Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 709
1.
Sci Rep ; 14(1): 10855, 2024 05 13.
Article En | MEDLINE | ID: mdl-38740782

Type 2 diabetes mellitus (T2DM) is a chronic inflammatory disease that can compromise the functioning of various organs, including the salivary glands (SG). The purinergic system is one of the most important inflammatory pathways in T2DM condition, and P2X7R and P2X4R are the primary purinergic receptors in SG that regulate inflammatory homeostasis. This study aimed to evaluate P2X7R and P2X4R expression, and morphological changes in the submandibular gland (SMG) in T2DM. Twenty-four 5-week-old mice were randomly assigned to control (CON) and diabetes mellitus (DM) groups (n = 12 each). Body weight, diet, and blood glucose levels were monitored weekly. The histomorphology of the SMG and the expression of the P2X7R, and P2X7R was evaluated by immunohistochemistry (IHC) staining and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) at 11 and 13 weeks of age. Our findings indicate a significant increase in food consumption, body weight, and blood glucose levels in the DM group. Although a significant increase in P2X7R and P2X4R expression was observed in the DM groups, the receptor location remained unchanged. We also observed a significant increase in the acinar area in the DM13w group, and a significant decrease in the ductal area in the DM11w and DM13w groups. Targeting purinergic receptors may offer novel therapeutic methods for diabetic complications.


Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Diet, High-Fat , Receptors, Purinergic P2X4 , Receptors, Purinergic P2X7 , Submandibular Gland , Animals , Submandibular Gland/metabolism , Submandibular Gland/pathology , Receptors, Purinergic P2X4/metabolism , Receptors, Purinergic P2X4/genetics , Receptors, Purinergic P2X7/metabolism , Receptors, Purinergic P2X7/genetics , Diet, High-Fat/adverse effects , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Mice , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Male , Blood Glucose/metabolism , Body Weight , Streptozocin , Mice, Inbred C57BL
2.
J Cell Biol ; 223(7)2024 Jul 01.
Article En | MEDLINE | ID: mdl-38695719

Microglia sense the changes in their environment. How microglia actively translate these changes into suitable cues to adapt brain physiology is unknown. We reveal an activity-dependent regulation of cortical inhibitory synapses by microglia, driven by purinergic signaling acting on P2RX7 and mediated by microglia-derived TNFα. We demonstrate that sleep induces microglia-dependent synaptic enrichment of GABAARs in a manner dependent on microglial TNFα and P2RX7. We further show that microglia-specific depletion of TNFα alters slow waves during NREM sleep and blunt memory consolidation in sleep-dependent learning tasks. Together, our results reveal that microglia orchestrate sleep-intrinsic plasticity of synaptic GABAARs, sculpt sleep slow waves, and support memory consolidation.


Microglia , Receptors, GABA-A , Sleep, Slow-Wave , Synapses , Tumor Necrosis Factor-alpha , Animals , Male , Mice , Memory Consolidation , Mice, Inbred C57BL , Microglia/metabolism , Neuronal Plasticity/physiology , Receptors, GABA-A/metabolism , Receptors, Purinergic P2X7/metabolism , Receptors, Purinergic P2X7/genetics , Signal Transduction , Sleep/physiology , Synapses/metabolism , Tumor Necrosis Factor-alpha/metabolism
3.
Sci Rep ; 14(1): 9573, 2024 04 26.
Article En | MEDLINE | ID: mdl-38670993

P2X7 receptors mediate immune and endothelial cell responses to extracellular ATP. Acute pharmacological blockade increases renal blood flow and filtration rate, suggesting that receptor activation promotes tonic vasoconstriction. P2X7 expression is increased in kidney disease and blockade/knockout is renoprotective. We generated a P2X7 knockout rat on F344 background, hypothesising enhanced renal blood flow and protection from angiotensin-II-induced renal injury. CRISPR/Cas9 introduced an early stop codon into exon 2 of P2rx7, abolishing P2X7 protein in kidney and reducing P2rx7 mRNA abundance by ~ 60% in bone-marrow derived macrophages. The M1 polarisation response to lipopolysaccharide was unaffected but P2X7 receptor knockout suppressed ATP-induced IL-1ß release. In male knockout rats, acetylcholine-induced dilation of the renal artery ex vivo was diminished but not the response to nitroprusside. Renal function in male and female knockout rats was not different from wild-type. Finally, in male rats infused with angiotensin-II for 6 weeks, P2X7 knockout did not reduce albuminuria, tubular injury, renal macrophage accrual, and renal perivascular fibrosis. Contrary to our hypothesis, global P2X7 knockout had no impact on in vivo renal hemodynamics. Our study does not indicate a major role for P2X7 receptor activation in renal vascular injury.


