Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.836
1.
Med Arch ; 78(2): 154-158, 2024.
Article En | MEDLINE | ID: mdl-38566871

Background: Familial non-autoimmune hyperthyroidism is a rare disorder characterized by the absence of thyroid autoimmunity, particularly TSH receptor antibody [TRAb]. Objective: The aim of this study was to describe a novel TSHR mutation identified in a family of two siblings and their father. Methods: Two siblings presented for endocrine assessment at ages 7 and 14 years with mild T3 toxicosis, and the father presented at 30 years of age with non-autoimmune thyrotoxicosis. Both siblings were treated with oral antithyroid therapy to achieve reasonable symptom control and thyroid function normalization. The father was treated with oral antithyroid therapy, radioactive iodine, thyroidectomy, and thyroid replacement therapy. Peripheral blood DNA was extracted from both affected siblings and father. Mutation analysis of TSHR was carried out by PCR and Sanger sequencing of both strands of the extracted DNA. Results: Both siblings and their father were heterozygous for the missense TSHR variant c.1855G>C, p.[Asp619His], in exon 10. Conclusions: This novel TSHR variant is associated with T3 toxicosis during childhood. Therefore, early identification and treatment may improve patient outcomes.


Hyperthyroidism , Thyroid Neoplasms , Humans , DNA , Hyperthyroidism/genetics , Iodine Radioisotopes , Mutation , Receptors, Thyrotropin/genetics
2.
Front Endocrinol (Lausanne) ; 15: 1368088, 2024.
Article En | MEDLINE | ID: mdl-38590826

Background: There is no doubt that both Hashimoto thyroiditis and Graves' disease are autoimmune thyroid diseases (AITDs), but the relationship between anti-nuclear antibody (ANA) and AITDs is poorly studied. The association between thyroid autoantibody levels and ANA positivity was evaluated to assess the role of ANA in AITDs. Methods: We conducted an analysis using data from 1,149,893 patients registered at our hospital and 53,021 patients registered in the National Health and Nutrition Examination Survey databases. We focused on patients with data for thyroid peroxidase antibody (TPOAb)/ANA, TPOAb/immunoglobulin G (IgG), thyroid-stimulating hormone (TSH) receptor antibody (TRAb)/ANA, TRAb/IgG, TSH/ANA, or TSH/IgG. Results: ANA positivity rates were 12.88% and 21.22% in TPOAb/ANA and TSH/ANA patients, respectively. In TPOAb/IgG and TSH/IgG data, high IgG levels (≥15 g/L) were detected in 2.23% and 4.06% of patients, respectively. There were significant differences in ANA positivity rates and high IgG proportions among patients with different TPOAb and TSH levels. TPOAb level was correlated with ANA positivity rate and high IgG proportion, and TSH level was correlated with ANA positivity rate. Regression analysis showed positive correlations between TPOAb levels and ANA positivity risk or high IgG risk, TSH levels and high IgG risk, and elevated TSH and ANA positivity risk. Of patients with TRAb/ANA data, 35.99% were ANA-positive, and 13.93% had TRAb levels ≥1.75IU/L; 18.96% of patients with TRAb/IgG data had high IgG levels, and 16.51% had TRAb levels ≥1.75IU/L. ANA positivity rate and high IgG proportion were not significantly different among different TRAb levels. TRAb levels, ANA positivity risk and high IgG risk were not correlated. Conclusion: ANA positivity and high IgG are related to Hashimoto thyroiditis but not Graves' disease, which implies distinct pathophysiological mechanisms underlying the AITDs.


Graves Disease , Hashimoto Disease , Humans , Nutrition Surveys , Autoantibodies , Graves Disease/diagnosis , Receptors, Thyrotropin , Immunoglobulin G , Thyrotropin
3.
Front Endocrinol (Lausanne) ; 15: 1340415, 2024.
Article En | MEDLINE | ID: mdl-38577576

