Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 804
1.
Sci Rep ; 14(1): 13148, 2024 06 07.
Article En | MEDLINE | ID: mdl-38849425

Recent data indicate that extracellular ATP affects wound healing efficacy via P2Y2-dependent signaling pathway. In the current work, we propose double-modified ATP analogue-alpha-thio-beta,gamma-methylene-ATP as a potential therapeutic agent for a skin regeneration. For the better understanding of structure-activity relationship, beside tested ATP analogues, the appropriate single-modified derivatives of target compound, such as alpha-thio-ATP and beta,gamma-methylene-ATP, were also tested in the context of their involvement in the activation of ATP-dependent purinergic signaling pathway via the P2Y2 receptor. The diastereomerically pure alpha-thio-modified-ATP derivatives were obtained using the oxathiaphospholane method as separate SP and RP diastereomers. Both the single- and double- modified ATP analogues were then tested for their impact on the viability and migration of human keratinocytes. The involvement of P2Y2-dependent purinergic signaling was analyzed in silico by molecular docking of the tested compounds to the P2Y2 receptor and experimentally by studying intracellular calcium mobilization in the human keratinocytes HaCaT. The effects obtained for ATP analogues were compared with the results for ATP as a natural P2Y2 agonist. To confirm the contribution of the P2Y2 receptor to the observed effects, the tests were also performed in the presence of the selective P2Y2 antagonist-AR-C118925XX. The ability of the alpha-thio-beta,gamma-methylene-ATP to influence cell migration was analyzed in vitro on the model HaCaT and MDA-MB-231 cells by wound healing assay and transwell migration test as well as in vivo using zebrafish system. The impact on tissue regeneration was estimated based on the regrowth rate of cut zebrafish tails. The in vitro and in vivo studies have shown that the SP-alpha-thio-beta,gamma-methylene-ATP analogue promotes regeneration-related processes, making it a suitable agent for enhance wound healing. Performed studies indicated its impact on the cell migration, induction of epithelial-mesenchymal transition and intracellular calcium mobilization. The enhanced regeneration of cut zebrafish tails confirmed the pro-regenerative activity of this ATP analogue. Based on the performed studies, the SP-alpha-thio-beta,gamma-methylene-ATP is proposed as a potential therapeutic agent for wound healing and skin regeneration treatment.


Adenosine Triphosphate , Keratinocytes , Wound Healing , Zebrafish , Wound Healing/drug effects , Humans , Adenosine Triphosphate/metabolism , Animals , Keratinocytes/drug effects , Keratinocytes/metabolism , Molecular Docking Simulation , Cell Movement/drug effects , Receptors, Purinergic P2Y2/metabolism , Signal Transduction/drug effects , Calcium/metabolism , Cell Line , Cell Survival/drug effects , Structure-Activity Relationship
2.
Biochimie ; 222: 37-44, 2024 Jul.
Article En | MEDLINE | ID: mdl-38360398

AIMS: Acute kidney injury (AKI) is a public health problem and represents a risk factor for cardiovascular diseases (CVD) and vascular damage. This study aimed to investigate the impact of AKI on purinergic components in mice aorta. MAIN METHODS: The kidney ischemia was achieved by the occlusion of the left kidney pedicle for 60 min, followed by reperfusion for 8 (IR8) and 15 (IR15) days. Renal function was assessed through biochemical assays, while gene expression levels were evaluated by RT-qPCR. KEY FINDINGS: Analyses of renal parameters showed renal remodeling through mass loss in the left kidney and hypertrophy of the right kidney in the IR15 group. Furthermore, after 15 days, local inflammation was evidenced in the aorta. Moreover, the aorta purinergic components were significantly impacted by the renal ischemia and reperfusion model, with increases in gene expression of the pro-inflammatory purinoceptors P2Y1, P2Y2, P2Y6, and P2X4, potentially contributing to the vessel inflammation. The expression of NTPDase2 and ecto-5'-nucleotidase were also significantly increased in the aorta of the same group. In addition, both ATP and AMP hydrolysis were significantly increased in the aorta from IR15 animals, driving the entire purinergic cascade to the production of the anti-inflammatory adenosine. SIGNIFICANCE: In short, this is the first time that inflammation of the aorta due to AKI was shown to have an impact on purinergic signaling components, with emphasis on the adenosinergic pathway. This seems to be closely implicated in the establishment of vascular inflammation in this model of AKI and deserves to be further investigated.


Acute Kidney Injury , Kidney , Reperfusion Injury , Signal Transduction , Animals , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Mice , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/etiology , Kidney/metabolism , Kidney/blood supply , Kidney/pathology , Male , Aorta/metabolism , Aorta/pathology , 5'-Nucleotidase/metabolism , 5'-Nucleotidase/genetics , Mice, Inbred C57BL , Receptors, Purinergic/metabolism , Receptors, Purinergic P2Y2/metabolism , Receptors, Purinergic P2Y2/genetics
3.
Biomed Pharmacother ; 170: 116090, 2024 Jan.
Article En | MEDLINE | ID: mdl-38169187