Angiotensin II , Kidney , Rats, Inbred F344 , Receptors, Purinergic P2X7 , Animals , Receptors, Purinergic P2X7/metabolism , Receptors, Purinergic P2X7/genetics , Male , Rats , Kidney/metabolism , Kidney/pathology , Female , Gene Knockout Techniques , Macrophages/metabolism , Acute Kidney Injury/metabolism , Acute Kidney Injury/genetics , Acute Kidney Injury/chemically induced , Acute Kidney Injury/pathology
4.
Redox Biol ; 72: 103154, 2024 Jun.
Article En | MEDLINE | ID: mdl-38626575

Continuous remodeling of the heart can result in adverse events such as reduced myocardial function and heart failure. Available evidence indicates that ferroptosis is a key process in the emergence of cardiac disease. P2 family purinergic receptor P2X7 receptor (P2X7R) activation plays a crucial role in numerous aspects of cardiovascular disease. The aim of this study was to elucidate any potential interactions between P2X7R and ferroptosis in cardiac remodeling stimulated by angiotensin II (Ang II), and P2X7R knockout mice were utilized to explore the role of P2X7R and elucidate its underlying mechanism through molecular biological methods. Ferroptosis is involved in cardiac remodeling, and P2X7R deficiency significantly alleviates cardiac dysfunction, remodeling, and ferroptosis induced by Ang II. Mechanistically, Ang II interacts with P2X7R directly, and LYS-66 and MET-212 in the in the ATP binding pocket form a binding complex with Ang II. P2X7R blockade influences HuR-targeted GPX4 and HO-1 mRNA stability by affecting the shuttling of HuR from the nucleus to the cytoplasm and its expression. These results suggest that focusing on P2X7R could be a possible therapeutic approach for the management of hypertensive heart failure.


Angiotensin II , Ferroptosis , Receptors, Purinergic P2X7 , Receptors, Purinergic P2X7/metabolism , Receptors, Purinergic P2X7/genetics , Animals , Angiotensin II/metabolism , Mice , Humans , Mice, Knockout , Ventricular Remodeling , Myocardium/metabolism , Myocardium/pathology , Male , Protein Binding , Heart Failure/metabolism , Heart Failure/pathology , Heart Failure/genetics
5.
FASEB J ; 38(6): e23563, 2024 Mar 31.
Article En | MEDLINE | ID: mdl-38498358

Acute kidney injury (AKI), a prevalent clinical syndrome, involves the participation of the nervous system in neuroimmune regulation. However, the intricate molecular mechanism that governs renal function regulation by the central nervous system (CNS) is complex and remains incompletely understood. In the present study, we found that the upregulated expression of lncTCONS_00058568 in lower thoracic spinal cord significantly ameliorated AKI-induced renal tissue injury, kidney morphology, inflammation and apoptosis, and suppressed renal sympathetic nerve activity. Mechanistically, the purinergic ionotropic P2X7 receptor (P2X7R) was overexpressed in AKI rats, whereas lncTCONS_00058568 was able to suppress the upregulation of P2X7R. In addition, RNA sequencing data revealed differentially expressed genes associated with nervous system inflammatory responses after lncTCONS_00058568 was overexpressed in AKI rats. Finally, the overexpression of lncTCONS_00058568 inhibited the activation of PI3K/Akt and NF-κB signaling pathways in spinal cord. Taken together, the results from the present study show that lncTCONS_00058568 overexpression prevented renal injury probably by inhibiting sympathetic nerve activity mediated by P2X7R in the lower spinal cord subsequent to I/R-AKI.


Acute Kidney Injury , Receptors, Purinergic P2X7 , Rats , Animals , Rats, Sprague-Dawley , Receptors, Purinergic P2X7/genetics , Receptors, Purinergic P2X7/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Acute Kidney Injury/metabolism , Spinal Cord/metabolism
6.
Brain Behav Immun ; 118: 318-333, 2024 May.
Article En | MEDLINE | ID: mdl-38460804