Background: Thyroid stimulating immunoglobulins (TSI) play a central role in the pathogenesis of Graves' orbitopathy (GO), while soluble interleukin-2 receptor (sIL-2R) is a marker for T-cell activity. We investigated TSI and sIL-2R levels in relation to thyroid function, disease activity and severity and response to treatment with intravenous methylprednisolone (IVMP) in patients with GO. Methods: TSI (bridge-based TSI binding assay), sIL-2R, TSH and fT4 levels were measured in biobank serum samples from 111 GO patients (37 male, 74 female; mean age 49.2 years old) and 25 healthy controls (5 male, 20 female; mean age 39.8 years old). Clinical characteristics and response to treatment were retrospectively retrieved from patient files. Results: Higher sIL-2R levels were observed in GO patients compared to controls (p < 0.001). sIL-2R correlated with fT4 (r = 0.26), TSH (r = -0.40) and TSI (r = 0.21). TSI and sIL-2R concentrations were higher in patients with active compared to inactive GO (p < 0.001 and p < 0.05, respectively). Both TSI and sIL-2R correlated with total clinical activity score (CAS; r = 0.33 and r = 0.28, respectively) and with several individual CAS items. Cut-off levels for predicting active GO were 2.62 IU/L for TSI (AUC = 0.71, sensitivity 69%, specificity 69%) and 428 IU/mL for sIL-2R (AUC = 0.64, sensitivity 62%, specificity 62%). In multivariate testing higher TSI (p < 0.01), higher age (p < 0.001) and longer disease duration (p < 0.01) were associated with disease activity. TSI levels were higher in patients with a poor IVMP response (p = 0.048), while sIL-2R levels did not differ between responders and non-responders. TSI cut-off for predicting IVMP response was 19.4 IU/L (AUC = 0.69, sensitivity 50%, specificity 91%). In multivariate analysis TSI was the only independent predictor of response to IVMP (p < 0.05). Conclusions: High TSI levels are associated with active disease (cut-off 2.62 IU/L) and predict poor response to IVMP treatment (cut-off 19.4 IU/L) in GO. While sIL-2R correlates with disease activity, it is also related to thyroid function, making it less useful as an additional biomarker in GO.


Graves Ophthalmopathy , Humans , Male , Female , Middle Aged , Adult , Immunoglobulins, Thyroid-Stimulating , Graves Ophthalmopathy/drug therapy , Retrospective Studies , Receptors, Thyrotropin , Thyrotropin
4.
Int J Nanomedicine ; 19: 3577-3588, 2024.
Article En | MEDLINE | ID: mdl-38650837

Background: Manifestations of thyroid-associated ophthalmopathy (TAO) vary greatly. Few tools and indicators are available to assess TAO, restricting personalized diagnosis and treatment. Aim: To identify an aptamer targeting thyroid-stimulating hormone receptor (TSHR) and utilize this aptamer to evaluate clinical activity in patients with TAO. Methods: An aptamer targeting TSHR was developed by exponential enrichment and systematic evaluation of TSHR ligands. After truncation and optimization, the affinity, equilibrium dissociation constant, and serum stability of this aptamer were evaluated. The affinity of the TSHR-targeting aptamer to isolated fibrocytes was assessed, as was aptamer internalization by fibrocytes. The mechanism of binding was determined by molecular docking. The correlation between disease manifestations and the percentage of TSHR-positive cells was assessed by correlation analysis. Results: The aptamer TSHR-21-42 was developed to bind to TSHR, with the equilibrium dissociation constant being 71.46 Kd. Isolated fibrocytes were shown to bind TSHR-21-42 through TSHR, with its affinity maintained at various temperatures and ion concentrations. TSHR-21-42 could compete with anti-TSHR antibody, both for binding site to TSHR and uptake by cells after binding. In addition, TSHR-21-42 could bind to leukocytes in peripheral blood, with this binding differing in patients with TAO and healthy control subjects. The percentage of TSHR-positive monocytes, as determined by binding of TSHR-21-42, correlated positively with clinical activity score in patients with TAO, indicating that TSHR-21-42 binding could assess the severity of TAO. Conclusion: This aptamer targeting TSHR may be used to objectively assess disease activity in patients with TAO, by evaluating the percentages of TSHR positive cells in peripheral blood.


Aptamers, Nucleotide , Monocytes , Receptors, Thyrotropin , Humans , Aptamers, Nucleotide/chemistry , Monocytes/metabolism , Receptors, Thyrotropin/metabolism , Female , Molecular Docking Simulation , Male , Adult , Middle Aged , SELEX Aptamer Technique/methods
5.
Ann Lab Med ; 44(4): 343-353, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38433572

