Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 917
1.
Biomaterials ; 305: 122432, 2024 Mar.
Article En | MEDLINE | ID: mdl-38176263

The field of RNA therapeutics has been emerging as the third milestone in pharmaceutical drug development. RNA nanoparticles have displayed motile and deformable properties to allow for high tumor accumulation with undetectable healthy organ accumulation. Therefore, RNA nanoparticles have the potential to serve as potent drug delivery vehicles with strong anti-cancer responses. Herein, we report the physicochemical basis for the rational design of a branched RNA four-way junction (4WJ) nanoparticle that results in advantageous high-thermostability and -drug payload for cancer therapy, including metastatic tumors in the lung. The 4WJ nanostructure displayed versatility through functionalization with an anti-cancer chemical drug, SN38, for the treatment of two different cancer models including colorectal cancer xenograft and orthotopic lung metastases of colon cancer. The resulting 4WJ RNA drug complex spontaneously targeted cancers effectively for cancer inhibition with and without ligands. The 4WJ displayed fast renal excretion, rapid body clearance, and little organ accumulation with undetectable toxicity and immunogenicity. The safety parameters were documented by organ histology, blood biochemistry, and pathological analysis. The highly efficient cancer inhibition, undetectable drug toxicity, and favorable Chemical, Manufacturing, and Control (CMC) production of RNA nanoparticles document a candidate with high potential for translation in cancer therapy.


Antineoplastic Agents , Lung Neoplasms , Nanoparticles , Humans , RNA , Renal Elimination , Drug Delivery Systems/methods , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Nanoparticles/chemistry , Cell Line, Tumor
2.
PLoS One ; 19(1): e0294926, 2024.
Article En | MEDLINE | ID: mdl-38166023

Hypertension leads to water-electrolyte disturbances and end-organ damage. Betaine is an osmolyte protecting cells against electrolyte imbalance and osmotic stress, particularly in the kidneys. This study aimed to evaluate tissue levels and hemodynamic and renal effects of betaine in normotensive and hypertensive rats. Betaine levels were assessed using high-performance liquid chromatography-mass spectrometry (HPLC-MS) in normotensive rats (Wistar-Kyoto, WKYs) and Spontaneously Hypertensive rats (SHRs), a model of genetic hypertension. Acute effects of IV betaine on blood pressure, heart rate, and minute diuresis were evaluated. Gene and protein expression of chosen kidney betaine transporters (SLC6a12 and SLC6a20) were assessed using real-time PCR and Western blot. Compared to normotensive rats, SHRs showed significantly lower concentration of betaine in blood serum, the lungs, liver, and renal medulla. These changes were associated with higher urinary excretion of betaine in SHRs (0.20 ± 0.04 vs. 0.09 ± 0.02 mg/ 24h/ 100g b.w., p = 0.036). In acute experiments, betaine increased diuresis without significantly affecting arterial blood pressure. The diuretic response was greater in SHRs than in WKYs. There were no significant differences in renal expression of betaine transporters between WKYs and SHRs. Increased renal excretion of betaine contributes to decreased concentration of the protective osmolyte in tissues of hypertensive rats. These findings pave the way for studies evaluating a causal relation between depleted betaine and hypertensive organ damage, including kidney injury.


Betaine , Hypertension , Rats , Animals , Betaine/pharmacology , Betaine/metabolism , Rats, Inbred WKY , Diuretics/pharmacology , Renal Elimination , Hypertension/genetics , Kidney/metabolism , Rats, Inbred SHR , Blood Pressure , Electrolytes/metabolism
3.
Int J Pharm ; 652: 123765, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38195032

