Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.424
1.
Sci Rep ; 14(1): 10253, 2024 05 04.
Article En | MEDLINE | ID: mdl-38704431

The tegument protein pp150 of Human Cytomegalovirus (HCMV) is known to be essential for the final stages of virus maturation and mediates its functions by interacting with capsid proteins. Our laboratory has previously identified the critical regions in pp150 important for pp150-capsid interactions and designed peptides similar in sequence to these regions, with a goal to competitively inhibit capsid maturation. Treatment with a specific peptide (PepCR2 or P10) targeted to pp150 conserved region 2 led to a significant reduction in murine CMV (MCMV) growth in cell culture, paving the way for in vivo testing in a mouse model of CMV infection. However, the general pharmacokinetic parameters of peptides, including rapid degradation and limited tissue and cell membrane permeability, pose a challenge to their successful use in vivo. Therefore, we designed a biopolymer-stabilized elastin-like polypeptide (ELP) fusion construct (ELP-P10) to enhance the bioavailability of P10. Antiviral efficacy and cytotoxic effects of ELP-P10 were studied in cell culture, and pharmacokinetics, biodistribution, and antiviral efficacy were studied in a mouse model of CMV infection. ELP-P10 maintained significant antiviral activity in cell culture, and this conjugation significantly enhanced P10 bioavailability in mouse tissues. The fluorescently labeled ELP-P10 accumulated to higher levels in mouse liver and kidneys as compared to the unconjugated P10. Moreover, viral titers from vital organs of MCMV-infected mice indicated a significant reduction of virus load upon ELP-P10 treatment. Therefore, ELP-P10 has the potential to be developed into an effective antiviral against CMV infection.


Antiviral Agents , Cytomegalovirus Infections , Elastin , Muromegalovirus , Peptides , Phosphoproteins , Viral Matrix Proteins , Animals , Elastin/chemistry , Elastin/metabolism , Cytomegalovirus Infections/drug therapy , Cytomegalovirus Infections/virology , Mice , Antiviral Agents/pharmacology , Antiviral Agents/pharmacokinetics , Antiviral Agents/chemistry , Peptides/pharmacology , Peptides/chemistry , Muromegalovirus/drug effects , Humans , Capsid Proteins/metabolism , Capsid Proteins/chemistry , Cytomegalovirus/drug effects , Capsid/metabolism , Capsid/drug effects , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/pharmacokinetics , Disease Models, Animal , Elastin-Like Polypeptides
2.
Int J Mol Sci ; 25(8)2024 Apr 22.
Article En | MEDLINE | ID: mdl-38674153

Anti-inflammatory drugs have become the second-largest class of common drugs after anti-infective drugs in animal clinical care worldwide and are often combined with other drugs to treat fever and viral diseases caused by various factors. In our previous study, a novel serine protease inhibitor-encoding gene (MDSPI16) with improved anti-inflammatory activity was selected from a constructed suppressive subducted hybridization library of housefly larvae. This protein could easily induce an immune response in animals and had a short half-life, which limited its wide application in the clinic. Thus, in this study, mPEG-succinimidyl propionate (mPEG-SPA, Mw = 5 kDa) was used to molecularly modify the MDSPI16 protein, and the modified product mPEG-SPA-MDSPI16, which strongly inhibited elastase production, was purified. It had good stability and safety, low immunogenicity, and a long half-life, and the IC50 for elastase was 86 nM. mPEG-SPA-MDSPI16 effectively inhibited the expression of neutrophil elastase and decreased ROS levels. Moreover, mPEG-SPA-MDSPI16 exerted anti-inflammatory effects by inhibiting activation of the NF-κB signaling pathway and the MAPK signaling pathway in neutrophils. It also exerted therapeutic effects on a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. In summary, mPEG-SPA-MDSPI16 is a novel anti-inflammatory protein modified with PEG that has the advantages of safety, nontoxicity, improved stability, and strong anti-inflammatory activity in vivo and in vitro and is expected to become an effective anti-inflammatory drug.