Background: Genetic defects in the human thyroid-stimulating hormone (TSH) receptor (TSHR) gene can cause congenital hypothyroidism (CH). However, the biological functions and comprehensive genotype-phenotype relationships for most TSHR variants associated with CH remain unexplored. We aimed to identify TSHR variants in Chinese patients with CH, analyze the functions of the variants, and explore the relationships between TSHR genotypes and clinical phenotypes. Methods: In total, 367 patients with CH were recruited for TSHR variant screening using whole-exome sequencing. The effects of the variants were evaluated by in-silico programs such as SIFT and polyphen2. Furthermore, these variants were transfected into 293T cells to detect their Gs/cyclic AMP and Gq/11 signaling activity. Results: Among the 367 patients with CH, 17 TSHR variants, including three novel variants, were identified in 45 patients, and 18 patients carried biallelic TSHR variants. In vitro experiments showed that 10 variants were associated with Gs/cyclic AMP and Gq/11 signaling pathway impairment to varying degrees. Patients with TSHR biallelic variants had lower serum TSH levels and higher free triiodothyronine and thyroxine levels at diagnosis than those with DUOX2 biallelic variants. Conclusions: We found a high frequency of TSHR variants in Chinese patients with CH (12.3%), and 4.9% of cases were caused by TSHR biallelic variants. Ten variants were identified as loss-of-function variants. The data suggest that the clinical phenotype of CH patients caused by TSHR biallelic variants is relatively mild. Our study expands the TSHR variant spectrum and provides further evidence for the elucidation of the genetic etiology of CH.


Congenital Hypothyroidism , Humans , China , Congenital Hypothyroidism/diagnosis , Congenital Hypothyroidism/genetics , Cyclic AMP , Dual Oxidases/genetics , Mutation , Phenotype , Receptors, Thyrotropin/genetics , Thyrotropin
6.
J Immunol Methods ; 528: 113655, 2024 May.
Article En | MEDLINE | ID: mdl-38447802

Graves' disease is a type of autoimmune hyperthyroidism caused by thyroid-stimulating antibodies (TSAb).1 The combination of a porcine thyroid cell bioassay and cyclic adenosine monophosphate (cAMP) immunoassay (TSAb-enzyme immunoassay; EIA) is a clinically approved TSAb measurement method. Due to the requirement of multiple procedures and a long assay time of 6 h in the TSAb-EIA, a simplified and rapid assay is desired. Herein, we developed a rapid homogeneous TSAb bioassay (rapid-TSAb assay) using the human embryonic kidney cell line (HEK293), engineered to express the human thyroid-stimulating hormone receptor (TSHR), along with a cAMP-dependent luminescence biosensor. The measurement consists of three steps: thawing frozen cells, blood sample addition, and luminescence detection. The procedures can be conducted within 1 h. The World Health Organization International Standard TSAb (NIBSC 08/204) stimulated the cells co-expressing TSHR and cAMP biosensor. The intra- and inter-assay coefficients of variance were < 10%. Stimulation activity using wild-type TSHR and chimeric TSHR (Mc4) almost completely correlated with the tested Graves' disease and normal samples. In the rapid-TSAb assay, the evaluation of 39 samples, including TSHR antibody-positive sera, yielded a sensitivity of 100.0% and a specificity of 90.9%, compared to the TSAb-EIA control. The rapid-TSAb assay enables simple and rapid measurement of TSAb and is promising for improving the diagnosis of autoimmune thyroid diseases.


Graves Disease , Receptors, Thyrotropin , Animals , Swine , Humans , HEK293 Cells , Immunoglobulins, Thyroid-Stimulating , Receptors, G-Protein-Coupled , Thyrotropin , Biological Assay/methods , Autoantibodies
7.
Life Sci ; 345: 122577, 2024 May 15.
Article En | MEDLINE | ID: mdl-38521387

BACKGROUND: Central hypothyroidism (CH) is characterized by low T4 levels and reduced levels or bioactivity of circulating TSH. However, there is a lack of studies on CH-related intestinal maldevelopment. In particular, the roles of TH and TSH/TSHR signaling in CH-related intestinal maldevelopment are poorly understood. Herein, we utilized Tshr-/- mice as a congenital hypothyroidism model with TH deprival and absence of TSHR signaling. METHODS: The morphological characteristics of intestines were determined by HE staining, periodic acid-shiff staining, and immunohistochemical staining. T4 was administrated into the offspring of homozygous mice from the fourth postnatal day through weaning or administrated after weaning. RT-PCR was used to evaluate the expression of markers of goblet cells and intestinal digestive enzymes. Single-cell RNA-sequencing analysis was used to explore the cell types and gene profiles of metabolic alternations in early-T4-injected Tshr-/- mice. KEY FINDINGS: Tshr deletion caused significant growth retardation and intestinal maldevelopment, manifested as smaller and more slender small intestines due to reduced numbers of stem cells and differentiated epithelial cells. Thyroxin supplementation from the fourth postnatal day, but not from weaning, significantly rescued the abnormal intestinal structure and restored the decreased number of proliferating intestinal cells in crypts of Tshr-/- mice. Tshr-/- mice with early-life T4 injections had more early goblet cells and impaired metabolism compared to Tshr+/+ mice. SIGNIFICANCE: TH deprival leads to major defects of CH-associated intestinal dysplasia while TSH/TSHR signaling deficiency promotes the differentiation of goblet cells and impairs nutrition metabolism.