PURPOSE: The aim of the study was to evaluate the effect of silver nanoparticles hydrocolloids (AgNPs) on human corneal epithelial cells. Epithelial cells form the outermost and the most vulnerable to environmental stimuli layer of the cornea in the eye. Mechanical stress, UV radiation, and pathogens such as bacteria, viruses, and parasites challenge the fragile homeostasis of the eye. To help combat stress, infection, and inflammation wide portfolio of interventions is available. One of the oldest treatments is colloidal silver. Silver nanoparticle suspension in water is known for its anti-bacterial anti-viral and antiprotozoal action. However, AgNPs interact also with host cells, and the character of the interplay between corneal cells and silver seeks investigation. METHODS: The human epithelial corneal cell line (HCE-2) was cultured in vitro, treated with AgNPs, and subjected to UV. The cell's viability, migration, calcium concentration, and expression/protein level of selected proteins were investigated by appropriate methods including cytotoxicity tests, "wound healing" assay, Fluo8/Fura2 AM staining, qRT-PCR, and western blot. RESULTS: Incubation of human corneal cells (HCE-2) with AgNP did not affect cells viability but limited cells migration and resulted in altered calcium homeostasis, decreased the presence of ATP-activated P2X7, P2Y2 receptors, and enhanced the expression of PACAP. Furthermore, AgNPs pretreatment helped restrain some of the deleterious effects of UV irradiation. Interestingly, AgNPs had no impact on the protein level of ACE2, which is important in light of potential SARS-CoV-2 entrance through the cornea. CONCLUSIONS: Silver nanoparticles are safe for corneal epithelial cells in vitro.


Metal Nanoparticles , Silver , Humans , Silver/metabolism , Calcium/metabolism , Metal Nanoparticles/toxicity , Receptors, Purinergic P2Y2/metabolism , Cornea , Epithelial Cells
4.
Arch Biochem Biophys ; 751: 109844, 2024 01.
Article En | MEDLINE | ID: mdl-38043889

The current study aimed to investigate the hypothesis that purinergic receptors P2Y1 and P2Y2 play a regulatory role in gene expression in unloaded muscle. ATP is released from cells through pannexin channels, and it interacts with P2Y1 and P2Y2 receptors, leading to the activation of markers of protein catabolism and a reduction in protein synthesis. To test this hypothesis thirty-two rats were randomly divided into four groups (8 per group): a non-treated control group (C), a group subjected to three days of hindlimb unloading with a placebo (HS), a group subjected to three days of hindlimb unloading treated with a P2Y1 receptor inhibitor, MRS2179 (HSM), and a group subjected to three days of hindlimb unloading treated with a P2Y2 receptor inhibitor, AR-C 118925XX (HSA). This study revealed several key findings following three days of soleus muscle unloading: 1: Inhibition of P2Y1 or P2Y2 receptors prevented the accumulation of ATP, the increase in IP3 receptor content, and the decrease in the phosphorylation of GSK-3beta. This inhibition also mitigated the reduction in the rate of protein synthesis. However, it had no significant effect on the markers of mTORC1-dependent signaling. 2: Blocking P2Y1 receptors prevented the unloading-induced upregulation of phosphorylated p38MAPK and partially reduced the increase in MuRF1mRNA expression. 3: Blocking P2Y2 receptors prevented muscle atrophy during unloading, partially maintained the levels of phosphorylated ERK1/2, reduced the increase in mRNA expression of MAFbx, ubiquitin, and IL-6 receptor, prevented the decrease in phosphorylated AMPK, and attenuated the increase in phosphorylated p70S6K. Taken together, these results suggest that the prevention of muscle atrophy during unloading, as achieved by the P2Y2 receptor inhibitor, is likely mediated through a reduction in catabolic processes and maintenance of energy homeostasis. In contrast, the P2Y1 receptor appears to play a relatively minor role in muscle atrophy during unloading.


Muscle, Skeletal , Signal Transduction , Animals , Rats , Adenosine Triphosphate/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Receptors, Purinergic P2Y1/metabolism , Receptors, Purinergic P2Y2/genetics , Receptors, Purinergic P2Y2/metabolism
5.
Am J Physiol Gastrointest Liver Physiol ; 326(2): G107-G119, 2024 02 01.
Article En | MEDLINE | ID: mdl-37987757

Nucleotides are potent extracellular signaling molecules during homeostasis, infection, and injury due to their ability to activate purinergic receptors. The nucleotide ATP activates P2X receptors (P2RXs), whereas the nucleotides ADP, ATP, UTP, and UDP-glucose selectively activate different P2Y receptors (P2RYs). Several studies have established crucial roles for P2 receptors during intestinal inflammatory and infectious diseases, yet the most extensive characterization of purinergic signaling has focused on immune cells and the central and enteric nervous systems. As epithelial cells serve as the first barrier against irritants and infection, we hypothesized that the gut epithelium may express multiple purinergic receptors that respond to extracellular nucleotide signals. Using the Human Protein Atlas and Gut Cell Survey, we queried single-cell RNA sequencing (RNAseq) data for the P2 purinergic receptors in the small and large intestines. In silico analysis reveals robust mRNA expression of P2RY1, P2RY2, P2RY11, and P2RX4 throughout the gastrointestinal tract. Human intestinal organoids exhibited a similar expression pattern with a prominent expression of P2RY1, P2RY2, and P2RX4, but this purinergic receptor repertoire was not conserved in T84, Caco2, and HT29 intestinal epithelial cell lines. Finally, P2YR1 and P2YR2 agonists elicited robust calcium responses in human intestinal organoids, but calcium responses were weaker or absent in the cell lines. These findings suggest that the gastrointestinal epithelia respond to extracellular purinergic signaling via P2RY1, P2RY2, P2RY11, and P2RX4 receptors and highlight the benefit of using intestinal organoids as a model of intestinal purinergic signaling.NEW & NOTEWORTHY Several studies have revealed crucial roles for P2 receptors during inflammatory and infectious diseases, however, these have largely been demonstrated in immune cells and the enteric nervous system. Although epithelial cells serve as the first barrier against infection and inflammation, the role of purinergic signaling within the gastrointestinal tract remains largely unknown. This work expands our knowledge of purinergic receptor distribution and relative expression along the intestine.