Zika virus (ZIKV), the causative agent of Zika fever, is a flavivirus transmitted by mosquitoes of the Aedes genus. Zika virus infection has become an international concern due to its association with severe neurological complications such as fetal microcephaly. Viral infection can induce the release of ATP in the extracellular environment, activating receptors sensitized by extracellular nucleotides, such as the P2X7 receptor. This receptor is the primary purinergic receptor involved in neuroinflammation, neurodegeneration, and immunity. In this work, we investigated the role of ATP-P2X7 receptor signaling in Zika-related brain abnormalities. Wild-type mice (WT) and P2X7 receptor-deficient (P2X7-/-) C57BL/6 newborn mice were subcutaneously inoculated with 5 × 106plaque-forming units of ZIKV or mock solution. P2X7 receptor expression increased in the brain of Zika virus-infected mice compared to the mock group. Comparative analyses of the hippocampi from WT and P2X7-/-mice revealed that the P2X7 receptor increased hippocampal damage in CA1/CA2 and CA3 regions. Doublecortin expression decreased significantly in the brains of ZIKV-infected mice. WT ZIKV-infected mice showed impaired motor performance compared to P2X7-/- infected mice. WT ZIKV-infected animals showed increased expression of glial markers GFAP (astrocytes) and IBA-1 (microglia) compared to P2X7-/- infected mice. Although the P2X7 receptor contributes to neuronal loss and neuroinflammation, WT mice were more efficient in controlling the viral load in the brain than P2X7 receptor-deficient mice. This result was associated with higher induction of TNF-α, IFN-ß, and increased interferon-stimulated gene expression in WT mice than P2X7-/-ZIKV-infected. Finally, we found that the P2X7 receptor contributes to inhibiting the neuroprotective signaling pathway AKT/mTOR while stimulating the caspase-3 activation, possibly two distinct pathways contributing to neurodegeneration. These findings suggest that ATP-P2X7 receptor signaling contributes to the antiviral response in the brain of ZIKV-infected mice while increasing neuronal loss, neuroinflammation, and related brain abnormalities.


Zika Virus Infection , Zika Virus , Pregnancy , Female , Animals , Mice , Zika Virus/genetics , Neuroinflammatory Diseases , Receptors, Purinergic P2X7/genetics , Receptors, Purinergic P2X7/metabolism , Mice, Inbred C57BL , Brain/metabolism , Signal Transduction , Adenosine Triphosphate
7.
Ann Neurol ; 95(5): 966-983, 2024 May.
Article En | MEDLINE | ID: mdl-38450773

OBJECTIVE: Neuropathic pain poses a persistent challenge in clinical management. Neuromodulation has emerged as a last-resort therapy. Conventional spinal cord stimulation (Con SCS) often causes abnormal sensations and provides short analgesia, whereas high-frequency spinal cord stimulation (HF SCS) is a newer therapy that effectively alleviates pain without paresthesia. However, the modes of action of 10kHz HF SCS (HF10 SCS) in pain relief remain unclear. To bridge this knowledge gap, we employed preclinical models that mimic certain features of clinical SCS to explore the underlying mechanisms of HF10 SCS. Addressing these issues would provide the scientific basis for improving and evaluating the effectiveness, reliability, and practicality of different frequency SCS in clinical settings. METHODS: We established a preclinical SCS model to examine its effects in a neuropathic pain rat model. We conducted bulk and single-cell RNA sequencing in the spinal dorsal horn (SDH) to examine cellular and molecular changes under different treatments. We employed genetic manipulations through intrathecal injection of a lentiviral system to explore the SCS-mediated signaling axis in pain. Various behavioral tests were performed to evaluate pain conditions under different treatments. RESULTS: We found that HF10 SCS significantly reduces immune responses in the SDH by inactivating the Kaiso-P2X7R pathological axis in microglia, promoting long-lasting pain relief. Targeting Kaiso-P2X7R in microglia dramatically improved efficacy of Con SCS treatment, leading to reduced neuroinflammation and long-lasting pain relief. INTERPRETATION: HF10 SCS could improve the immunopathologic state in the SDH, extending its benefits beyond symptom relief. Targeting the Kaiso-P2X7R axis may enhance Con SCS therapy and offer a new strategy for pain management. ANN NEUROL 2024;95:966-983.


Inflammation , Microglia , Neuralgia , Rats, Sprague-Dawley , Receptors, Purinergic P2X7 , Spinal Cord Stimulation , Animals , Neuralgia/therapy , Neuralgia/metabolism , Rats , Microglia/metabolism , Spinal Cord Stimulation/methods , Male , Receptors, Purinergic P2X7/metabolism , Receptors, Purinergic P2X7/genetics , Inflammation/therapy , Disease Models, Animal
8.
Immunity ; 57(3): 495-512.e11, 2024 Mar 12.
Article En | MEDLINE | ID: mdl-38395698

Na+/K+-ATPase (NKA) plays an important role in the central nervous system. However, little is known about its function in the microglia. Here, we found that NKAα1 forms a complex with the purinergic P2X7 receptor (P2X7R), an adenosine 5'-triphosphate (ATP)-gated ion channel, under physiological conditions. Chronic stress or treatment with lipopolysaccharide plus ATP decreased the membrane expression of NKAα1 in microglia, facilitated P2X7R function, and promoted microglia inflammatory activation via activation of the NLRP3 inflammasome. Accordingly, global deletion or conditional deletion of NKAα1 in microglia under chronic stress-induced aggravated anxiety-like behavior and neuronal hyperexcitability. DR5-12D, a monoclonal antibody that stabilizes membrane NKAα1, improved stress-induced anxiety-like behavior and ameliorated neuronal hyperexcitability and neurogenesis deficits in the ventral hippocampus of mice. Our results reveal that NKAα1 limits microglia inflammation and may provide a target for the treatment of stress-related neuroinflammation and diseases.