Despite the successful use of the radiopharmaceutical radium-223 dichloride ([223Ra]RaCl2) for targeted alpha therapy of castration-resistant prostate cancer patients with bone metastases, some short-term side effects, such as diarrhea and vomiting, have been documented, causing patient discomfort. Hence, we prepared a nanosized micellar solution of [223Ra]RaCl2 and evaluated its biodistribution, pharmacokinetics, and induced biochemical changes in healthy mice up to 96 h after intraperitoneal administration as an alternative to overcome the previous limitations. In addition, we evaluated the bone specificity of micellar [223Ra]RaCl2 in patient-derived xenografts in the osteosarcoma model. The biodistribution studies revealed the high bone-targeting properties of the micellar [223Ra]RaCl2. Interestingly, the liver uptake remained significantly low (%ID/g = 0.1-0.02) from 24 to 96 h after administration. In addition, the micellar [223Ra]RaCl2 exhibited a significantly higher uptake in left (%ID/g = 0.85-0.23) and right (%ID/g = 0.76-0.24) kidneys than in small (%ID/g = 0.43-0.06) and large intestines (%ID/g = 0.24-0.09) over time, suggesting its excretion pathway is primarily through the kidneys into the urine, in contrast to the non-micellar [223Ra]RaCl2. The micellar [223Ra]RaCl2 also had low distribution volume (0.055 ± 0.003 L) and longer elimination half-life (28 ± 12 days). This nanosystem was unable to change the enzymatic activities of alanine aminotransferase, aspartate aminotransferase, gamma GT, glucose, and liquiform lipase in the treated mice. Finally, microscopic examination of the animals' osteosarcoma tumors treated with micellar [223Ra]RaCl2 indicated regression of the tumor, with large areas of necrosis. In contrast, in the control group, we observed tumor cellularity and cell anaplasia, mitotic figures and formation of neoplastic extracellular bone matrix, which are typical features of osteosarcoma. Therefore, our findings demonstrated the efficiency and safety of nanosized micellar formulations to minimize the gastrointestinal excretion pathway of the clinical radiopharmaceutical [223Ra]RaCl2, in addition to promoting regression of the osteosarcoma. Further studies must be performed to assess dose-response outcomes and organ/tissue dosimetry for clinical translation.


Bone Neoplasms , Osteosarcoma , Prostatic Neoplasms, Castration-Resistant , Humans , Male , Animals , Mice , Radiopharmaceuticals/pharmacokinetics , Tissue Distribution , Renal Elimination , Bone Neoplasms/drug therapy , Bone Neoplasms/radiotherapy , Osteosarcoma/drug therapy , Prostatic Neoplasms, Castration-Resistant/pathology
4.
Eur J Pediatr ; 183(1): 51-60, 2024 Jan.
Article En | MEDLINE | ID: mdl-37861791

The effect of renal functional status on drug metabolism is a crucial consideration for clinicians when determining the appropriate dosage of medications to administer. In critically ill patients, there is often a significant increase in renal function, which leads to enhanced drug metabolism and potentially inadequate drug exposure. This phenomenon, known as augmented renal clearance (ARC), is commonly observed in pediatric critical care settings. The findings of the current study underscore the significant impact of ARC on the pharmacokinetics and pharmacodynamics of antimicrobial drugs in critically ill pediatric patients. Moreover, the study reveals a negative correlation between increased creatinine clearance and blood concentrations of antimicrobial drugs. The article provides a comprehensive review of ARC screening in pediatric patients, including its definition, risk factors, and clinical outcomes. Furthermore, it summarizes the dosages and dosing regimens of commonly used antibacterial and antiviral drugs for pediatric patients with ARC, and recommendations are made for dose and infusion considerations and the role of therapeutic drug monitoring. CONCLUSION:  ARC impacts antimicrobial drugs in pediatric patients. WHAT IS KNOWN: • ARC is inextricably linked to the failure of antimicrobial therapy, recurrence of infection, and subtherapeutic concentrations of drugs. WHAT IS NEW: • This study provides an updated overview of the influence of ARC on medication use and clinical outcomes in pediatric patients. • In this context, there are several recommendations for using antibiotics in pediatric patients with ARC: 1) increase the dose administered; 2) prolonged or continuous infusion administration; 3) use of TDM; and 4) use alternative drugs that do not undergo renal elimination.