Acute Lung Injury , Lipopolysaccharides , Serine Proteinase Inhibitors , Animals , Acute Lung Injury/drug therapy , Acute Lung Injury/chemically induced , Mice , Serine Proteinase Inhibitors/pharmacology , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , NF-kappa B/metabolism , Male , Leukocyte Elastase/metabolism , Humans , Signal Transduction/drug effects , Recombinant Fusion Proteins/pharmacology , Disease Models, Animal
3.
Biomed Pharmacother ; 174: 116485, 2024 May.
Article En | MEDLINE | ID: mdl-38518602

BACKGROUND: Glucagon-like peptide-1 (GLP-1)/glucagon (GCG) dual receptor agonists with different receptor selectivity are under investigation and have shown significant improvement in both weight loss and glycemic control, but the optimal potency ratio between the two receptors to balance efficacy and safety remains unclear. EXPERIMENTAL APPROACH: We designed and constructed several dual receptor agonists with different receptor potency ratios using Fc fusion protein technology. The long-term effects of the candidates on body weight and metabolic dysfunction-associated steatotic liver disease (MASLD) were evaluated in diet-induced obese (DIO) model mice, high-fat diet (HFD)-ob/ob mice and AMLN diet-induced MASLD mice. Repeat dose toxicity assays were performed to investigate the safety profile of the candidate (HEC-C070) in Sprague Dawley (SD) rats. KEY RESULTS: The high GCG receptor (GCGR) selectivity of HEC-C046 makes it more prominent than other compounds for weight loss and most MASLD parameters but may lead to safety concerns. The weight change of HEC-C052 with the lowest GCG agonism was inferior to that of selective GLP-1 receptor agonist (GLP-1RA) semaglutide in DIO model mice. The GLP-1R selectivity of HEC-C070 with moderate GCG agonism has a significant effect on weight loss and liver function in obese mice, and its lowest observed adverse effect level (LOAEL) was 30 nmol/kg in the repeat dose toxicity study. CONCLUSION: We compared the potential of the Fc fusion protein GLP-1/GCG dual receptor agonists with different receptor selectivity to provide the setting for future GLP-1/GCG dual receptor agonists to treat obesity and MASLD.


Diet, High-Fat , Glucagon-Like Peptide 1 , Glucagon-Like Peptide-1 Receptor , Immunoglobulin Fc Fragments , Obesity , Receptors, Glucagon , Recombinant Fusion Proteins , Animals , Humans , Mice , Rats , Diet, High-Fat/adverse effects , Glucagon-Like Peptide 1/agonists , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptides/pharmacology , Immunoglobulin Fc Fragments/pharmacology , Mice, Inbred C57BL , Mice, Obese , Obesity/drug therapy , Obesity/metabolism , Rats, Sprague-Dawley , Receptors, Glucagon/agonists , Receptors, Glucagon/metabolism , Recombinant Fusion Proteins/pharmacology , Weight Loss/drug effects
4.
Protein Expr Purif ; 219: 106475, 2024 Jul.
Article En | MEDLINE | ID: mdl-38552891

AA139, a variant of natural antimicrobial peptide (AMP) arenicin-3, displayed potent activity against multidrug-resistant (MDR) and extensively drug-resistant (XDR) Gram-negative bacteria. Nevertheless, there were currently few reports on the bioprocess of AA139, and the yields were less than 5 mg/L. Additionally, it was difficult and expensive to prepare AA139 through chemical synthesis due to its complex structure. These factors have impeded the further research and following clinical application of AA139. Here, we reported a bioprocess for the preparation of AA139, which was expressed in Escherichia coli (E. coli) BL21 (DE3) intracellularly in a soluble form via SUMO (small ubiquitin-related modifier) fusion technology. Then, recombinant AA139 (rAA139, refer to AA139 obtained by recombinant expression in this study) was obtained through the simplified downstream process, which was rationally designed in accordance with the physicochemical characteristics. Subsequently, the expression level of the interest protein was increased by 54% after optimization of high cell density fermentation (HCDF). Finally, we obtained a yield of 56 mg of rAA139 from 1 L culture with a purity of 98%, which represented the highest reported yield of AA139 to date. Furthermore, various characterizations were conducted to confirm the molecular mass, disulfide bonds, and antimicrobial activity of rAA139.


Antimicrobial Peptides , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli/drug effects , Antimicrobial Peptides/genetics , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/biosynthesis , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/pharmacology , Fermentation , Gene Expression
5.
Science ; 383(6687): 1104-1111, 2024 Mar 08.
Article En | MEDLINE | ID: mdl-38422185

The eradication of the viral reservoir represents the major obstacle to the development of a clinical cure for established HIV-1 infection. Here, we demonstrate that the administration of N-803 (brand name Anktiva) and broadly neutralizing antibodies (bNAbs) results in sustained viral control after discontinuation of antiretroviral therapy (ART) in simian-human AD8 (SHIV-AD8)-infected, ART-suppressed rhesus macaques. N-803+bNAbs treatment induced immune activation and transient viremia but only limited reductions in the SHIV reservoir. Upon ART discontinuation, viral rebound occurred in all animals, which was followed by durable control in approximately 70% of all N-803+bNAb-treated macaques. Viral control was correlated with the reprogramming of CD8+ T cells by N-803+bNAb synergy. Thus, complete eradication of the replication-competent viral reservoir is likely not a prerequisite for the induction of sustained remission after discontinuation of ART.