Microglia , Receptors, Purinergic P2X7 , Animals , Mice , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Anxiety , Microglia/metabolism , Receptors, Purinergic P2X7/genetics , Receptors, Purinergic P2X7/metabolism
9.
Neurobiol Dis ; 192: 106432, 2024 Mar.
Article En | MEDLINE | ID: mdl-38331352

The aim of this study was to explore the role and mechanism of the olfactory bulb (OB) microglial P2X7 receptor (P2X7R) in allergic rhinitis (AR)-related depression, with the objective of identifying a potential clinical target. An AR mouse model was induced using ovalbumin (OVA), while chronic stress was employed to induce depression. The study used P2X7R-specific antagonists and OB microglia-specific P2X7R knockdown mice as crucial tools. The results showed that mice in the OVA + stress group exhibited more pronounced depressive-like phenotypes. Furthermore, there was an observed increase in microglial activation in the OB, followed by a rise in the level of inflammation. The pharmacological inhibition of P2X7R significantly mitigated the depression-like phenotype and the OB inflammatory response in OVA + stress mice. Notably, the specific knockdown of microglial P2X7R in the OB resulted in a similar effect, possibly linked to the regulation of IL-1ß via the "ATP-P2X7R-Caspase 1" axis. These findings collectively demonstrate that microglial P2X7R in the OB acts as a direct effector molecule in AR-related depression, and its inhibition may offer a novel strategy for clinical prevention and treatment.


Microglia , Rhinitis, Allergic , Animals , Mice , Depression , Olfactory Bulb , Receptors, Purinergic P2X7/genetics
10.
Int Immunopharmacol ; 129: 111536, 2024 Mar 10.
Article En | MEDLINE | ID: mdl-38320354

BACKGROUND: Post-operative atrial fibrillation (POAF) is a common complication in patients undergoing cardiac surgery. The purinergic receptor P2X7 (P2X7R) is involved in some cardiovascular diseases, whereas its effects on atrial fibrillation (AF) are unclear. OBJECTIVE: This study was to assess the effect of P2X7R on atrial arrhythmogenic remodeling in the rat model of sterile pericarditis (SP). METHODS: Male Sprague-Dawley (SD) rats were used to induce the SP model. Electrocardiogram, atrial electrophysiological protocol, histology, mRNA sequencing, real-time quantitative PCR, western blot, and Elisa assay were performed. RESULTS: SP significantly up-regulated P2X7R expression; increased AF susceptibility; reduced the protein expression of ion channels including Nav1.5, Cav1.2, Kv4.2, Kv4.3, and Kv1.5; caused atrial fibrosis; increased norepinephrine (NE) level in plasma; promoted the production of inflammatory cytokines such as TNF-α, IL-1ß, and IL-6; increased the accumulation of immune cells (CD68- and MPO- positive cells); and activated NLRP3 inflammasome signaling pathway. P2X7R antagonist Brilliant Blue G (BBG) mitigated SP-induced alterations. The mRNA sequencing demonstrated that BBG prevented POAF mainly by regulating the immune system. In addition, another selective P2X7R antagonist A740003, and IL-1R antagonist anakinra also reduced AF inducibility in the SP model. CONCLUSIONS: P2X7R inhibition prevents SP-induced atrial proarrhythmic remodeling, which is closely associated with the improvement of inflammatory changes, ion channel expression, atrial fibrosis, and sympathetic activation. The findings point to P2X7R inhibition as a promising target for AF (particularly POAF) and perhaps other conditions.