Hypothyroidism , Thyroid Hormones , Thyrotropin , Animals , Mice , Hypothyroidism/complications , Hypothyroidism/metabolism , Receptors, G-Protein-Coupled , Receptors, Thyrotropin/genetics , Receptors, Thyrotropin/metabolism , Signal Transduction , Thyroid Hormones/metabolism , Intestines/pathology
8.
Biochem Biophys Res Commun ; 704: 149723, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38430698

Subclinical hyperthyroidism is defined biochemically as a low or undetectable thyroid-stimulating hormone (TSH) with normal thyroid hormone levels. Low TSHR signaling is considered to associate with cognitive impairment. However, the underlying molecular mechanism by which TSHR signaling modulates memory is poorly understood. In this study, we found that Tshr-deficient in the hippocampal neurons impairs the learning and memory abilities of mice, accompanying by a decline in the number of newborn neurons. Notably, Tshr ablation in the hippocampus decreases the expression of Wnt5a, thereby inactivating the ß-catenin signaling pathway to reduce the neurogenesis. Conversely, activating of the Wnt/ß-catenin pathway by the agonist SKL2001 results in an increase in hippocampal neurogenesis, resulting in the amelioration in the deficits of memory caused by Tshr deletion. Understanding how TSHR signaling in the hippocampus regulates memory provides insights into subclinical hyperthyroidism affecting cognitive function and will suggest ways to rationally design interventions for neurocognitive disorders.


Hyperthyroidism , beta Catenin , Mice , Animals , beta Catenin/metabolism , Receptors, Thyrotropin/genetics , Receptors, Thyrotropin/metabolism , Wnt Signaling Pathway/physiology , Receptors, G-Protein-Coupled/metabolism , Hippocampus/metabolism , Neurogenesis/physiology , Hyperthyroidism/metabolism
9.
J Mol Graph Model ; 129: 108725, 2024 06.
Article En | MEDLINE | ID: mdl-38373379

The receptor for thyroid stimulating hormone (TSHR), a GPCR, is the primary antigen in autoimmune hyperthyroidism (Graves' disease) caused by stimulating TSHR antibodies. While we have previously published a full length model of the TSHR, including its leucine rich domain (LRD), linker region (LR) and transmembrane domain (TMD), to date, only a partial LRD (aa 21-261) stabilized with TSHR autoantibodies has been crystallized. Recently, however, cryo-EM structures of the full-length TSHR have been published but they include only an incomplete LR. We have now utilized the cryo-EM models, added disulfide bonds to the LR and performed longer (3000 ns) molecular dynamic (MD) simulations to update our previous model of the entire full-length TSHR, with and without the presence of TSH ligand. As in our earlier work, the new model was embedded in a lipid membrane and was solvated with water and counterions. We found that the 3000 ns Molecular Dynamic simulations showed that the structure of the LRD and TMD were remarkably constant while the LR, known more commonly as the "hinge region", again showed significant flexibility, forming several transient secondary structural elements. Analysis of the new simulations permitted a detailed examination of the effect of TSH binding on the structure of the TSHR. We found a structure-stabilizing effect of TSH, including increased stability of the LR, which was clearly demonstrated by analyzing several intrinsic receptor properties including hydrogen bonding, fluctuation of the LRD orientation, and radius of gyration. In conclusion, we were able to quantify the flexibility of the TSHR and show its increased stability after TSH binding. These data indicated the important role of ligands in directing the signaling structure of a receptor.