Anti-Bacterial Agents , Critical Illness , Humans , Child , Critical Illness/therapy , Anti-Bacterial Agents/therapeutic use , Kidney/metabolism , Kidney Function Tests , Renal Elimination
5.
Int Urol Nephrol ; 56(4): 1429-1438, 2024 Apr.
Article En | MEDLINE | ID: mdl-37794282

PURPOSE: The kidney's capability to concentrate and dilute urine is crucial to maintaining body fluid compartments and plasma osmolality. Advanced age and chronic kidney disease (CKD) result in decreased maximal urine concentration. Less is known regarding urine dilution ability. The primary purpose of this study was to determine the relationship between maximal renal water excretion and renal function, age, and gender in humans. METHODS: This monocentric retrospective study includes patients referred to the Department of Clinical Physiology in Toulouse University Hospital to measure the glomerular filtration rate (mGFR) between April 2013 and February 2018. mGFR was assessed using inulin renal clearance and required ample hydration. We quantified the effects of age, gender and mGFR have on water excretion ability, which was assessed by minimal urinary osmolality (minUosm) and maximal free water clearance (maxCH2O). RESULTS: 666 patients were included (mean age 51 ± 14 years, 53% female). Mean mGFR was 82 ± 25 mL/min/1.73m2. MinUosm after hydration was higher in patients with renal insufficiency while maxCH2O was markedly lower. Age was also, with a weaker effect, associated with decreased in water excretion, independently of mGFR. MaxCH2O clearance was similar in both genders, whereas minUosm was lower in women, possibly resulting from a lower osmotic load. DISCUSSION: This study shows a decrease in maximal urinary dilution capacity and free water clearance with CKD and age, without gender difference. These alterations are mild but must be considered when a significant water intake is required or in the case of hyponatremia.


Renal Insufficiency, Chronic , Humans , Female , Male , Adult , Middle Aged , Aged , Retrospective Studies , Glomerular Filtration Rate , Renal Elimination , Kidney
6.
Am J Physiol Renal Physiol ; 326(1): F30-F38, 2024 01 01.
Article En | MEDLINE | ID: mdl-37916286

Plasma nucleosides-pseudouridine (PU) and N2N2-dimethyl guanosine (DMG) predict the progression of type 2 diabetic kidney disease (DKD) to end-stage renal disease, but the mechanisms underlying this relationship are not well understood. We used a well-characterized model of type 2 diabetes (db/db mice) and control nondiabetic mice (db/m mice) to characterize the production and excretion of PU and DMG levels using liquid chromatography-mass spectrometry. The fractional excretion of PU and DMG was decreased in db/db mice compared with control mice at 24 wk before any changes to renal function. We then examined the dynamic changes in nucleoside metabolism using in vivo metabolic flux analysis with the injection of labeled nucleoside precursors. Metabolic flux analysis revealed significant decreases in the ratio of urine-to-plasma labeling of PU and DMG in db/db mice compared with db/m mice, indicating significant tubular dysfunction in diabetic kidney disease. We observed that the gene and protein expression of the renal tubular transporters involved with nucleoside transport in diabetic kidneys in mice and humans was reduced. In conclusion, this study strongly suggests that tubular handling of nucleosides is altered in early DKD, in part explaining the association of PU and DMG with human DKD progression observed in previous studies.NEW & NOTEWORTHY Tubular dysfunction explains the association between the nucleosides pseudouridine and N2N2-dimethyl guanosine and diabetic kidney disease.


Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Humans , Mice , Animals , Diabetic Nephropathies/metabolism , Pseudouridine/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Nucleosides/metabolism , Renal Elimination , Kidney/metabolism , Guanosine/metabolism
7.
Toxicol Lett ; 388: 30-39, 2023 Oct 01.
Article En | MEDLINE | ID: mdl-37806368

Including active renal excretion in physiologically based kinetic (PBK) models can improve their use in quantitative in vitro- in vivo extrapolation (QIVIVE) as a new approach methodology (NAM) for predicting the acute toxicity of organic cation transporter 2 (OCT2) substrates like paraquat (PQ). To realise this NAM, kinetic parameters Vmax and Km for in vitro OCT2 transport of PQ were obtained from the literature. Appropriate scaling factors were applied to translate the in vitro Vmax to an in vivo Vmax. in vitro cytotoxicity data were defined in the rat RLE-6TN and L2 cell lines and the human A549 cell line. The developed PQ PBK model was used to apply reverse dosimetry for QIVIVE translating the in vitro cytotoxicity concentration-response curves to predicted in vivo toxicity dose-response curves after which the lower and upper bound benchmark dose (BMD) for 50% lethality (BMDL50 and BMDU50) were derived by applying BMD analysis. Comparing the predictions to the in vivo reported LD50 values resulted in a conservative prediction for rat and a comparable prediction for human showing proof of principle on the inclusion of active renal excretion and prediction of PQ acute toxicity for the developed NAM.