Atrial Fibrillation , Pericarditis , Humans , Rats , Male , Animals , Atrial Fibrillation/drug therapy , Atrial Fibrillation/etiology , Atrial Fibrillation/prevention & control , Rats, Sprague-Dawley , Receptors, Purinergic P2X7/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Fibrosis , RNA, Messenger
11.
Elife ; 122024 Feb 01.
Article En | MEDLINE | ID: mdl-38300690

Idiopathic pulmonary fibrosis (IPF) is an aggressive interstitial lung disease associated with progressive and irreversible deterioration of respiratory functions that lacks curative therapies. Despite IPF being associated with a dysregulated immune response, current antifibrotics aim only at limiting fibroproliferation. Transcriptomic analyses show that the P2RX7/IL18/IFNG axis is downregulated in IPF patients and that P2RX7 has immunoregulatory functions. Using our positive modulator of P2RX7, we show that activation of the P2RX7/IL-18 axis in immune cells limits lung fibrosis progression in a mouse model by favoring an antifibrotic immune environment, with notably an enhanced IL-18-dependent IFN-γ production by lung T cells leading to a decreased production of IL-17 and TGFß. Overall, we show the ability of the immune system to limit lung fibrosis progression by targeting the immunomodulator P2RX7. Hence, treatment with a small activator of P2RX7 may represent a promising strategy to help patients with lung fibrosis.


Pulmonary Fibrosis , Animals , Mice , Humans , Interleukin-18 , Adjuvants, Immunologic , Aggression , Disease Models, Animal , Receptors, Purinergic P2X7/genetics
12.
Front Immunol ; 15: 1345625, 2024.
Article En | MEDLINE | ID: mdl-38370420

The P2X7 receptor (P2X7R), a non-selective cation channel modulated by adenosine triphosphate (ATP), localizes to microglia, astrocytes, oligodendrocytes, and neurons in the central nervous system, with the most incredible abundance in microglia. P2X7R partake in various signaling pathways, engaging in the immune response, the release of neurotransmitters, oxidative stress, cell division, and programmed cell death. When neurodegenerative diseases result in neuronal apoptosis and necrosis, ATP activates the P2X7R. This activation induces the release of biologically active molecules such as pro-inflammatory cytokines, chemokines, proteases, reactive oxygen species, and excitotoxic glutamate/ATP. Subsequently, this leads to neuroinflammation, which exacerbates neuronal involvement. The P2X7R is essential in the development of neurodegenerative diseases. This implies that it has potential as a drug target and could be treated using P2X7R antagonists that are able to cross the blood-brain barrier. This review will comprehensively and objectively discuss recent research breakthroughs on P2X7R genes, their structural features, functional properties, signaling pathways, and their roles in neurodegenerative diseases and possible therapies.


Neurodegenerative Diseases , Receptors, Purinergic P2X7 , Humans , Receptors, Purinergic P2X7/genetics , Receptors, Purinergic P2X7/metabolism , Neurodegenerative Diseases/metabolism , Microglia/metabolism , Neurons/metabolism , Adenosine Triphosphate/metabolism
13.
J Autoimmun ; 144: 103183, 2024 04.
Article En | MEDLINE | ID: mdl-38401466

Chronic nonbacterial osteomyelitis (CNO), an autoinflammatory bone disease primarily affecting children, can cause pain, hyperostosis and fractures, affecting quality-of-life and psychomotor development. This study investigated CNO-associated variants in P2RX7, encoding for the ATP-dependent trans-membrane K+ channel P2X7, and their effects on NLRP3 inflammasome assembly. Whole exome sequencing in two related transgenerational CNO patients, and target sequencing of P2RX7 in a large CNO cohort (N = 190) were conducted. Results were compared with publicly available datasets and regional controls (N = 1873). Findings were integrated with demographic and clinical data. Patient-derived monocytes and genetically modified THP-1 cells were used to investigate potassium flux, inflammasome assembly, pyroptosis, and cytokine release. Rare presumably damaging P2RX7 variants were identified in two related CNO patients. Targeted P2RX7 sequencing identified 62 CNO patients with rare variants (32.4%), 11 of which (5.8%) carried presumably damaging variants (MAF <1%, SIFT "deleterious", Polyphen "probably damaging", CADD >20). This compared to 83 of 1873 controls (4.4%), 36 with rare and presumably damaging variants (1.9%). Across the CNO cohort, rare variants unique to one (Median: 42 versus 3.7) or more (≤11 patients) participants were over-represented when compared to 190 randomly selected controls. Patients with rare damaging variants more frequently experienced gastrointestinal symptoms and lymphadenopathy while having less spinal, joint and skin involvement (psoriasis). Monocyte-derived macrophages from patients, and genetically modified THP-1-derived macrophages reconstituted with CNO-associated P2RX7 variants exhibited altered potassium flux, inflammasome assembly, IL-1ß and IL-18 release, and pyroptosis. Damaging P2RX7 variants occur in a small subset of CNO patients, and rare P2RX7 variants may represent a CNO risk factor. Observations argue for inflammasome inhibition and/or cytokine blockade and may allow future patient stratification and individualized care.