Receptors, Thyrotropin , Thyrotropin , Receptors, Thyrotropin/chemistry , Receptors, Thyrotropin/metabolism , Ligands , Thyrotropin/chemistry , Thyrotropin/metabolism , Leucine
11.
Mol Cell Endocrinol ; 586: 112163, 2024 May 15.
Article En | MEDLINE | ID: mdl-38246572

NOTCH2 is expressed in pituitary stem cells and is necessary for stem cell maintenance, proliferation, and differentiation. However, the pathways NOTCH2 engages to affect pituitary development remain unclear. In this study, we hypothesized that glycoprotein hormone subunit A2 (GPHA2), a corneal stem cell factor and ligand for the thyroid stimulating hormone receptor (TSHR), is downstream of NOTCH2 signaling. We found Gpha2 is expressed in quiescent pituitary stem cells by RNAscope in situ hybridization and scRNA seq. In Notch2 conditional knockout pituitaries, Gpha2 mRNA is reduced compared with control littermates. We then investigated the possible functions of GPHA2. Pituitaries treated with a GPHA2 peptide do not have a change in proliferation. However, in dissociated adult pituitary cells, GPHA2 increased pCREB expression and this induction was reversed by co-treatment with a TSHR inhibitor. These data suggest GPHA2 is a NOTCH2 related stem cell factor that activates TSHR signaling, potentially impacting pituitary development.


Pituitary Gland , Stem Cell Factor , Adult , Humans , Pituitary Gland/metabolism , Receptor, Notch2/genetics , Receptor, Notch2/metabolism , Receptors, Thyrotropin , Stem Cell Factor/metabolism , Stem Cells/metabolism
12.
BMC Pediatr ; 24(1): 43, 2024 Jan 13.
Article En | MEDLINE | ID: mdl-38218773

OBJECTIVE: To outline the clinical signs, diagnosis, and course of care for a single case of neonatal hyperthyroidism while also summarizing common diagnostic errors related to this condition. METHODS: Medical records of the neonate of hyperthyroidism were collected and analyzed in combination with literature. RESULTS: The neonate's mother had thyroid disease, but her thyrotropin receptor antibody (TRAb) levels were not monitored during pregnancy. The neonate exhibited typical symptoms of hyperthyroidism on the day of birth but was not diagnosed until 15 days later. Impaired liver (cholestasis, elevated liver enzymes) and cardiac function (pulmonary hypertension, right heart enlargement) are the main manifestations. Treatment with methimazole (1.0 mg /kg·d) and propranolol (2.0 mg /kg·d) led to recovery, and the neonate stayed in the hospital for 27 days before being discharged with medication. The diagnosis was temporary hyperthyroidism, and the medication was discontinued at 72 days of age. CONCLUSION: It is important to strengthen the management of high-risk pregnant women with thyroid disease. Monitoring TRAb levels in both mothers and neonates should be done dynamically to enable early prediction and diagnosis of neonatal hyperthyroidism. Most neonates with hyperthyroidism have a good prognosis when timely and appropriate medical treatment is provided.


Fetal Diseases , Graves Disease , Hyperthyroidism , Pregnancy Complications , Thyrotoxicosis , Infant, Newborn , Female , Humans , Pregnancy , Receptors, Thyrotropin , Pregnancy Complications/diagnosis , Hyperthyroidism/diagnosis , Hyperthyroidism/drug therapy , Immunoglobulins, Thyroid-Stimulating/therapeutic use
13.
Medicine (Baltimore) ; 103(3): e36950, 2024 Jan 19.
Article En | MEDLINE | ID: mdl-38241561

INTRODUCTION: We found the G132R heterozygous mutation of thyroid stimulating hormone receptor (TSHR) gene in a patient with recurrent hypokalemia. Because the patient had a medical history of hyperthyroidism, the mutation was suspected to be related to hyperthyroidism at first. Subsequently, the expression and function studies in vitro were conducted. METHODS: Wide-type TSHR and mutant TSHR (mutTSHR) were constructed in the phage vector and pEGFP-C1 vector. After transfection, the samples were collected for detection of mRNA level, protein expression, cell activity and cAMP content. RESULTS: Compared with the wild-type TSHR, the mRNA level of the mutTSHR was not significantly different. But the protein expression, cell activity and cAMP content of the mutTSHR were significantly lower. So this indicated that the G132R mutation is a loss-of-function mutation. CONCLUSION: We identified the G132R monoallelic heterozygous mutation of TSHR gene in a patient with hyperthyroidism. Based on disease history of the patient, we speculated that the heterozygous mutation did not cause thyroid dysplasia or hypothyroidism for her. Our study enriched experiment content in vitro studies and clinical phenotype about the G132R mutation in TSHR gene.