Anti-Retroviral Agents , Recombinant Fusion Proteins , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Humans , Anti-Retroviral Agents/therapeutic use , Anti-Retroviral Agents/pharmacology , Broadly Neutralizing Antibodies/administration & dosage , CD8-Positive T-Lymphocytes/virology , Immunotherapy , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Acquired Immunodeficiency Syndrome/therapy , Viral Load , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/pharmacology , Remission Induction , Drug Therapy, Combination
6.
J Biol Chem ; 300(4): 105784, 2024 Apr.
Article En | MEDLINE | ID: mdl-38401844

The introduction of a therapeutic anti-C5 antibody into clinical practice in 2007 inspired a surge into the development of complement-targeted therapies. This has led to the recent approval of a C3 inhibitory peptide, an antibody directed against C1s and a full pipeline of several complement inhibitors in preclinical and clinical development. However, no inhibitor is available that efficiently inhibits all three complement initiation pathways and targets host cell surface markers as well as complement opsonins. To overcome this, we engineered a novel fusion protein combining selected domains of the three natural complement regulatory proteins decay accelerating factor, factor H and complement receptor 1. Such a triple fusion complement inhibitor (TriFu) was recombinantly expressed and purified alongside multiple variants and its building blocks. We analyzed these proteins for ligand binding affinity and decay acceleration activity by surface plasmon resonance. Additionally, we tested complement inhibition in several in vitro/ex vivo assays using standard classical and alternative pathway restricted hemolysis assays next to hemolysis assays with paroxysmal nocturnal hemoglobinuria erythrocytes. A novel in vitro model of the alternative pathway disease C3 glomerulopathy was established to evaluate the potential of the inhibitors to stop C3 deposition on endothelial cells. Next to the novel engineered triple fusion variants which inactivate complement convertases in an enzyme-like fashion, stoichiometric complement inhibitors targeting C3, C5, factor B, and factor D were tested as comparators. The triple fusion approach yielded a potent complement inhibitor that efficiently inhibits all three complement initiation pathways while targeting to surface markers.


Complement Factor H , Receptors, Complement 3b , Recombinant Fusion Proteins , Humans , Complement Factor H/metabolism , Complement Factor H/genetics , Complement Factor H/chemistry , Complement Factor H/immunology , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacology , Complement Activation/drug effects , CD55 Antigens/genetics , CD55 Antigens/metabolism , Hemolysis/drug effects , Complement Pathway, Alternative/drug effects , Complement Inactivating Agents/pharmacology , Erythrocytes/metabolism
7.
Int Immunopharmacol ; 126: 111240, 2024 Jan 05.
Article En | MEDLINE | ID: mdl-37992444

Anti-TNF-α therapy fails in 30% of patients, where TNF-α may not be the key causative factor in these patients. We developed a bispecific single-domain antibody block TNF-α and VEGF (V5-3).The experiments showed that V5-3 effectively activated proliferation and migration of RA-FLS and HUVEC, tube-forming role of HUVEC, and expression of inflammatory factors in vitro. Besides, the experiments indicated that the anti-RA activity of V5-3 was superior to Anbainuo in vivo. Application of V5-3 reduced the expression of inflammatory factors, extent of synovial inflammation and angiogenesis and attenuated the severity of autoimmune arthritis in collagen-induced arthritis (CIA) mice. Mechanistically, V5-3 suppressed p65, AKT and VEGFR2 phosphorylation, as well as production of TNF-α and VEGF in joint tissues. These results demonstrated that V5-3 displayed a superior effect of anti-RA, may be a new therapy to overcome the limitations of anti-TNF-α monoclonal antibody.