Inflammasomes , Osteomyelitis , Humans , Cytokines , Inflammasomes/genetics , Inflammasomes/metabolism , Osteomyelitis/genetics , Potassium , Pyroptosis , Receptors, Purinergic P2X7/genetics
14.
Hypertension ; 81(3): 530-540, 2024 Mar.
Article En | MEDLINE | ID: mdl-38193292

BACKGROUND: CD8+ T cells (CD8Ts) have been implicated in hypertension. However, the specific mechanisms are not fully understood. In this study, we explore the contribution of the P2X7 (purinergic receptor P2X7) receptor to CD8T activation and subsequent promotion of sodium retention in the kidney. METHODS: We used mouse models of hypertension. Wild type were used as genetic controls, OT1 and Rag2/OT1 mice were utilized to determine antigen dependency, and P2X7-knockout mice were studied to define the role of P2X7 in activating CD8Ts and promoting hypertension. Blood pressure was monitored continuously and kidneys were obtained at different experimental end points. Freshly isolated CD8Ts from mice for activation assays and ATP stimulation. CD8T activation-induced promotion of sodium retention was explored in cocultures of CD8Ts and mouse DCTs. RESULTS: We found that OT1 and Rag2/OT1 mice, which are nonresponsive to common antigens, still developed hypertension and CD8T-activation in response to deoxycorticosterone acetate/salt treatment, similar to wild-type mice. Further studies identified the P2X7 receptor on CD8Ts as a possible mediator of this antigen-independent activation of CD8Ts in hypertension. Knockout of the P2X7 receptor prevented calcium influx and cytokine production in CD8Ts. This finding was associated with reduced CD8T-DCT stimulation, reversal of excessive salt retention in DCTs, and attenuated development of salt-sensitive hypertension. CONCLUSIONS: Our findings suggest a novel mechanism by which CD8Ts are activated in hypertension to exacerbate salt retention and infer that the P2X7 receptor on CD8Ts may represent a new therapeutic target to attenuate T-cell-mediated immunopathology in hypertension.


CD8-Positive T-Lymphocytes , Hypertension , Mice , Animals , Receptors, Purinergic P2X7/genetics , Mice, Knockout , Sodium Chloride, Dietary , Sodium , Adenosine Triphosphate , Mice, Inbred C57BL
15.
Europace ; 26(2)2024 Feb 01.
Article En | MEDLINE | ID: mdl-38261756

AIMS: Depression, the most prevalent psychiatric disorder, is associated with the occurrence and development of atrial fibrillation (AF). P2X7 receptor (P2X7R) activation participates in the development of depression, but little attention has been given to its role in AF. This study was to investigate the effects of P2X7R on AF in depression models. METHODS AND RESULTS: Lipopolysaccharide (LPS) and chronic unpredictable stress (CUS) were carried out to induce depression in rodents. Behavioural assessments, atrial electrophysiological parameters, electrocardiogram (ECG) parameters, western blot, and histology were performed. Atrial fibrillation inducibility was increased in both LPS- and CUS-induced depression, along with the up-regulation of P2X7R in atria. CUS facilitated atrial fibrosis. CUS reduced heart rate variability (HRV) and increased the expression of TH and GAP43, representing autonomic dysfunction. Down-regulation of Nav1.5, Cav1.2, Kv1.5, Kv4.3, Cx40, and Cx43 in CUS indicated the abnormalities in ion channels. In addition, the expression levels of TLR4, P65, P-P65, NLRP3, ASC, caspase-1, and IL-1ß were elevated in depression models. Pharmacological inhibitor (Brilliant Blue G, BBG) or genetic deficiency of P2X7R significantly mitigated depressive-like behaviours; ameliorated electrophysiological deterioration and autonomic dysfunction; improved ion channel expression and atrial fibrosis; and prevented atrial NLRP3 inflammasome activation in the pathophysiological process of AF in depression models. CONCLUSION: LPS or CUS induces AF and promotes P2X7R-dependent activation of NLRP3 inflammasome, whereas pharmacological P2X7R inhibition or P2X7R genetic deficiency prevents atrial remodelling without interrupting normal atrial physiological functions. Our results point to P2X7R as an important factor in the pathology of AF in depression.