Adenosine Triphosphate , Communicable Diseases , Humans , Calcium/metabolism , Caco-2 Cells , Nucleotides , Receptors, Purinergic , Receptors, Purinergic P2Y2
6.
J Biol Chem ; 300(2): 105589, 2024 Feb.
Article En | MEDLINE | ID: mdl-38141758

Several P2Y nucleotide receptors have been shown to be involved in the early stage of adipocyte differentiation in vitro and insulin resistance in obese mice; however, the exact receptor subtype(s) and its underlying molecular mechanism in relevant human cells are unclear. Here, using human primary visceral preadipocytes as a model, we found that during preadipocyte-to-mature adipocyte differentiation, the P2Y2 nucleotide receptor (P2Y2R) was the most upregulated subtype among the eight known P2Y receptors and the only one further dramatically upregulated after inflammatory TNFα treatment. Functional studies indicated that the P2Y2R induced intracellular Ca2+, ERK1/2, and JNK signaling but not the p38 pathway. In addition, stimulation of the P2Y2R suppressed basal and insulin-induced phosphorylation of AKT, accompanied by decreased GLUT4 membrane translocation and glucose uptake in mature adipocytes, suggesting a role of P2Y2R in insulin resistance. Mechanistically, we found that activation of P2Y2R did not increase lipolysis but suppressed PIP3 generation. Interestingly, activation of P2Y2R triggered Gi-protein coupling, and pertussis toxin pretreatment largely inhibited P2Y2R-mediated ERK1/2 signaling and cAMP suppression. Further, treatment of the cells with AR-C 118925XX, a selective P2Y2R antagonist, significantly inhibited adipogenesis, and P2Y2R knockout decreased mouse body weight gain with smaller eWAT mass infiltrated with fewer macrophages as compared to WT mice in response to a Western diet. Thus, we revealed that terminal adipocyte differentiation and inflammation selectively upregulate P2Y2R expression and that P2Y2R mediates insulin resistance by suppressing the AKT signaling pathway, highlighting P2Y2R as a potential new drug target to combat obesity and type-2 diabetes.


Adipogenesis , Insulin Resistance , Receptors, Purinergic P2Y2 , Animals , Humans , Mice , Adipocytes/cytology , Adipocytes/metabolism , GTP-Binding Proteins/metabolism , Insulin Resistance/genetics , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Purinergic P2Y2/genetics , Receptors, Purinergic P2Y2/metabolism , Signal Transduction/genetics , Cells, Cultured , Mice, Inbred C57BL , Up-Regulation , Glucose Transporter Type 4/metabolism , Protein Transport/genetics , Lipolysis/genetics , Adipogenesis/genetics
7.
Sci Signal ; 16(808): eadg1553, 2023 10 24.
Article En | MEDLINE | ID: mdl-37874885

Lung ischemia-reperfusion injury (IRI), characterized by inflammation, vascular permeability, and lung edema, is the major cause of primary graft dysfunction after lung transplantation. Here, we investigated the cellular mechanisms underlying lung IR-induced activation of endothelial TRPV4 channels, which play a central role in lung edema and dysfunction after IR. In a left lung hilar-ligation model of IRI in mice, we found that lung IRI increased the efflux of ATP through pannexin 1 (Panx1) channels at the endothelial cell (EC) membrane. Elevated extracellular ATP activated Ca2+ influx through endothelial TRPV4 channels downstream of purinergic P2Y2 receptor (P2Y2R) signaling. P2Y2R-dependent activation of TRPV4 channels was also observed in human and mouse pulmonary microvascular endothelium in ex vivo and in vitro models of IR. Endothelium-specific deletion of P2Y2R, TRPV4, or Panx1 in mice substantially prevented lung IRI-induced activation of endothelial TRPV4 channels and lung edema, inflammation, and dysfunction. These results identify endothelial P2Y2R as a mediator of the pathological sequelae of IRI in the lung and show that disruption of the endothelial Panx1-P2Y2R-TRPV4 signaling pathway could be a promising therapeutic strategy for preventing lung IRI after transplantation.


Reperfusion Injury , TRPV Cation Channels , Humans , Animals , Mice , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism , Receptors, Purinergic P2Y2/genetics , Receptors, Purinergic P2Y2/metabolism , Lung/metabolism , Reperfusion Injury/metabolism , Endothelial Cells/metabolism , Inflammation/metabolism , Adenosine Triphosphate/metabolism , Edema/metabolism , Edema/pathology , Nerve Tissue Proteins/metabolism , Connexins/genetics , Connexins/metabolism
8.
Front Immunol ; 14: 1209097, 2023.
Article En | MEDLINE | ID: mdl-37790940