Models, Biological , Paraquat , Rats , Humans , Animals , Paraquat/toxicity , Organic Cation Transporter 2 , Renal Elimination , Cell Line
8.
Biochem Pharmacol ; 218: 115867, 2023 12.
Article En | MEDLINE | ID: mdl-37866801

Transporter-mediated drug-drug interactions (DDIs) are assessed using probe drugs and in vitro and in vivo models during drug development. The utility of endogenous metabolites as transporter biomarkers is emerging for prediction of DDIs during early phases of clinical trials. Endogenous metabolites such as pyridoxic acid and kynurenic acid have shown potential to predict DDIs mediated by organic anion transporters (OAT1 and OAT3). However, these metabolites have not been assessed in rats as potential transporter biomarkers. We carried out a rat pharmacokinetic DDI study using probenecid and furosemide as OAT inhibitor and substrate, respectively. Probenecid administration led to a 3.8-fold increase in the blood concentrations and a 3-fold decrease in renal clearance of furosemide. High inter-individual and intra-day variability in pyridoxic acid and kynurenic acid, and no or moderate effect of probenecid administration on these metabolites suggest their limited utility for prediction of Oat-mediated DDI in rats. Therefore, rat blood and urine samples were further analysed using untargeted metabolomics. Twenty-one m/z features (out of >8000 detected features) were identified as putative biomarkers of rat Oat1 and Oat3 using a robust biomarker qualification approach. These m/z features belong to metabolic pathways such as fatty acid analogues, peptides, prostaglandin analogues, bile acid derivatives, flavonoids, phytoconstituents, and steroids, and can be used as a panel to decrease variability caused by processes other than Oats. When validated, these putative biomarkers will be useful in predicting DDIs caused by Oats in rats.


Organic Anion Transporters , Rats , Animals , Organic Anion Transporters/metabolism , Probenecid/pharmacology , Probenecid/metabolism , Organic Anion Transporters, Sodium-Independent/metabolism , Renal Elimination , Furosemide/pharmacology , Furosemide/metabolism , Organic Anion Transport Protein 1/metabolism , Kynurenic Acid/metabolism , Kynurenic Acid/pharmacology , Pyridoxic Acid/metabolism , Pyridoxic Acid/pharmacology , Drug Interactions , Biomarkers/metabolism , Kidney/metabolism
9.
Eur J Pharm Sci ; 189: 106553, 2023 Oct 01.
Article En | MEDLINE | ID: mdl-37532063

HSK7653, an oral dipeptidyl peptidase-4 inhibitor administered every 2 weeks, is a candidate for the treatment of type 2 diabetes mellitus. The major elimination pathway of HSK7653 in vivo is renal excretion, and hepatic metabolism and fecal excretion of unchanged compound contribute less to the systemic clearance of HSK7653. Considering the disposition characteristics and the potential indication population of HSK7653, evaluating the HSK7653 exposure in patients with renal impairment and geriatric populations is a prerequisite for bringing more benefits to the patients. Here, a PBPK model was developed based on in vitro experimental results, such as dissolution, permeability, and metabolism, and the in vivo renal clearance, to evaluate the effects of physiological factors and food on HSK7653 exposure in specific populations, including adult and elder individuals with renal impairment and geriatric populations. Simulation results showed that the AUC of HSK7653 increased by 46%, 82%, and 129% in adult patients with mild, moderate, and severe renal impairment, and by 56%, 78%, and 101% in patients aged 65-75, 75-85 and 85-95 years, respectively. The AUC increased in the range of 62%-83%, 98%-133%, and 153%-195% in elderly patients (65-95 years) with mild, moderate, and severe renal impairment, respectively. Moreover, two different absorption model development methods (dissolution profile method and the diffusion layer model method) predicted that food had no effect on the exposure of the same simulated population. Since the predicted AUC of HSK7653 at the 10 mg dose in various specific populations was still within the relatively flat results of the exposure-response analysis, the 10 mg dose of HSK7653 was first used to explore the exposure in the renal impairment population (CTR20221952).