Arthritis, Experimental , Arthritis, Rheumatoid , Humans , Mice , Animals , Tumor Necrosis Factor-alpha/metabolism , Vascular Endothelial Growth Factor A/metabolism , Tumor Necrosis Factor Inhibitors/pharmacology , Inflammation/metabolism , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Fibroblasts , Synovial Membrane , Immunoglobulin Fc Fragments/pharmacology , Recombinant Fusion Proteins/pharmacology , Receptors, Tumor Necrosis Factor, Type II
8.
Mol Cells ; 46(12): 764-777, 2023 Dec 31.
Article En | MEDLINE | ID: mdl-38052492

Recombinant immunotoxins (RITs) are fusion proteins consisting of a targeting domain linked to a toxin, offering a highly specific therapeutic strategy for cancer treatment. In this study, we engineered and characterized RITs aimed at mesothelin, a cell surface glycoprotein overexpressed in various malignancies. Through an extensive screening of a large nanobody library, four mesothelin-specific nanobodies were selected and genetically fused to a truncated Pseudomonas exotoxin (PE24B). Various optimizations, including the incorporation of furin cleavage sites, maltose-binding protein tags, and tobacco etch virus protease cleavage sites, were implemented to improve protein expression, solubility, and purification. The RITs were successfully overexpressed in Escherichia coli, achieving high solubility and purity post-purification. In vitro cytotoxicity assays on gastric carcinoma cell lines NCI-N87 and AGS revealed that Meso(Nb2)-PE24B demonstrated the highest cytotoxic efficacy, warranting further characterization. This RIT also displayed selective binding to human and monkey mesothelins but not to mouse mesothelin. The competitive binding assays between different RIT constructs revealed significant alterations in IC50 values, emphasizing the importance of nanobody specificity. Finally, a modification in the endoplasmic reticulum retention signal at the C-terminus further augmented its cytotoxic activity. Our findings offer valuable insights into the design and optimization of RITs, showcasing the potential of Meso(Nb2)-PE24B as a promising therapeutic candidate for targeted cancer treatment.


Antineoplastic Agents , Bacterial Toxins , Immunotoxins , Neoplasms , Single-Domain Antibodies , Animals , Mice , Humans , Exotoxins/genetics , Exotoxins/pharmacology , Exotoxins/chemistry , Immunotoxins/genetics , Immunotoxins/pharmacology , Immunotoxins/chemistry , Mesothelin , Single-Domain Antibodies/genetics , Single-Domain Antibodies/pharmacology , Bacterial Toxins/genetics , Bacterial Toxins/chemistry , Bacterial Toxins/metabolism , Catalytic Domain , Cell Line, Tumor , ADP Ribose Transferases/genetics , ADP Ribose Transferases/chemistry , ADP Ribose Transferases/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/metabolism , Neoplasms/drug therapy
9.
Molecules ; 28(24)2023 Dec 08.
Article En | MEDLINE | ID: mdl-38138504

Recombinant human interferon alpha-2b (rIFN) is widely used in antiviral and anticancer immunotherapy. However, the high efficiency of interferon therapy is accompanied by a number of side effects; this problem requires the design of a new class of interferon molecules with reduced cytotoxicity. In this work, IFN was modified via genetic engineering methods by merging it with the blood plasma protein apolipoprotein A-I in order to reduce acute toxicity and improve the pharmacokinetics of IFN. The chimeric protein was obtained via biosynthesis in the yeast P. pastoris. The yield of ryIFN-ApoA-I protein when cultivated on a shaker in flasks was 30 mg/L; protein purification was carried out using reverse-phase chromatography to a purity of 95-97%. The chimeric protein demonstrated complete preservation of the biological activity of IFN in the model of vesicular stomatitis virus and SARS-CoV-2. In addition, the chimeric form had reduced cytotoxicity towards Vero cells and increased cell viability under viral load conditions compared with commercial IFN-a2b preparations. Analysis of the pharmacokinetic profile of ryIFN-ApoA-I after a single subcutaneous injection in mice showed a 1.8-fold increased half-life of the chimeric protein compared with ryIFN.


Apolipoproteins A , Interferon-alpha , Chlorocebus aethiops , Humans , Mice , Animals , Interferon-alpha/genetics , Interferon-alpha/pharmacology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/chemistry , Apolipoprotein A-I/genetics , Vero Cells , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Interferon alpha-2
10.
Front Biosci (Landmark Ed) ; 28(9): 222, 2023 09 25.
Article En | MEDLINE | ID: mdl-37796711