Allergic airway inflammation (AAI) is a chronic respiratory disease that is considered a severe restriction in daily life and is accompanied by a constant risk of acute aggravation. It is characterized by IgE-dependent activation of mast cells, infiltration of eosinophils, and activated T-helper cell type 2 (Th2) lymphocytes into airway mucosa. Purinergic receptor signaling is known to play a crucial role in inducing and maintaining allergic airway inflammation. Previous studies in an ovalbumin (OVA)-alum mouse model demonstrated a contribution of the P2Y2 purinergic receptor subtype (P2RY2) in allergic airway inflammation. However, conflicting data concerning the mechanism by which P2RY2 triggers AAI has been reported. Thus, we aimed at elucidating the cell-type-specific role of P2RY2 signaling in house dust mite (HDM)-driven model of allergic airway inflammation. Thereupon, HDM-driven AAI was induced in conditional knockout mice, deficient or intact for P2ry2 in either alveolar epithelial cells, hematopoietic cells, myeloid cells, helper T cells, or dendritic cells. To analyze the functional role of P2RY2 in these mice models, flow cytometry of bronchoalveolar lavage fluid (BALF), cytokine measurement of BALF, invasive lung function measurement, HDM re-stimulation of mediastinal lymph node (MLN) cells, and lung histology were performed. Mice that were subjected to an HDM-based model of allergic airway inflammation resulted in reduced signs of acute airway inflammation including eosinophilia in BALF, peribronchial inflammation, Th2 cytokine production, and bronchial hyperresponsiveness in mice deficient for P2ry2 in alveolar epithelial cells, hematopoietic cells, myeloid cells, or dendritic cells. Furthermore, the migration of bone-marrow-derived dendritic cells and bone-marrow-derived monocytes, both deficient in P2ry2, towards ATP was impaired. Additionally, we found reduced levels of MCP-1/CCL2 and IL-8 homologues in the BALF of mice deficient in P2ry2 in myeloid cells and lower concentrations of IL-33 in the lung tissue of mice deficient in P2ry2 in alveolar epithelial cells. In summary, our results show that P2RY2 contributes to HDM-induced airway inflammation by mediating proinflammatory cytokine production in airway epithelial cells, monocytes, and dendritic cells and drives the recruitment of lung dendritic cells and monocytes.


Cytokines , Lung , Mice , Animals , Receptors, Purinergic P2Y2/genetics , Receptors, Purinergic P2Y2/metabolism , Cytokines/metabolism , Lung/pathology , Pyroglyphidae , Inflammation/metabolism
9.
J Physiol ; 601(19): 4375-4395, 2023 Oct.
Article En | MEDLINE | ID: mdl-37715703

Our sense of hearing depends on the function of a specialised class of sensory cells, the hair cells, which are found in the organ of Corti of the mammalian cochlea. The unique physiological environment in which these cells operate is maintained by a syncitium of non-sensory supporting cells, which are crucial for regulating cochlear physiology and metabolic homeostasis. Despite their importance for cochlear function, the role of these supporting cells in age-related hearing loss, the most common sensory deficit in the elderly, is poorly understood. Here, we investigated the age-related changes in the expression and function of metabotropic purinergic receptors (P2Y1 , P2Y2 and P2Y4 ) in the supporting cells of the cochlear apical coil. Purinergic signalling in supporting cells is crucial during the development of the organ of Corti and purinergic receptors are known to undergo changes in expression during ageing in several tissues. Immunolabelling and Ca2+ imaging experiments revealed a downregulation of P2Y receptor expression and a decrease of purinergic-mediated calcium responses after early postnatal stages in the supporting cells. An upregulation of P2Y receptor expression was observed in the aged cochlea when compared to 1 month-old adults. The aged mice also had significantly larger calcium responses and displayed calcium oscillations during prolonged agonist applications. We conclude that supporting cells in the aged cochlea upregulate P2Y2 and P2Y4 receptors and display purinergic-induced Ca2+ responses that mimic those observed during pre-hearing stages of development, possibly aimed at limiting or preventing further damage to the sensory epithelium. KEY POINTS: Age-related hearing loss is associated with lower hearing sensitivity and decreased ability to understand speech. We investigated age-related changes in the expression and function of metabotropic purinergic (P2Y) receptors in cochlear non-sensory supporting cells of mice displaying early-onset (C57BL/6N) and late-onset (C3H/HeJ) hearing loss. The expression of P2Y1 , P2Y2 and P2Y4 receptors in the supporting cells decreased during cochlear maturation, but that of P2Y2 and P2Y4 was upregulated in the aged cochlea. P2Y2 and P2Y4 receptors were primarily responsible for the ATP-induced Ca2+ responses in the supporting cells. The degree of purinergic expression upregulation in aged supporting cells mirrored hearing loss progression in the different mouse strains. We propose that the upregulation of purinergic-mediated signalling in the aged cochlea is subsequent to age-related changes in the hair cells and may act as a protective mechanism to limit or to avoid further damage to the sensory epithelium.


Calcium , Hearing Loss , Humans , Mice , Animals , Aged , Infant , Calcium/metabolism , Mice, Inbred C3H , Mice, Inbred C57BL , Receptors, Purinergic/metabolism , Receptors, Purinergic P2Y , Receptors, Purinergic P2Y2 , Receptors, Purinergic P2Y1 , Adenosine Triphosphate/physiology , Mammals/metabolism
10.
Am J Physiol Gastrointest Liver Physiol ; 325(5): G471-G491, 2023 11 01.
Article En | MEDLINE | ID: mdl-37697947

