAChR antagonist, which confirms previous work with nAChR antagonists. Interestingly, while catharanthine slowed DA reuptake measured via FSCV ex vivo, it also increased extracellular DA in striatal dialysate from anesthetized mice in vivo in a dose-dependent manner. Superfusion of catharanthine or 18-MC inhibited the firing rate of striatal cholinergic interneurons in a concentration dependent manner, which are known to potently modulate presynaptic DA release. Catharanthine or 18-MC suppressed acetylcholine currents in oocytes expressing recombinant rat α6/α3ß2ß3 or α6/α3ß4 nAChRs. In behavioral experiments using male Sprague-Dawley rats, systemic administration of catharanthine or 18-MC blocked nicotine enhancement of locomotor activity. Importantly, catharanthine attenuated nicotine self-administration in a dose-dependent manner while having no effect on food reinforcement. Lastly, administration of catharanthine and nicotine together greatly increased head twitch responses, indicating a potential synergistic hallucinogenic effect. These findings demonstrate that catharanthine and 18-MC have similar, but not identical effects on striatal DA dynamics, striatal cholinergic interneuron activity and nicotine psychomotor effects.


Dopamine Plasma Membrane Transport Proteins , Dopamine , Ibogaine , Ibogaine/analogs & derivatives , Nicotine , Receptors, Nicotinic , Animals , Dopamine/metabolism , Male , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/drug effects , Nicotine/pharmacology , Ibogaine/pharmacology , Mice , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine Plasma Membrane Transport Proteins/drug effects , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Mice, Inbred C57BL , Nicotinic Antagonists/pharmacology , Oocytes/drug effects , Nicotinic Agonists/pharmacology , Synaptic Transmission/drug effects , Synaptic Transmission/physiology , Self Administration , Xenopus laevis , Interneurons/drug effects , Interneurons/metabolism , Dose-Response Relationship, Drug , Motor Activity/drug effects
16.
Commun Biol ; 7(1): 437, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38600247

The ability of the Torpedo nicotinic acetylcholine receptor (nAChR) to undergo agonist-induced conformational transitions requires the presence of cholesterol and/or anionic lipids. Here we use recently solved structures along with multiscale molecular dynamics simulations to examine lipid binding to the nAChR in bilayers that have defined effects on nAChR function. We examine how phosphatidic acid and cholesterol, lipids that support conformational transitions, individually compete for binding with phosphatidylcholine, a lipid that does not. We also examine how the two lipids work synergistically to stabilize an agonist-responsive nAChR. We identify rapidly exchanging lipid binding sites, including both phospholipid sites with a high affinity for phosphatidic acid and promiscuous cholesterol binding sites in the grooves between adjacent transmembrane α-helices. A high affinity cholesterol site is confirmed in the inner leaflet framed by a key tryptophan residue on the MX α-helix. Our data provide insight into the dynamic nature of lipid-nAChR interactions and set the stage for a detailed understanding of the mechanisms by which lipids facilitate nAChR function at the neuromuscular junction.


Receptors, Nicotinic , Animals , Receptors, Nicotinic/metabolism , Torpedo/metabolism , Phospholipids , Muscles/metabolism , Phosphatidylcholines , Cholesterol/metabolism
17.
Sci Rep ; 14(1): 8291, 2024 04 09.
Article En | MEDLINE | ID: mdl-38594566

Neonicotinoids (NEOs) have been designed to act selectively on insect nicotinic acetylcholine receptors (nAChRs). However, nAChRs are also expressed in vertebrate immune cells, so NEOs may interfere with the immune system in exposed non-target animals. The present study shows that NEOs: imidacloprid and thiacloprid, and their main metabolites: desnitro-imidacloprid and thiacloprid amide, at sub-micromolar concentrations ranging from 2.25 to 20 µM, affect the immune cells of fish. This was found both in primary cultures of leukocytes isolated from the carp head kidney and in the continuous adherent carp monocyte/macrophage cell line. Moreover, the results revealed that the studied pesticides and metabolites generate oxidative stress in carp immune cells and that this is one of the most important mechanisms of neonicotinoid immunotoxicity. Significant increases were observed in the formation of ROS and malondialdehyde (MDA). The antioxidant status alteration was linked with decrease in antioxidant enzyme activity: superoxide dismutase (SOD), catalase (CAT), and non-enzymatic antioxidant glutathione (GSH). Importantly, the metabolites: desnitro-imidacloprid and thiacloprid amide showed significantly higher cytotoxicity towards fish leukocytes than their parent compounds, imidacloprid and thiacloprid, which emphasizes the importance of including intermediate metabolites in toxicology studies.