Hyperthyroidism , Hypothyroidism , Humans , Female , Receptors, Thyrotropin/genetics , Hyperthyroidism/genetics , Mutation , Hypothyroidism/complications , Receptors, G-Protein-Coupled/genetics , RNA, Messenger
14.
Medicina (Kaunas) ; 60(1)2024 Jan 17.
Article En | MEDLINE | ID: mdl-38256430

Background and Objectives: Graves' disease (GD) and primary aldosteronism (PA) are two pathologies that can cause significant morbidity and mortality. GD is mediated by autoantibodies, and recent studies have shown autoantibody involvement in the pathophysiology behind both PA and pre-eclampsia. The coexistence of GD and PA, however, is reportedly rare. This report describes a unique case of Graves' hyperthyroidism and concomitant PA in a patient with a history of pre-eclampsia with severe features. Case Presentation: The patient presented at 17 weeks pregnancy with mild hyperthyroidism, negative TSH receptor antibodies, and a low level of thyroid-stimulating immunoglobulins (TSI). Her TSH became detectable with normal thyroid hormone levels, and therefore, no anti-thyroid medication was administered. At 34 weeks she developed pre-eclampsia with severe features, and a healthy child was delivered; her TSH returned to normal. Seven months after delivery, she presented emergently with severe hyperthyroidism, hypertensive crisis, and a serum potassium of 2.5 mmol/L. Her hypertension was uncontrolled on multiple anti-hypertensives. Both TSI and TSH receptor antibodies were negative. The aldosterone(ng/dL)/renin(ng/mL/h ratio was (13/0.06) = 216.7, and abdominal CT imaging demonstrated normal adrenal glands; thus, a diagnosis of PA was made. Her blood pressure was subsequently controlled with only spironolactone at 50 mg 2xday. Methimazole was started but discontinued because of an allergic reaction. Consequently, a thyroidectomy was performed, and pathology revealed Graves' disease. The patient remained well on levothyroxine at 125 mcg/day and spironolactone at 50 mg 2xday three months after the thyroidectomy. Conclusions: This patient manifested severe GD with antibodies undetectable by conventional TSI and TSH receptor assays and accelerated hypertension from PA simultaneously. These conditions were successfully treated separately by spironolactone and thyroidectomy. Autoimmune PA was considered likely given the clinical picture. The diagnosis of PA should be considered in hypertension with GD.


Graves Disease , Hyperaldosteronism , Hypertension , Hyperthyroidism , Pre-Eclampsia , Humans , Child , Female , Pregnancy , Pre-Eclampsia/etiology , Spironolactone , Receptors, Thyrotropin , Hyperthyroidism/complications , Graves Disease/complications , Graves Disease/diagnosis , Autoantibodies , Hyperaldosteronism/complications , Hyperaldosteronism/diagnosis , Thyrotropin
15.
BMC Endocr Disord ; 24(1): 15, 2024 Jan 29.
Article En | MEDLINE | ID: mdl-38281931

BACKGROUND: Graves' disease increases bone resorption in hyperthyroidism, leading to elevated serum calcium levels and a negative bone balance. Thymic hyperplasia is observed in some Graves' disease patients. What's more, there have been a few reports of increased serum calcium and severe osteoporosis induced by Graves' disease with thymic hyperplasia. It remains unclear whether Graves' disease with thymic hyperplasia is associated with higher serum calcium levels. Our study aimed to investigate the possibility of elevated serum calcium levels and aggravated bone mobilization in Graves' disease patients with thymic hyperplasia. METHODS: Newly diagnosed and untreated patients with Graves' disease (n = 96) were enrolled. They were divided into two groups based on the incidental detection of thymic hyperplasia during imaging. Albumin, alkaline phosphatase, calcium, free triiodothyronine, free thyroxine, thyroid-stimulating hormone, and thyrotrophin receptor antibody (TRAb) were measured, and a computerized tomography of the chest was obtained. RESULTS: Patients with Graves' disease who had thymic hyperplasia were notably younger (P=0.018) and exhibited higher serum calcium levels (P=0.001) compared to those with Graves' disease without thymic hyperplasia. In the multiple regression analysis, thymic hyperplasia, TRAb, and female gender were significant variables associated with elevated serum calcium levels in patients with Graves' disease, collectively accounting for 31.7% of the variation in serum calcium. CONCLUSIONS: Graves' disease patients with thymic hyperplasia showed higher serum calcium levels. thymic hyperplasia, TRAb, and female gender were found to be correlated with increased serum calcium levels in Graves' disease, suggesting a potential association between thymic hyperplasia and bone mobilization in Graves' disease.