The liver plays a significant role in regulating a wide range of metabolic, homeostatic, and host-defense functions. However, the impact of liver injury on the host's ability to control bacteremia and morbidity in sepsis is not well understood. Leukocyte recruitment and activation lead to cytokine and chemokine release, which, in turn, trigger hepatocellular injury and elevate nucleotide levels in the extracellular milieu. P2Y2 purinergic receptors, G protein-coupled and activated by extracellular ATP/UTP, are expressed at the cell surface of hepatocytes and nonparenchymal cells. We sought to determine whether P2Y2 purinergic receptor function is necessary for the maladaptive host response to bacterial infection and endotoxin-mediated inflammatory liver injury and mortality in mice. We report that P2Y2 purinergic receptor knockout mice (P2Y2-/-) had attenuated inflammation and liver injury, with improved survival in response to LPS/galactosamine (LPS/GalN; inflammatory liver injury) and cecal ligation and puncture (CLP; polymicrobial sepsis). P2Y2-/- livers had attenuated c-Jun NH2-terminal kinase activation, matrix metallopeptidase-9 expression, and hepatocyte apoptosis in response to LPS/GalN and attenuated inducible nitric oxide synthase and nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain containing 3 protein expression in response to CLP. Implicating liver injury in the disruption of amino acid homeostasis, CLP led to lower serum arginine and higher bacterial load and morbidity in the WT mice, whereas serum arginine levels were comparable to sham-operated controls in P2Y2-/- mice, which had attenuated bacteremia and improved survival. Collectively, our studies highlight the pathophysiological relevance of P2Y2 purinergic receptor function in inflammatory liver injury and dysregulation of systemic amino acid homeostasis with implications for sepsis-associated immune dysfunction and morbidity in mice.NEW & NOTEWORTHY Our studies provide experimental evidence for P2Y2 purinergic receptor-mediated potentiation of inflammatory liver injury, morbidity, and mortality, in two well-established animal models of inflammatory liver injury. Our findings highlight the potential to target P2Y2 purinergic signaling to attenuate the induction of "cytokine storm" and prevent its deleterious consequences on liver function, systemic amino acid homeostasis, host response to bacterial infection, and sepsis-associated morbidity and mortality.


Bacteremia , Bacterial Infections , Sepsis , Mice , Animals , Lipopolysaccharides/pharmacology , Gene Deletion , Liver , Cytokines/genetics , Bacteremia/complications , Bacteremia/genetics , Nucleotides , Arginine , Receptors, Purinergic , Amino Acids , Mice, Inbred C57BL , Receptors, Purinergic P2Y2/genetics , Mice, Knockout
11.
J Biol Chem ; 299(9): 105119, 2023 09.
Article En | MEDLINE | ID: mdl-37527778

Serratia marcescens is an opportunistic human pathogen involved in antibiotic-resistant hospital acquired infections. Upon contact with the host epithelial cell and prior to internalization, Serratia induces an early autophagic response that is entirely dependent on the ShlA toxin. Once Serratia invades the eukaryotic cell and multiples inside an intracellular vacuole, ShlA expression also promotes an exocytic event that allows bacterial egress from the host cell without compromising its integrity. Several toxins, including ShlA, were shown to induce ATP efflux from eukaryotic cells. Here, we demonstrate that ShlA triggered a nonlytic release of ATP from Chinese hamster ovary (CHO) cells. Enzymatic removal of accumulated extracellular ATP (eATP) or pharmacological blockage of the eATP-P2Y2 purinergic receptor inhibited the ShlA-promoted autophagic response in CHO cells. Despite the intrinsic ecto-ATPase activity of CHO cells, the effective concentration and kinetic profile of eATP was consistent with the established affinity of the P2Y2 receptor and the known kinetics of autophagy induction. Moreover, eATP removal or P2Y2 receptor inhibition also suppressed the ShlA-induced exocytic expulsion of the bacteria from the host cell. Blocking α5ß1 integrin highly inhibited ShlA-dependent autophagy, a result consistent with α5ß1 transactivation by the P2Y2 receptor. In sum, eATP operates as the key signaling molecule that allows the eukaryotic cell to detect the challenge imposed by the contact with the ShlA toxin. Stimulation of P2Y2-dependent pathways evokes the activation of a defensive response to counteract cell damage and promotes the nonlytic clearance of the pathogen from the infected cell.


Autophagy , Host-Pathogen Interactions , Integrin alpha5beta1 , Receptors, Purinergic P2Y2 , Serratia , Toxins, Biological , Animals , Cricetinae , Adenosine Triphosphate/metabolism , Autophagy/drug effects , CHO Cells , Cricetulus , Exocytosis/drug effects , Host-Pathogen Interactions/drug effects , Integrin alpha5beta1/antagonists & inhibitors , Integrin alpha5beta1/metabolism , Receptors, Purinergic P2Y2/metabolism , Serratia/chemistry , Serratia/drug effects , Serratia/physiology , Toxins, Biological/pharmacology , Humans
12.
JCI Insight ; 8(14)2023 07 24.
Article En | MEDLINE | ID: mdl-37279066

Stimulating the Gq-coupled P2Y2 receptor (P2ry2) lowers blood pressure. Global knockout of P2ry2 increases blood pressure. Vascular and renal mechanisms are believed to participate in P2ry2 effects on blood pressure. To isolate the role of the kidneys in P2ry2 effects on blood pressure and to reveal the molecular and cellular mechanisms of this action, we test here the necessity of the P2ry2 and the sufficiency of Gq-dependent signaling in renal principal cells to the regulation of the epithelial Na+ channel (ENaC), sodium excretion, and blood pressure. Activating P2ry2 in littermate controls but not principal cell-specific P2ry2-knockout mice decreased the activity of ENaC in renal tubules. Moreover, deletion of P2ry2 in principal cells abolished increases in sodium excretion in response to stimulation of P2ry2 and compromised the normal ability to excrete a sodium load. Consequently, principal cell-specific knockout of P2ry2 prevented decreases in blood pressure in response to P2ry2 stimulation in the deoxycorticosterone acetate-salt (DOCA-salt) model of hypertension. In wild-type littermate controls, such stimulation decreased blood pressure in this model of hypertension by promoting a natriuresis. Pharmacogenetic activation of Gq exclusively in principal cells using targeted expression of Gq-designer receptors exclusively activated by designer drugs and clozapine N-oxide decreased the activity of ENaC in renal tubules, promoting a natriuresis that lowered elevated blood pressure in the DOCA-salt model of hypertension. These findings demonstrate that the kidneys play a major role in decreasing blood pressure in response to P2ry2 activation and that inhibition of ENaC activity in response to P2ry2-mediated Gq signaling lowered blood pressure by increasing renal sodium excretion.