Anti-vascular endothelial growth factor (VEGF) drugs are widely used in modern ophthalmology, especially in treating macular disorders like age-related macular degeneration or diabetic macular edema. Protocols for such treatments include repeated administration of intravitreal injections, with the volume of drug injected into the vitreous chamber seemingly high enough to cause an increase in intraocular pressure. Hence, questions might arise if such therapeutic approaches are safe for ocular tissue. Moreover, anti-VEGF compounds may theoretically harm the retinal nerve fibers due to the inhibition of VEGF and its neuroprotective effects. Thus, this manuscript aims to review the literature regarding studies evaluating the retinal nerve fiber layer (RNFL) in eyes receiving anti-VEGF treatment due to age-related macular degeneration. The RNFL was chosen as a subject of this review, as it is the innermost retinal layer exposed to the direct action of intravitreally administered drugs. The results of the available studies remain inconclusive. Most researchers seem to confirm the safety of the anti-VEGF treatment in wet age-related macular degeneration, at least regarding the retinal nerve fiber layer. However, some authors noticed that the influence of anti-VEGFs on RNFL could become apparent after more than thirty injections. Nonetheless, the authors of all studies agree that further, long-term observations are needed to help clinicians understand the effect of anti-VEGF treatment on the dynamics of changes in the thickness of retinal nerve fibers in patients with the wet form of age-related macular degeneration.


Diabetic Retinopathy , Macular Edema , Wet Macular Degeneration , Humans , Angiogenesis Inhibitors/adverse effects , Diabetic Retinopathy/drug therapy , Macular Edema/drug therapy , Nerve Fibers , Ranibizumab/pharmacology , Ranibizumab/therapeutic use , Receptors, Vascular Endothelial Growth Factor/therapeutic use , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/therapeutic use , Retrospective Studies , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Wet Macular Degeneration/drug therapy
12.
Br J Haematol ; 203(1): 119-130, 2023 10.
Article En | MEDLINE | ID: mdl-37735543

Thrombopoietin receptor agonists (TPO-RAs) stimulate platelet production, which might restore immunological tolerance in primary immune thrombocytopenia (ITP). The iROM study investigated romiplostim's immunomodulatory effects. Thirteen patients (median age, 31 years) who previously received first-line treatment received romiplostim for 22 weeks, followed by monitoring until week 52. In addition to immunological data, secondary end-points included the sustained remission off-treatment (SROT) rate at 1 year, romiplostim dose, platelet count and bleedings. Scheduled discontinuation of romiplostim and SROT were achieved in six patients with newly diagnosed ITP, whereas the remaining seven patients relapsed. Romiplostim dose titration was lower and platelet count response was stronger in patients with SROT than in relapsed patients. In all patients, regulatory T lymphocyte (Treg) counts increased until study completion and the counts were higher in patients with SROT. Interleukin (IL)-4, IL-9 and IL-17F levels decreased significantly in all patients. FOXP3 (Treg), GATA3 (Th2) mRNA expression and transforming growth factor-ß levels increased in patients with SROT. Treatment with romiplostim modulates the immune system and possibly influences ITP prognosis. A rapid increase in platelet counts is likely important for inducing immune tolerance. Better outcomes might be achieved at an early stage of autoimmunity, but clinical studies are needed for confirmation.


Purpura, Thrombocytopenic, Idiopathic , Humans , Adult , Purpura, Thrombocytopenic, Idiopathic/drug therapy , Immunomodulation , Immune Tolerance , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/therapeutic use
13.
Sci Rep ; 13(1): 14556, 2023 09 04.
Article En | MEDLINE | ID: mdl-37666868

Deriving stem cells to regenerate full-thickness human skin is important for treating skin disorders without invasive surgical procedures. Our previous protocol to differentiate human induced pluripotent stem cells (iPSCs) into skin-derived precursor cells (SKPs) as a source of dermal stem cells employs mouse fibroblasts as feeder cells and is therefore unsuitable for clinical use. Herein, we report a feeder-free method for differentiating iPSCs into SKPs by customising culture substrates. We immunohistochemically screened for laminins expressed in dermal papillae (DP) and explored the conditions for inducing the differentiation of iPSCs into SKPs on recombinant laminin E8 (LM-E8) fragments with or without conjugation to domain I of perlecan (PDI), which binds to growth factors through heparan sulphate chains. Several LM-E8 fragments, including those of LM111, 121, 332, 421, 511, and 521, supported iPSC differentiation into SKPs without PDI conjugation. However, the SKP yield was significantly enhanced on PDI-conjugated LM-E8 fragments. SKPs induced on PDI-conjugated LM111-E8 fragments retained the gene expression patterns characteristic of SKPs, as well as the ability to differentiate into adipocytes, osteocytes, and Schwann cells. Thus, PDI-conjugated LM-E8 fragments are promising agents for inducing iPSC differentiation into SKPs in clinical settings.