Diabetes Mellitus, Type 2 , Dipeptidyl-Peptidase IV Inhibitors , Adult , Aged , Humans , Diabetes Mellitus, Type 2/drug therapy , Renal Elimination/physiology , Dipeptidyl-Peptidase IV Inhibitors/pharmacokinetics , Administration, Oral , Tablets , Models, Biological , Computer Simulation
10.
J Clin Pharmacol ; 63(10): 1156-1168, 2023 10.
Article En | MEDLINE | ID: mdl-37496106

Physiologically based pharmacokinetic (PBPK) models are useful in bridging drug exposure in different ethnic groups, and there is increasing regulatory application of this approach in adults. Reported pediatric PBPK models tend to focus on the North European population, with few examples in other ethnic groups. This study describes the development and verification of a Japanese pediatric PBPK population. The development of the model was based on the existing North European pediatric population. Japanese systems and clinical data were collated from public databases and the literature, and the underlying demographics and equations were optimized so that physiological outputs represented the Japanese pediatric population. The model was tested using 14 different small molecule drugs, eliminated by a variety of pathways, including cytochrome P450 3A4 (CYP3A4) metabolism and renal excretion. Given the limitations of the clinical data, the overall performance of the model was good, with 44/62 predictions for PK parameters (area under the plasma drug concentration-time curve, AUC; maximum serum concentration, Cmax ; clearance, CL) being within 0.8- to 1.25-fold, 56/62 within 0.67- to 1.5-fold, and 61/62 within 0.5- to 2.0-fold of the observed values. Specific results for the 5 CYP3A4 substrates showed 20/31 cases were predicted within 0.8- to 1.25-fold, 27/31 within 0.67- to 1.5-fold, and all were within 0.5- to 2.0-fold of the observed values. Given the increased regulatory use of pediatric PBPK in drug development, expanding these models to other ethnic groups are important. Considering qualifying these models based on the context of use, there is a need to expand on the current research to include a larger range of drugs with different elimination pathways. Collaboration among academic, industry, model providers, and regulators will facilitate further development.


Cytochrome P-450 CYP3A , Renal Elimination , Child , Humans , Computer Simulation , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 Enzyme System/metabolism , Drug Interactions , East Asian People , Models, Biological
11.
Nat Commun ; 14(1): 3175, 2023 06 01.
Article En | MEDLINE | ID: mdl-37264059

Concentrative nucleoside transporters (CNTs) are active nucleoside influx systems, but their in vivo roles are poorly defined. By generating CNT1 knockout (KO) mice, here we identify a role of CNT1 in the renal reabsorption of nucleosides. Deletion of CNT1 in mice increases the urinary excretion of endogenous pyrimidine nucleosides with compensatory alterations in purine nucleoside metabolism. In addition, CNT1 KO mice exhibits high urinary excretion of the nucleoside analog gemcitabine (dFdC), which results in poor tumor growth control in CNT1 KO mice harboring syngeneic pancreatic tumors. Interestingly, increasing the dFdC dose to attain an area under the concentration-time curve level equivalent to that achieved by wild-type (WT) mice rescues antitumor efficacy. The findings provide new insights into how CNT1 regulates reabsorption of endogenous and synthetic nucleosides in murine kidneys and suggest that the functional status of CNTs may account for the optimal action of pyrimidine nucleoside analog therapeutics in humans.


Nucleosides , Pyrimidine Nucleosides , Humans , Mice , Animals , Nucleosides/metabolism , Membrane Transport Proteins/metabolism , Renal Elimination , Carrier Proteins/metabolism , Antimetabolites , Nucleoside Transport Proteins/metabolism , Kidney/metabolism
12.
Br J Clin Pharmacol ; 89(10): 3056-3066, 2023 10.
Article En | MEDLINE | ID: mdl-37183779