Atrial Fibrillation , Animals , Atrial Fibrillation/etiology , Atrial Fibrillation/prevention & control , Depression/prevention & control , Disease Models, Animal , Fibrosis , Inflammasomes/metabolism , Lipopolysaccharides , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Receptors, Purinergic P2X7/genetics , Rodentia/metabolism
16.
Int J Mol Sci ; 25(2)2024 Jan 18.
Article En | MEDLINE | ID: mdl-38256257

Major depressive disorder (MDD) is a common complication of diabetes and is often observed alongside diabetic neuropathic pain (DNP) as a comorbidity in diabetic patients. Long non-coding RNA (lncRNA) plays an important role in various pathophysiological processes. The P2X7 receptor is responsible for triggering inflammatory responses, such as pyroptosis, linked to pain and depression. The aim of this study was to investigate the effect of lncRNA MSTRG.81401 on hippocampal pyroptosis induced by the P2X7 receptor in diabetic rats with DNP combined with MDD (DNP + MDD). Our results showed that the expression of lncRNA MSTRG.81401 was significantly elevated in the hippocampus of DNP + MDD rats compared with the control group. Following the administration of shRNA targeting lncRNA MSTRG.81401, a notable elevation in mechanical and thermal pain thresholds was observed in rats with comorbid DNP and MDD. Additionally, significant improvements in depression-like behaviors were evident in the open-field test (OFT), sucrose preference test (SPT), and forced swim test (FST). In the DNP + MDD rats, elevated levels in hippocampal P2X7 receptor mRNA and protein were observed, along with increased co-expression of P2X7 and the astrocytic marker glial fibrillary acidic protein (GFAP). Meanwhile, in DNP + MDD rats, the heightened mRNA expression of NOD-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC), pyroptosis-related protein Gasdermin D (GSDMD), caspase-1, IL-1ß, IL-18, and TNF-α was detected, in addition to increased serum levels of IL-1ß, IL-18 and TNF-α. After shRNA treatment with lncRNA MSTRG.81401, the above abnormal changes in indicators for pyroptosis and inflammation were improved. Therefore, our study demonstrates that shRNA of lncRNA MSTRG.81401 can alleviate the pain and depression-like behaviors in diabetic rats associated with the comorbidity of DNP and MDD by inhibiting the hippocampal P2X7 receptor-mediated pyroptosis pathway and pro-inflammatory responses. This suggests that the P2X7R/NLRP3/caspase-1 implicated pyroptosis and inflammatory scenario may serve as a potential target for the management of comorbid DNP and MDD in diabetes.


Depressive Disorder, Major , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Diabetic Neuropathies , Neuralgia , RNA, Long Noncoding , Humans , Animals , Rats , RNA, Long Noncoding/genetics , Interleukin-18/genetics , Receptors, Purinergic P2X7/genetics , Pyroptosis/genetics , Depression/genetics , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/genetics , NLR Family, Pyrin Domain-Containing 3 Protein , Tumor Necrosis Factor-alpha/genetics , Neuralgia/genetics , Caspases , Hippocampus , RNA, Messenger , RNA, Small Interfering
17.
Cell Death Dis ; 15(1): 24, 2024 01 09.
Article En | MEDLINE | ID: mdl-38195677

ATP and its receptor P2RX7 exert a pivotal effect on antitumor immunity during chemotherapy-induced immunogenic cell death (ICD). Here, we demonstrated that TNFα-mediated PANX1 cleavage was essential for ATP release in response to chemotherapy in colorectal cancer (CRC). TNFα promoted PANX1 cleavage via a caspase 8/3-dependent pathway to enhance cancer cell immunogenicity, leading to dendritic cell maturation and T-cell activation. Blockade of the ATP receptor P2RX7 by the systemic administration of small molecules significantly attenuated the therapeutic efficacy of chemotherapy and decreased the infiltration of immune cells. In contrast, administration of an ATP mimic markedly increased the therapeutic efficacy of chemotherapy and enhanced the infiltration of immune cells in vivo. High PANX1 expression was positively correlated with the recruitment of DCs and T cells within the tumor microenvironment and was associated with favorable survival outcomes in CRC patients who received adjuvant chemotherapy. Furthermore, a loss-of-function P2RX7 mutation was associated with reduced infiltration of CD8+ immune cells and poor survival outcomes in patients. Taken together, these results reveal that TNFα-mediated PANX1 cleavage promotes ATP-P2RX7 signaling and is a key determinant of chemotherapy-induced antitumor immunity.