Cell Differentiation , Heparan Sulfate Proteoglycans , Induced Pluripotent Stem Cells , Intercellular Signaling Peptides and Proteins , Laminin , Peptide Fragments , Protein Domains , Skin , Humans , Adipocytes/cytology , Adipocytes/drug effects , Cell Differentiation/drug effects , Heparan Sulfate Proteoglycans/chemistry , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/drug effects , Intercellular Signaling Peptides and Proteins/metabolism , Laminin/chemistry , Laminin/pharmacology , Osteocytes/cytology , Osteocytes/drug effects , Peptide Fragments/chemistry , Peptide Fragments/pharmacology , Schwann Cells/cytology , Schwann Cells/drug effects , Skin/cytology , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/pharmacology
14.
Blood Coagul Fibrinolysis ; 34(6): 353-363, 2023 Sep 01.
Article En | MEDLINE | ID: mdl-37577860

Extended half-life recombinant FIX (rFIX) molecules have been generated to reduce the dosing burden and increase the protection of patients with hemophilia B. Clinical pharmacology studies with recombinant factor IX Fc fusion protein (rFIXFc) report a similar initial peak plasma recovery to that of rFIX, but with a larger volume of distribution. Although the pegylation of N9-GP results in a larger plasma recovery, there is a smaller volume of distribution, suggesting less extravasation of the latter drug. In this study, we set out to compare the biodistribution and tissue localization of rFIX, rFIXFc, and glycoPEGylated rFIX in a hemophilia B mouse model. Radiolabeled rFIX, rFIXFc, and rFIX-GP were employed in in vivo single-photon emission computed tomography imaging (SPECT/CT), microautoradiography (MARG), and histology to assess the distribution of FIX reagents over time. Immediately following injection, vascularized tissues demonstrated intense signal irrespective of FIX reagent. rFIX and rFIXFc were retained in joint and muscle areas through 5 half-lives, unlike rFIX-GP (assessed by SPECT). MARG and immunohistochemistry showed FIX agents localized at blood vessels among tissues, including liver, spleen, and kidney. Microautoradiographs, as well as fluorescent-labeled images of knee joint areas, demonstrated retention over time of FIX signal at the trabecular area of bone. Data indicate that rFIXFc is similar to rFIX in that it distributes outside the plasma compartment and is retained in certain tissues over time, while also retained at higher plasma levels. Overall, data suggest that Fc fusion does not impede the extravascular distribution of FIX.


Factor IX , Hemophilia B , Mice , Animals , Factor IX/pharmacology , Factor IX/therapeutic use , Tissue Distribution , Half-Life , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/therapeutic use , Recombinant Fusion Proteins/metabolism , Indicators and Reagents , Recombinant Proteins
15.
Adv Healthc Mater ; 12(29): e2301441, 2023 11.
Article En | MEDLINE | ID: mdl-37414582

Rspos (R-spondins) belong to a family of secreted proteins that causes various cancers via interacting the corresponding receptors. However, targeted therapeutic approaches against Rspos are largely lacking. In this study, a chimeric protein Rspo-targeting anticancer chimeric protein (RTAC) is originally designed, engineered, and characterized. RTAC shows satisfactory anticancer effects through inhibition of pan-Rspo-mediated Wnt/ß-catenin signaling activation both in vitro and in vivo. Furthermore, a conceptually novel antitumor strategy distinct from traditional drug delivery systems that release drugs inside tumor cells is proposed. A special "firewall" nano-system is designed to enrich on tumor cell surface and cover the plasma membrane, rather than undergoing endocytosis, to block oncogenic Rspos from binding to receptors. Cyclic RGD (Arg-Gly-Asp) peptide-linked globular cluster serum albumin nanoparticles (SANP) are integrated as a vehicle for conjugating RTAC (SANP-RTAC/RGD) for tumor tissue targeting. These nanoparticles can adhere to the tumor cell surface and enable RTAC to locally capture free Rspos with high spatial efficiency and selectivity to antagonize cancer progression. Therefore, this approach offers a new nanomedical anticancer route and obtains the "dual-targeting" capability for effective tumor clearance and low potential toxicity. This study presents a proof-of-concept for anti-pan-Rspo therapy and a nanoparticle-integrated paradigm for targeted cancer treatment.