Graves Disease , Thymus Hyperplasia , Humans , Female , Calcium , Thymus Hyperplasia/complications , Thyroxine , Receptors, Thyrotropin , Graves Disease/diagnosis , Immunoglobulins, Thyroid-Stimulating , Autoantibodies
16.
JCI Insight ; 9(4)2024 Jan 09.
Article En | MEDLINE | ID: mdl-38194289

The clinical spectrum of thyrotropin receptor-mediated (TSHR-mediated) diseases varies from loss-of-function mutations causing congenital hypothyroidism to constitutively active mutations (CAMs) leading to nonautoimmune hyperthyroidism (NAH). Variation at the TSHR locus has also been associated with altered lipid and bone metabolism and autoimmune thyroid diseases. However, the extrathyroidal roles of TSHR and the mechanisms underlying phenotypic variability among TSHR-mediated diseases remain unclear. Here we identified and characterized TSHR variants and factors involved in phenotypic variability in different patient cohorts, the FinnGen database, and a mouse model. TSHR CAMs were found in all 16 patients with NAH, with 1 CAM in an unexpected location in the extracellular leucine-rich repeat domain (p.S237N) and another in the transmembrane domain (p.I640V) in 2 families with distinct hyperthyroid phenotypes. In addition, screening of the FinnGen database revealed rare functional variants as well as distinct common noncoding TSHR SNPs significantly associated with thyroid phenotypes, but there was no other significant association between TSHR variants and more than 2,000 nonthyroid disease endpoints. Finally, our TSHR M453T-knockin model revealed that the phenotype was dependent on the mutation's signaling properties and was ameliorated by increased iodine intake. In summary, our data show that TSHR-mediated disease risk can be modified by variants at the TSHR locus both inside and outside the coding region as well as by altered TSHR-signaling and dietary iodine, supporting the need for personalized treatment strategies.


Hyperthyroidism , Iodine , Receptors, Thyrotropin , Animals , Humans , Mice , Hyperthyroidism/congenital , Mutation , Phenotype , Receptors, G-Protein-Coupled/genetics , Receptors, Thyrotropin/genetics , Receptors, Thyrotropin/metabolism
17.
Horm Res Paediatr ; 97(2): 180-186, 2024.
Article En | MEDLINE | ID: mdl-37231969

INTRODUCTION: Women with a current diagnosis or past history of Graves' disease (GD) are at risk of developing fetal thyrotoxicosis (FT) during pregnancy when they are inadequately treated, or because of placental passage of TSH receptor antibodies (TRAb). It is known that FT induced by high maternal thyroid hormone concentrations may result in infant (central) hypothyroidism. CASE PRESENTATION: In a euthyroid woman with a history of GD treated with radioactive iodide (I131), persistently high levels of maternal TRAb resulted in recurrent FT during two separate pregnancies, followed by neonatal hyperthyroidism and infant central hypothyroidism. DISCUSSION: This case demonstrates the novel insight that FT due to high fetal thyroid hormone concentrations stimulated by high maternal TRAb levels might also result in (central) hypothyroidism, requiring long-term evaluation of the hypothalamus-pituitary-thyroid axis in these children.


Graves Disease , Hypothyroidism , Pregnancy Complications , Thyrotoxicosis , Infant, Newborn , Infant , Child , Female , Humans , Pregnancy , Receptors, Thyrotropin , Placenta , Hypothyroidism/therapy , Thyrotoxicosis/diagnosis , Graves Disease/complications , Thyroid Hormones
18.
Intern Med ; 63(4): 521-526, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-37380454

A 20-year-old woman with a 10-month history of treatment for Graves' disease (GD), developed hypothyroidism with a high level of thyrotropin (TSH) receptor-blocking antibodies (TBAbs). She conceived at 28 years old and was clinically euthyroid in the first and second trimester, while taking L-thyroxine. However, at 28 weeks she became hyperthyroid with an unexpected rise in TSH receptor-stimulating antibody (TSAb) levels. She was diagnosed with GD, and methimazole was initiated. Her thyroid function normalized, but the neonate became hyperthyroid. We herein report the first case of a shift in dominance from TBAbs to TSAbs in late pregnancy.