Antineoplastic Agents , Colorectal Neoplasms , Humans , Tumor Necrosis Factor-alpha , Lymphocyte Activation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Adenosine Triphosphate , Tumor Microenvironment , Nerve Tissue Proteins , Connexins/genetics , Receptors, Purinergic P2X7/genetics
18.
J Neuroinflammation ; 21(1): 13, 2024 Jan 08.
Article En | MEDLINE | ID: mdl-38191407

Ferroptosis is an iron-dependent cell death mechanism involving the accumulation of lipid peroxides. As a critical regulator, glutathione peroxidase 4 (GPX4) has been demonstrated to be downregulated in epilepsy. However, the mechanism of ferroptosis in epilepsy remains unclear. In this study, bioinformatics analysis, analysis of epilepsy patient blood samples and cell and mouse experiments revealed strong associations among epilepsy, ferroptosis, microRNA-211-5p and purinergic receptor P2X 7 (P2RX7). P2RX7 is a nonselective ligand-gated homotrimeric cation channel, and its activation mainly increases neuronal activity during epileptic seizures. In our study, the upregulation of P2RX7 in epilepsy was attributed to the downregulation of microRNA (miR)-211-5p. Furthermore, P2RX7 has been found to regulate GPX4/HO-1 by alleviating lipid peroxidation induced by suppression of the MAPK/ERK signaling pathway in murine models. The dynamic decrease in miR-211-5p expression induces hypersynchronization and both nonconvulsive and convulsive seizures, and forebrain miR-211-5p suppression exacerbates long-lasting pentylenetetrazole-induced seizures. Additionally, in this study, induction of miR-211-5p expression or genetic-silencing of P2RX7 significantly reduced the seizure score and duration in murine models through the abovementioned pathways. These results suggest that the miR-211-5p/P2RX7 axis is a novel target for suppressing both ferroptosis and epilepsy.


Epilepsy , Ferroptosis , MicroRNAs , Humans , Animals , Mice , Epilepsy/genetics , Oxidative Stress , Seizures , MicroRNAs/genetics , Receptors, Purinergic P2X7/genetics
19.
Neurochem Int ; 173: 105675, 2024 Feb.
Article En | MEDLINE | ID: mdl-38211839

Epilepsy, a condition characterized by spontaneous recurrent epileptic seizures, is among the most prevalent neurological disorders. This disorder is estimated to affect approximately 70 million people worldwide. Although antiseizure medications are considered the first-line treatments for epilepsy, most of the available antiepileptic drugs are not effective in nearly one-third of patients. This calls for the development of more effective drugs. Evidence from animal models and epilepsy patients suggests that strategies that interfere with the P2X7 receptor by binding to adenosine triphosphate (ATP) are potential treatments for this patient population. This review describes the role of the P2X7 receptor signaling pathways in epileptogenesis. We highlight the genes, purinergic signaling, Pannexin1, glutamatergic signaling, adenosine kinase, calcium signaling, and inflammatory response factors involved in the process, and conclude with a synopsis of these key connections. By unraveling the intricate interplay between P2X7 receptors and epileptogenesis, this review provides ideas for designing potent clinical therapies that will revolutionize both prevention and treatment for epileptic patients.


Epilepsy , Receptors, Purinergic P2X7 , Signal Transduction , Animals , Humans , Adenosine Triphosphate/metabolism , Epilepsy/metabolism , Purinergic P2X Receptor Antagonists/pharmacology , Purinergic P2X Receptor Antagonists/therapeutic use , Receptors, Purinergic P2X7/genetics , Receptors, Purinergic P2X7/metabolism , Seizures/drug therapy
20.
Int J Mol Sci ; 25(2)2024 Jan 10.
Article En | MEDLINE | ID: mdl-38255938

Both early childhood traumatic experiences and current stress increase the risk of suicidal behaviour, in which immune activation might play a role. Previous research suggests an association between mood disorders and P2RX7 gene encoding P2X7 receptors, which stimulate neuroinflammation. We investigated the effect of P2RX7 variation in interaction with early childhood adversities and traumas and recent stressors on lifetime suicide attempts and current suicide risk markers. Overall, 1644 participants completed questionnaires assessing childhood adversities, recent negative life events, and provided information about previous suicide attempts and current suicide risk-related markers, including thoughts of ending their life, death, and hopelessness. Subjects were genotyped for 681 SNPs in the P2RX7 gene, 335 of which passed quality control and were entered into logistic and linear regression models, followed by a clumping procedure to identify clumps of SNPs with a significant main and interaction effect. We identified two significant clumps with a main effect on current suicidal ideation with top SNPs rs641940 and rs1653613. In interaction with childhood trauma, we identified a clump with top SNP psy_rs11615992 and another clump on hopelessness containing rs78473339 as index SNP. Our results suggest that P2RX7 variation may mediate the effect of early childhood adversities and traumas on later emergence of suicide risk.


Adverse Childhood Experiences , Neuroinflammatory Diseases , Receptors, Purinergic P2X7 , Child, Preschool , Humans , Affect , Genotype , Neuroinflammatory Diseases/genetics , Receptors, Purinergic P2X7/genetics , Suicidal Ideation
...