Neoplasms , Wnt Signaling Pathway , Humans , Wnt Signaling Pathway/physiology , Neoplasms/drug therapy , Albumins , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/therapeutic use
16.
J Ocul Pharmacol Ther ; 39(9): 653-660, 2023 11.
Article En | MEDLINE | ID: mdl-37504966

Purpose: To compare the effectiveness of intravitreal injections of brolucizumab and aflibercept in patients with polypoidal choroidal vasculopathy (PCV). Methods: In total, 62 treatment-naive PCV eyes (62 patients) treated with intravitreal brolucizumab or aflibercept were analyzed retrospectively. All patients received a monthly loading injection of antivascular endothelial growth factor for 3 months, followed by further injections as required. Visual and anatomical outcomes were compared between drugs after 12 months of treatment. Results: The improvement in best-corrected visual acuity after 12 months of treatment was not significantly different between the brolucizumab-treated (22 eyes) and aflibercept-treated groups (40 eyes). However, in the brolucizumab-treated group, there was a significantly greater decrease in central retinal thickness (172 vs. 147 µm; P = 0.031) and subfoveal choroidal thickness after treatment (51 vs. 29 µm; P = 0.025). In addition, the regression rate of polypoidal lesions was significantly higher in the brolucizumab-treated group (77.3%, 17/22 eyes) than that in the aflibercept-treated group (45.0%, 18/40 eyes; P = 0.014). Sterile intraocular inflammation showing mild vitritis was observed in 1 of the 22 eyes (4.5%) of brolucizumab-treated patients. Conclusion: Intravitreal brolucizumab injections for PCV showed visual improvement comparable to that of aflibercept during the 12-month treatment period. However, brolucizumab was more effective than aflibercept for the regression of polypoidal lesions and caused a greater decrease in central retinal thickness and subfoveal choroidal thickness.


Angiogenesis Inhibitors , Choroidal Neovascularization , Humans , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/therapeutic use , Polypoidal Choroidal Vasculopathy , Choroidal Neovascularization/diagnosis , Choroidal Neovascularization/drug therapy , Retrospective Studies , Vascular Endothelial Growth Factor A , Tomography, Optical Coherence , Receptors, Vascular Endothelial Growth Factor/therapeutic use , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/therapeutic use , Intravitreal Injections , Treatment Outcome , Fluorescein Angiography
17.
Growth Factors ; 41(3): 140-151, 2023 08.
Article En | MEDLINE | ID: mdl-37377438

This project aimed to produce a biosimilar version of aflibercept (AFL) and evaluate the effect of the co-treatment of AFL with other vascular endothelial growth factor (VEGF) blocker drugs. For this purpose, the optimized gene was inserted into the pCHO1.0 plasmid and transfected into the CHO-S cell line. The final concentration of biosimilar-AFL for the selected clone was 782 mg/L. Results revealed that the inhibition potential of the biosimilar-AFL on HUVEC cells was significant at 10 and 100 nM concentrations and in a dose-dependent manner. Furthermore, co-treatment of biosimilar-AFL with Everolimus (EVR), Lenvatinib (LEN), and Sorafenib (SOR) could reduce HUVEC cell viability/proliferation, more than when used alone. When LEN and SOR were co-treated with biosimilar-AFL, their cytotoxicity increased 10-fold. The most and least efficient combination was seen when biosimilar-AFL combined with LEN and EVR, respectively. Finally, biosimilar-AFL may improve the efficiency of LEN, EVR, and SOR in reducing the VEGF effect on endothelial cells.


Biosimilar Pharmaceuticals , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factor A/metabolism , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/therapeutic use , Endothelial Cells/metabolism , Biosimilar Pharmaceuticals/pharmacology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacology , Sorafenib/pharmacology
18.
Arch Microbiol ; 205(6): 220, 2023 May 06.
Article En | MEDLINE | ID: mdl-37148384

Targeted delivery of a toxin substance to cancer cells is one of the most recent cancer treatment options. Mistletoe Lectin-1 (ML1) in Viscum album L. is a Ribosome-inactivating proteins with anticancer properties. Therefore, it appears that a recombinant protein with selective permeability can be generated by fusing ML1 protein with Shiga toxin B, which can bind to Gb3 receptor that is abundantly expressed on cancer cells. In this study, we sought to produce and purify a fusion protein containing ML1 fused to STxB and evaluate its cytotoxic activities. The ML1-STxB fusion protein coding sequence was cloned into the pET28a plasmid, then was transformed into E. coli BL21-DE3 cells. Following induction of protein expression, Ni-NTA affinity chromatography was used to purify the protein. Using SDS-PAGE and western blotting, the expression and purification processes were validated. On the SkBr3 cell line, the cytotoxic effects of the recombinant proteins were evaluated. On SDS-PAGE and western blotting membrane, analysis of purified proteins revealed a band of approximately 41 kDa for rML1-STxB. Ultimately, statistical analysis demonstrated that rML1-STxB exerted significant cytotoxic effects on SkBr3 cells at 18.09 and 22.52 ng/L. The production, purification, and encapsulation of rML1-STxB fusion protein with potential cancer cell-specific toxicity were successful. However, additional research must be conducted on the cytotoxic effects of this fusion protein on other malignant cell lines and in vivo cancer models.