Desoxycorticosterone Acetate , Hypertension , Mice , Animals , Blood Pressure/physiology , Receptors, Purinergic P2Y2/genetics , Sodium/metabolism , Hypertension/metabolism , Mice, Knockout
13.
Int J Oncol ; 62(6)2023 Jun.
Article En | MEDLINE | ID: mdl-37165911

We previously reported that radiotherapy­resistant (RT­R) triple negative breast cancer (TNBC) cells upregulate the expression of endothelial­specific molecule­1 (ESM­1) compared with TNBC cells. In addition, ESM­1 is involved in an increased proliferation and invasion of RT­R­TNBC cells compared with TNBC cells. It was further identified that, in RT­R­TNBC cells, P2Y2 purinergic receptor (P2Y2R)­mediated activation of p21­activated kinase 1 (PAK1), protein kinase C (PKC), c­Jun N­terminal kinase (JNK) and p38 MAPKs is related to ESM­1 expression via forkhead box O1 (FoxO1) regulation. Notably, it has been reported that P2Y2R mediates the transactivation of vascular epithelial growth factor receptor 2 (VEGFR2), and VEGFR2 is known to be involved in ESM­1 expression. Therefore, in the present study, the involvement of VEGFR2 in the P2Y2R­mediated ESM­1 upregulation in RT­R­TNBC cells and the relationship between P2Y2R and VEGFR2 activation was further examined. Western blotting and reverse transcription­PCR were used to monitor the expression of ESM­1, and the results demonstrated that extracellular ATP treatment regulated the expression of ESM­1 in a P2Y2R­dependent manner in RT­R­MDA­MB­231 cells. In addition, extracellular ATP activated Src and VEGFR2 after 5 min of incubation, which was abolished by knockdown of P2Y2R expression. VEGFR2 activation in response to ATP was also decreased by inhibiting Src activity, suggesting that ATP­activated P2Y2R regulates VEGFR2 phosphorylation via Src activation. Furthermore, ATP­induced ESM­1 expression was decreased by transfection with VEGFR2 small interfering RNA (siRNA). ESM­1­related signaling molecules, PAK1, PKC, JNK and p38 MAPKs, and the transcriptional regulator, FoxO1, which were activated by ATP, were also decreased following transfection with VEGFR2 siRNA. These results suggest that P2Y2R­mediated transactivation of VEGFR2 through Src phosphorylation is associated with ESM­1 overexpression in RT­R­TNBC cells.


Receptors, Purinergic P2Y2 , Triple Negative Breast Neoplasms , Vascular Endothelial Growth Factor Receptor-2 , Humans , Adenosine Triphosphate/metabolism , Phosphorylation , Protein Kinase C/metabolism , Receptors, Growth Factor/metabolism , RNA, Small Interfering/metabolism , Transcriptional Activation , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/radiotherapy , Receptors, Purinergic P2Y2/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism
14.
Elife ; 122023 03 21.
Article En | MEDLINE | ID: mdl-36942939

Pancreatic ductal adenocarcinoma (PDAC) continues to show no improvement in survival rates. One aspect of PDAC is elevated ATP levels, pointing to the purinergic axis as a potential attractive therapeutic target. Mediated in part by highly druggable extracellular proteins, this axis plays essential roles in fibrosis, inflammation response, and immune function. Analyzing the main members of the PDAC extracellular purinome using publicly available databases discerned which members may impact patient survival. P2RY2 presents as the purinergic gene with the strongest association with hypoxia, the highest cancer cell-specific expression, and the strongest impact on overall survival. Invasion assays using a 3D spheroid model revealed P2Y2 to be critical in facilitating invasion driven by extracellular ATP. Using genetic modification and pharmacological strategies, we demonstrate mechanistically that this ATP-driven invasion requires direct protein-protein interactions between P2Y2 and αV integrins. DNA-PAINT super-resolution fluorescence microscopy reveals that P2Y2 regulates the amount and distribution of integrin αV in the plasma membrane. Moreover, receptor-integrin interactions were required for effective downstream signaling, leading to cancer cell invasion. This work elucidates a novel GPCR-integrin interaction in cancer invasion, highlighting its potential for therapeutic targeting.


Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Cell Line, Tumor , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , Neoplasm Invasiveness/genetics , Adenosine Triphosphate/metabolism , Integrins/metabolism , Cell Proliferation/genetics , Cell Movement , Gene Expression Regulation, Neoplastic , Receptors, Purinergic P2Y2/genetics , Receptors, Purinergic P2Y2/metabolism
15.
Lab Invest ; 103(3): 100037, 2023 03.
Article En | MEDLINE | ID: mdl-36925196

Sarcoglycanopathies, limb-girdle muscular dystrophies (LGMD) caused by genetic loss-of-function of the membrane proteins sarcoglycans (SGs), are characterized by progressive degeneration of skeletal muscle. In these disorders, muscle necrosis is associated with immune-mediated damage, whose triggering and perpetuating molecular mechanisms are not fully elucidated yet. Extracellular adenosine triphosphate (eATP) seems to represent a crucial factor, with eATP activating purinergic receptors. Indeed, in vivo blockade of the eATP/P2X7 purinergic pathway ameliorated muscle disease progression. P2X7 inhibition improved the dystrophic process by restraining the activity of P2X7 receptors on immune cells. Whether P2X7 blockade can display a direct action on muscle cells is not known yet. In this study, we investigated eATP effects in primary cultures of myoblasts isolated from patients with LGMDR3 (α-sarcoglycanopathy) and in immortalized cells isolated from a patient with LGMDR5 (γ-sarcoglycanopathy). Our results demonstrated that, owing to a reduced ecto-ATPase activity and/or an enhanced release of ATP, patient cells are exposed to increased juxtamembrane concentrations of eATP and display a higher susceptivity to eATP signals. The purinoceptor P2Y2, which proved to be overexpressed in patient cells, was identified as a pivotal receptor responsible for the enhanced ATP-induced or UTP-induced Ca2+ increase in affected myoblasts. Moreover, P2Y2 stimulation in LDMDR3 muscle cells induced chemotaxis of immune cells and release of interleukin-8. In conclusion, a higher eATP concentration and sensitivity in primary human muscle cells carrying different α-SG or γ-SG loss-of-function mutations indicate that eATP/P2Y2 is an enhanced signaling axis in cells from patients with α-/γ-sarcoglycanopathy. Understanding the basis of the innate immune-mediated damage associated with the dystrophic process may be critical in overcoming the immunologic hurdles associated with emerging gene therapies for these disorders.


Adenosine Triphosphate , Sarcoglycanopathies , Humans , Adenosine Triphosphate/metabolism , Muscle, Skeletal/metabolism , Sarcoglycanopathies/metabolism , Signal Transduction , Receptors, Purinergic P2Y2
16.
Carcinogenesis ; 44(1): 65-79, 2023 05 15.
Article En | MEDLINE | ID: mdl-36469496

Studies have revealed the contribution of ATP-G-protein-coupled P2Y2 receptor (P2RY2) in tumor progression, but the role of P2RY2 in regulating the progression of gastric cancer (GC) and related molecular mechanisms are relatively lacking. Therefore, this study investigates the effects of P2RY2 on the proliferation and migration of GC through in vivo and in vitro experiments. The results showed that P2RY2 was expressed in GC tissues and GC cell lines. Adenosine triphosphate (ATP) increased the calcium influx in AGS and HGC-27 cells, and was dose-dependent with ATP concentration. ATP and UTP increased the intracellular glycogen content, enhanced the actin fiber stress response, and promoted the proliferation and migration of GC cells, while P2RY2 competitive antagonist AR-C118925XX reversed the changes induced by ATP. Knockdown of P2RY2 expression by shRNA inhibited the proliferation of GC cells. Activation of P2RY2 increased the expression of Snail, Vimentin, and ß-catenin in GC cells, and down-regulated the expression of E-cadherin, while AR-C118925XX decreased the expression of these genes induced by ATP. Activation of P2RY2 activated AKT/GSK-3beta/VEGF signal to promote the proliferation of GC cells, and the P13/AKT signaling pathway LY294002 reversed the corresponding phenomenon, but no synergistic pharmacological properties of AR-C118925XX and LY294002 have been found. In vivo experiments showed that ATP-induced tumor growth, while AR-C118925XX inhibited ATP-induced tumor growth. Our conclusion is that P2RY2 activated the AKT/GSK-3beta/VEGF signal to promote the proliferation and migration of GC, suggesting that P2RY2 may be a new potential target for the treatment of GC.


Proto-Oncogene Proteins c-akt , Stomach Neoplasms , Humans , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Vascular Endothelial Growth Factor A , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Cell Line, Tumor , Signal Transduction , Cell Proliferation , Adenosine Triphosphate/pharmacology , Cell Movement , Receptors, Purinergic P2Y2/genetics
17.
Purinergic Signal ; 19(2): 401-420, 2023 06.
Article En | MEDLINE | ID: mdl-36219327

G protein-coupled receptors are the target of more than 30% of all FDA-approved drug therapies. Though the purinergic P2 receptors have been an attractive target for therapeutic intervention with successes such as the P2Y12 receptor antagonist, clopidogrel, P2Y2 receptor (P2Y2R) antagonism remains relatively unexplored as a therapeutic strategy. Due to a lack of selective antagonists to modify P2Y2R activity, studies using primarily genetic manipulation have revealed roles for P2Y2R in a multitude of diseases. These include inflammatory and autoimmune diseases, fibrotic diseases, renal diseases, cancer, and pathogenic infections. With the advent of AR-C118925, a selective and potent P2Y2R antagonist that became commercially available only a few years ago, new opportunities exist to gain a more robust understanding of P2Y2R function and assess therapeutic effects of P2Y2R antagonism. This review discusses the characteristics of P2Y2R that make it unique among P2 receptors, namely its involvement in five distinct signaling pathways including canonical Gαq protein signaling. We also discuss the effects of other P2Y2R antagonists and the pivotal development of AR-C118925. The remainder of this review concerns the mounting evidence implicating P2Y2Rs in disease pathogenesis, focusing on those studies that have evaluated AR-C118925 in pre-clinical disease models.