Graves Disease , Hyperthyroidism , Hypothyroidism , Infant, Newborn , Female , Pregnancy , Humans , Young Adult , Adult , Long-Acting Thyroid Stimulator , Receptors, Thyrotropin , Hyperthyroidism/complications , Hyperthyroidism/drug therapy , Hypothyroidism/drug therapy , Graves Disease/complications , Graves Disease/drug therapy , Thyrotropin , Autoantibodies
19.
Article En | MEDLINE | ID: mdl-37622708

BACKGROUND: Resistance to TSH is defined as reduced sensitivity to normal, biologicallyactive TSH, and abnormally high levels of TSH are needed to achieve normal levels of thyroid hormones. CASE PRESENTATION: A 15-year-old female patient, having been treated since childhood with levothyroxine for hyperthyrotropinemia was referred to our institution complaining of tachycardia after the levothyroxine therapy had been increased. Thyroid ultrasound features were normal, and thyroid antibodies were negative. The therapy was gradually tapered in light of the symptoms, although subclinical hypothyroidism was evident at thyroid function tests. First-degree relatives were tested for thyroid function, and the father was also found to have a previously-unknown subclinical hypothyroidism. The patient underwent genetic testing for TSH receptor (TSHR) gene mutations, which revealed a gene variant hitherto not described: p.C598R (c.1792T>C). The father was also tested and was found to carry the same mutation, while other first-degree relatives were wild-type for the TSHR gene. An in-silico analysis was performed, which revealed a loss-of-function phenotype corresponding to the described variant, suggesting a novel loss-of-function TSH receptor gene mutation. CONCLUSION: In this case report, we present a novel loss-of-function gene mutation in the TSH receptor gene associated with a TSH resistance phenotype.


Congenital Hypothyroidism , Receptors, Thyrotropin , Female , Humans , Child , Adolescent , Receptors, Thyrotropin/genetics , Thyroxine/therapeutic use , Thyroid Function Tests , Mutation , Thyrotropin
20.
Endocrine ; 83(3): 659-670, 2024 Mar.
Article En | MEDLINE | ID: mdl-37668929

BACKGROUND: The association of thyroid hormone sensitivity with papillary thyroid carcinoma (PTC) is unclear. This study investigated the relationship between the thyroid hormone sensitivity indices and the risk of PTC and the influence of thyroid hormone sensitivity on the aggressive clinicopathologic features of PTC. METHODS: This retrospective study recruited 1225 PTC patients and 369 patients with benign nodules undergoing surgery in Zhongshan Hospital in 2020. The thyroid hormone sensitivity indices were thyroid feedback quantile-based index (TFQI), TSH index (TSHI) and thyrotropin thyroxine resistance index (TT4RI). We employed logistic regression models to explore the correlation between the thyroid hormone sensitivity indices and the risk of PTC and its cervical lymph node metastasis (LNM). RESULTS: PTC patients had significantly higher levels of TSH, TFQI, TSHI and TT4RI compared to the patients with benign nodules, but thyroid hormone levels did not differ significantly between the two groups. Logistic regression analysis revealed that the higher levels of TFQI, TSHI, and TT4RI were associated with an increased risk of PTC after adjustment for multiple risk factors (TFQI: OR = 1.92, 95% CI: 1.39-2.65, P < 0.001; TSHI: OR = 2.33, 95% CI:1.67-3.26, P < 0.001; TT4RI: OR = 2.41, 95% CI:1.73-3.36, P < 0.001). In addition, patients with decreased thyroid hormone sensitivity had a higher risk of cervical LNM in multiple logistic regression analysis (TFQI: OR = 1.38, 95% CI:1.03-1.86, P = 0.03; TSHI: OR = 1.37, 95% CI:1.02-1.84, P = 0.04; TT4RI: OR = 1.41, 95% CI:1.05-1.89, P = 0.02). CONCLUSION: Impaired sensitivity to thyroid hormone was associated with an increased risk of PTC, and it is also associated with a higher risk of cervical LNM in PTC patients.


Carcinoma, Papillary , Congenital Hypothyroidism , Receptors, Thyrotropin/deficiency , Thyroid Hormone Resistance Syndrome , Thyroid Neoplasms , Humans , Thyroid Cancer, Papillary/pathology , Thyroid Neoplasms/pathology , Lymphatic Metastasis/pathology , Retrospective Studies , Carcinoma, Papillary/pathology , Lymph Nodes/pathology , Thyroid Hormones , Thyrotropin
...