Carps , Insecticides , Receptors, Nicotinic , Thiazines , Animals , Insecticides/toxicity , Carps/metabolism , Antioxidants/metabolism , Neonicotinoids/toxicity , Nitro Compounds/toxicity , Oxidative Stress , Receptors, Nicotinic/metabolism , Leukocytes/metabolism , Amides
18.
Proc Natl Acad Sci U S A ; 121(16): e2320416121, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38588428

Pores through ion channels rapidly transport small inorganic ions along their electrochemical gradients. Here, applying single-channel electrophysiology and mutagenesis to the archetypal muscle nicotinic acetylcholine receptor (AChR) channel, we show that a conserved pore-peripheral salt bridge partners with those in the other subunits to regulate ion transport. Disrupting the salt bridges in all five receptor subunits greatly decreases the amplitude of the unitary current and increases its fluctuations. However, disrupting individual salt bridges has unequal effects that depend on the structural status of the other salt bridges. The AChR ε- and δ-subunits are structurally unique in harboring a putative palmitoylation site near each salt bridge and bordering the lipid membrane. The effects of disrupting the palmitoylation sites mirror those of disrupting the salt bridges, but the effect of disrupting either of these structures depends on the structural status of the other. Thus, rapid ion transport through the AChR channel is maintained by functionally interdependent salt bridges linking the pore to the lipid membrane.


Receptors, Cholinergic , Receptors, Nicotinic , Receptors, Nicotinic/genetics , Receptors, Nicotinic/chemistry , Muscles , Ion Transport , Lipids
19.
Pestic Biochem Physiol ; 200: 105837, 2024 Mar.
Article En | MEDLINE | ID: mdl-38582599

Susceptibility to insecticides is one of the limiting factors preventing wider adoption of natural enemies to control insect pest populations. Identification and selective breeding of insecticide tolerant strains of commercially used biological control agents (BCAs) is one of the approaches to overcome this constraint. Although a number of beneficial insects have been selected for increased tolerance to insecticides the molecular mechanisms underpinning these shifts in tolerance are not well characterised. Here we investigated the molecular mechanisms of enhanced tolerance of a lab selected strain of Orius laevigatus (Fieber) to the commonly used biopesticide spinosad. Transcriptomic analysis showed that spinosad tolerance is not a result of overexpressed detoxification genes. Molecular analysis of the target site for spinosyns, the nicotinic acetylcholine receptor (nAChR), revealed increased expression of truncated transcripts of the nAChR α6 subunit in the spinosad selected strain, a mechanism of resistance which was described previously in insect pest species. Collectively, our results demonstrate the mechanisms by which some beneficial biological control agents can evolve insecticide tolerance and will inform the development and deployment of insecticide-tolerant natural enemies in integrated pest management strategies.


Insecticides , Receptors, Nicotinic , Thysanoptera , Animals , Thysanoptera/metabolism , Insecticides/toxicity , Insecticide Resistance/genetics , Biological Control Agents/pharmacology , Receptors, Nicotinic/genetics , Receptors, Nicotinic/metabolism , Insecta/genetics , Macrolides/pharmacology , Drug Combinations
20.
PLoS One ; 19(4): e0301592, 2024.
Article En | MEDLINE | ID: mdl-38635806

Hippocampal interneurons are a very diverse population of cells. Using single-cell quantitative PCR to analyze rat CA1 hippocampal interneurons, we quantified neuronal nicotinic acetylcholine receptor (nAChR) mRNA subunit expression and detailed possible nAChR subtype combinations for the α2, α3, α4, α5, α7, ß2, ß3, and ß4 subunits. We also compared the expression detected in the stratum oriens and the stratum radiatum hippocampal layers. We show that the majority of interneurons in the CA1 of the rat hippocampus contain detectable levels of nAChR subunit mRNA. Our results highlight the complexity of the CA1 nAChR population. Interestingly, the α3 nAChR subunit is one of the highest expressed subunit mRNAs in this population, while the α4 is one of the least likely subunits to be detected in CA1 interneurons. The ß2 nAChR subunit is the highest expressed beta subunit mRNA in these cells. In addition, Pearson's correlation coefficient values are calculated to identify significant differences between the nAChR subunit combinations expressed in the CA1 stratum oriens and the stratum radiatum. Statistical analysis also indicates that there are likely over 100 different nAChR subunit mRNA combinations expressed in rat CA1 interneurons. These results provide a valid avenue for identifying nAChR subtype targets that may be effective hippocampus-specific pharmacological targets.


Receptors, Nicotinic , Rats , Animals , RNA, Messenger/metabolism , Receptors, Nicotinic/genetics , Receptors, Nicotinic/metabolism , Interneurons/metabolism , Neurons/metabolism , Hippocampus/metabolism
...