Dibenzocycloheptenes , Signal Transduction , Humans , Pyrimidinones , Fibrosis , Receptors, Purinergic P2Y2
18.
Purinergic Signal ; 19(1): 305-313, 2023 03.
Article En | MEDLINE | ID: mdl-35902482

Muscle regeneration is indispensable for skeletal muscle health and daily life when injury, muscular disease, and aging occur. Among the muscle regeneration, muscle stem cells' (MuSCs) activation, proliferation, and differentiation play a key role in muscle regeneration. Purines bind to its specific receptors during muscle development, which transmit environmental stimuli and play a crucial role of modulator of muscle regeneration. Evidences proved P2R expression during development and regeneration of skeletal muscle, both in human and mouse. In contrast to P2XR, which have been extensively investigated in skeletal muscles, the knowledge of P2YR in this tissue is less comprehensive. This review summarized muscle regeneration via P2Y1R and P2Y2R and speculated that P2Y1R and P2Y2R might be potential molecular triggers for MuSCs' activation and proliferation via the p-ERK1/2 and PLC pathways, explored their cascade effects on skeletal muscle, and proposed P2Y1/2 receptors as potential pharmacological targets in muscle regeneration, to advance the purinergic signaling within muscle and provide promising strategies for alleviating muscular disease.


Muscle, Skeletal , Muscular Diseases , Animals , Humans , Mice , Cell Differentiation , Muscle, Skeletal/metabolism , Muscular Diseases/metabolism , Regeneration/physiology , Signal Transduction , Receptors, Purinergic P2Y1/metabolism , Receptors, Purinergic P2Y2/metabolism
19.
Purinergic Signal ; 18(4): 515-528, 2022 12.
Article En | MEDLINE | ID: mdl-36018534

Pulmonary vascular tone is modulated by nucleotides, but which P2 receptors mediate these actions is largely unclear. The aim of this study, therefore, was to use subtype-selective antagonists to determine the roles of individual P2Y receptor subtypes in nucleotide-evoked pulmonary vasodilation and vasoconstriction. Isometric tension was recorded from rat intrapulmonary artery rings (i.d. 200-500 µm) mounted on a wire myograph. Nucleotides evoked concentration- and endothelium-dependent vasodilation of precontracted tissues, but the concentration-response curves were shallow and did not reach a plateau. The selective P2Y2 antagonist, AR-C118925XX, inhibited uridine 5'-triphosphate (UTP)- but not adenosine 5'-triphosphate (ATP)-evoked relaxation, whereas the P2Y6 receptor antagonist, MRS2578, had no effect on UTP but inhibited relaxation elicited by uridine 5'-diphosphate (UDP). ATP-evoked relaxations were unaffected by the P2Y1 receptor antagonist, MRS2179, which substantially inhibited responses to adenosine 5'-diphosphate (ADP), and by the P2Y12/13 receptor antagonist, cangrelor, which potentiated responses to ADP. Both agonists were unaffected by CGS1593, an adenosine receptor antagonist. Finally, AR-C118925XX had no effect on vasoconstriction elicited by UTP or ATP at resting tone, although P2Y2 receptor mRNA was extracted from endothelium-denuded tissues using reverse transcription polymerase chain reaction with specific oligonucleotide primers. In conclusion, UTP elicits pulmonary vasodilation via P2Y2 receptors, whereas UDP acts at P2Y6 and ADP at P2Y1 receptors, respectively. How ATP induces vasodilation is unclear, but it does not involve P2Y1, P2Y2, P2Y12, P2Y13, or adenosine receptors. UTP- and ATP-evoked vasoconstriction was not mediated by P2Y2 receptors. Thus, this study advances our understanding of how nucleotides modulate pulmonary vascular tone.


Pulmonary Artery , Vasodilation , Rats , Animals , Uridine Triphosphate/pharmacology , Diphosphates/pharmacology , Adenosine Triphosphate/pharmacology , Uridine Diphosphate/pharmacology , Uridine/pharmacology , Receptors, Purinergic P2Y1 , Receptors, Purinergic P2Y2
20.
Int J Mol Sci ; 23(14)2022 Jul 17.
Article En | MEDLINE | ID: mdl-35887219

Acute kidney injury (AKI) is a common complication of severe human diseases, resulting in increased morbidity and mortality as well as unfavorable long-term outcomes. Although the mammalian kidney is endowed with an amazing capacity to recover from AKI, little progress has been made in recent decades to facilitate recovery from AKI. To elucidate the early repair mechanisms after AKI, we employed the zebrafish pronephros injury model. Since damaged cells release large amounts of ATP and ATP-degradation products to signal apoptosis or necrosis to neighboring cells, we examined how depletion of purinergic and adenosine receptors impacts the directed cell migration that ensues immediately after a laser-induced tubular injury. We found that depletion of the zebrafish adenosine receptors adora1a, adora1b, adora2aa, and adora2ab significantly affected the repair process. Similar results were obtained after depletion of the purinergic p2ry2 receptor, which is highly expressed during zebrafish pronephros development. Released ATP is finally metabolized to inosine by adenosine deaminase. Depletion of zebrafish adenosine deaminases ada and ada2b interfered with the repair process; furthermore, combinations of ada and ada2b, or ada2a and ada2b displayed synergistic effects at low concentrations, supporting the involvement of inosine signaling in the repair process after a tubular injury. Our findings suggest that nucleotide-dependent signaling controls immediate migratory responses after tubular injury.


Acute Kidney Injury , Zebrafish , Acute Kidney Injury/metabolism , Adenosine Triphosphate/metabolism , Animals , Cell Movement , Humans , Inosine , Mammals/metabolism , Nucleotides , Receptors, Purinergic P1/metabolism , Receptors, Purinergic P2Y2 , Zebrafish/metabolism
...