Antineoplastic Agents , Biological Products , Mistletoe , Viscum album , Lectins , Escherichia coli/genetics , Escherichia coli/metabolism , Mistletoe/metabolism , Viscum album/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Recombinant Proteins/metabolism , Antineoplastic Agents/pharmacology , Biological Products/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacology
19.
Mol Pharm ; 20(6): 2864-2875, 2023 06 05.
Article En | MEDLINE | ID: mdl-37134184

Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) constitutes a promising antitumor drug, tumor resistance to TRAIL has become a major obstacle in its clinical application. Mitomycin C (MMC) is an effective TRAIL-resistant tumor sensitizer, which indicates a potential utility of combination therapy. However, the efficacy of this combination therapy is limited owing to its short half-life and the cumulative toxicity of MMC. To address these issues, we successfully developed a multifunctional liposome (MTLPs) with human TRAIL protein on the surface and MMC encapsulated in the internal aqueous phase to codeliver TRAIL and MMC. MTLPs are uniform spherical particles that exhibit efficient cellular uptake by HT-29 TRAIL-resistant tumor cells, thereby inducing a stronger killing effect compared with control groups. In vivo assays revealed that MTLPs efficiently accumulated in tumors and safely achieved 97.8% tumor suppression via the synergistic effect of TRAIL and MMC in an HT-29 tumor xenograft model while ensuring biosafety. These results suggest that the liposomal codelivery of TRAIL and MMC provides a novel approach to overcome TRAIL-resistant tumors.


Liposomes , Mitomycin , Nanoparticles , Recombinant Fusion Proteins , TNF-Related Apoptosis-Inducing Ligand , Liposomes/chemistry , Liposomes/pharmacology , Mitomycin/pharmacology , Cell Line, Tumor , Recombinant Fusion Proteins/pharmacology , TNF-Related Apoptosis-Inducing Ligand/pharmacology , Nanoparticles/chemistry , Humans
20.
J Pharm Biomed Anal ; 232: 115402, 2023 Aug 05.
Article En | MEDLINE | ID: mdl-37141854

Efruxifermin (EFX) is a homodimeric human IgG1 Fc-FGF21 fusion protein undergoing investigation for treatment of liver fibrosis due to nonalcoholic steatohepatitis (NASH), a prevalent and serious metabolic disease for which there is no approved treatment. Biological activity of FGF21 requires its intact C-terminus, which enables binding to its obligate co-receptor ß-Klotho on the surface of target cells. This interaction is a prerequisite for FGF21 signal transduction through its canonical FGF receptors: FGFR1c, 2c, and 3c. Therefore, the C-terminus of each FGF21 polypeptide chain must be intact, with no proteolytic truncation, for EFX to exert its pharmacological activity in patients. A sensitive immunoassay for quantification of biologically active EFX in human serum was therefore needed to support pharmacokinetic assessments in patients with NASH. We present a validated noncompetitive electrochemiluminescent immunoassay (ECLIA) that employs a rat monoclonal antibody for specific capture of EFX via its intact C-terminus. Bound EFX is detected by a SULFO-TAG™-conjugated, affinity purified chicken anti-EFX antiserum. The ECLIA reported herein for quantification of EFX demonstrated suitable analytical performance, with a sensitivity (LLOQ) of 20.0 ng/mL, to support reliable pharmacokinetic assessments of EFX. The validated assay was used to quantify serum EFX concentrations in a phase 2a study of NASH patients (BALANCED) with either moderate-to-advanced fibrosis or compensated cirrhosis. The pharmacokinetic profile of EFX was dose-proportional and did not differ between patients with moderate-to-advanced fibrosis and those with compensated cirrhosis. This report presents the first example of a validated pharmacokinetic assay specific for a biologically active Fc-FGF21 fusion protein, as well as the first demonstration of use of a chicken antibody conjugate as a detection reagent specific for an FGF21 analog.


Immunoassay , Liver Cirrhosis , Non-alcoholic Fatty Liver Disease , Liver Cirrhosis/drug therapy , Non-alcoholic Fatty Liver Disease/drug therapy , Immunoglobulin G , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/therapeutic use , Humans , Animals , Rats
...