AIMS: Brepocitinib is a tyrosine kinase 2/Janus kinase 1 inhibitor being investigated for the treatment of several autoimmune diseases. This study assessed the absorption, distribution, metabolism and excretion of oral brepocitinib, and the absolute oral bioavailability (F) and fraction absorbed (Fa ) using a 14 C microtracer approach. METHODS: This was a phase 1 open-label, nonrandomized, fixed sequence, two-period, single-dose study of brepocitinib in healthy male participants. Participants received a single oral 60 mg dose of 14 C brepocitinib (~300 nCi) in Period A, then an unlabelled oral 60 mg dose followed by an intravenous (IV) 30 µg dose of 14 C labelled brepocitinib (~300 nCi) in Period B. Mass balance, pharmacokinetic parameters and safety were assessed. RESULTS: Six participants were enrolled. Brepocitinib was absorbed rapidly following oral administration. In Period A, total recovery of the oral dose was 96.7% ± 6.3% (88.0% ± 8.0% in urine, 8.7% ± 2.1% in faeces). In Period B, a small fraction (6.0% of the oral dose) was recovered unchanged in urine. F and Fa were 74.6% (90% confidence interval 67.3%, 82.8%) and 106.9%, respectively. Brepocitinib demonstrated an acceptable safety profile and was well tolerated following oral or oral then IV administrations. No deaths, serious adverse events or discontinuations were reported. CONCLUSION: Intestinal absorption of brepocitinib was essentially complete after oral administration, with F ~75%. Drug-related material recovery was high, with the majority excreted in urine. The major route of elimination of brepocitinib was renal excretion as metabolites, whereas urinary elimination of unchanged brepocitinib was minor. NCT: NCT03770039.


Renal Elimination , Humans , Male , Feces , Biological Availability , Administration, Intravenous , Administration, Oral
13.
Clin Pharmacokinet ; 62(2): 307-319, 2023 02.
Article En | MEDLINE | ID: mdl-36631686

BACKGROUND AND OBJECTIVE: Chronic kidney disease (CKD) may alter drug renal elimination but is also known for interacting with hepatic metabolism via multiple uremic components. However, few global models, considering the five major cytochromes, have been published, and none specifically address the decrease in cytochrome P450 (CYP450) activity. The aim of our study was to estimate the possibility of quantifying residual cytochrome activity as a function of filtration rate, according to the data available in the literature. METHODS: For each drug in the DDI-predictor database, we collected available pharmacokinetic data comparing drug exposition in the healthy patient and in various stages of CKD, before building a model capable of predicting the variation of exposure according to the degree of renal damage. We followed an In vivo Mechanistic Static Model (IMSM) approach, previously validated for predicting change in liver clearance. We estimated the remaining fraction parameters at glomerular filtration rate (GFR) = 0 and the alpha value of GFR to 50% impairment for the 5 major cytochromes using a non-linear constrained regression using Matlab software. RESULTS: Thirty-one compounds had usable pharmacokinetic data, with 51 AUC ratios between healthy and renal impaired patients. The remaining CYP3A4 activity was estimated to be 0.4 when CYP2D6, 2C9, 2C19 and 1A2 activity was estimated to be 0.43; 1; 0.73 and 0.7, respectively. The alpha value was estimated to be at 6.62; 25; 9.8; 1.38 and 11.04 for each cytochrome. In comparison with published data, all estimates but one were correctly predicted in the range of 0.5-2. CONCLUSION: Our approach was able to describe the impact of CKD on metabolic elimination. Modelling this process makes it possible to anticipate changes in clearance and drug exposure in CKD patients, with the advantage of greater simplicity than approaches based on physiologically-based pharmacokinetic modelling. However, a precise estimation of the impact of renal failure is not possible with an IMSM approach due to the large variability of the published data, and thus should rely on specific pharmacokinetic modelling for narrow therapeutic margin drugs.


Renal Insufficiency, Chronic , Renal Insufficiency , Humans , Kidney , Renal Elimination , Cytochrome P-450 CYP3A/metabolism , Models, Biological
14.
J Agric Food Chem ; 71(3): 1434-1446, 2023 Jan 25.
Article En | MEDLINE | ID: mdl-36525382

Hyperuricemia characterized by high serum levels of uric acid (UA, >6.8 mg/dL) is regarded as a common chronic metabolic disease. When used as a food supplement, naringenin might have various pharmacological activities, including antioxidant, free-radical-scavenging, and inflammation-suppressing activities. However, the effects of naringenin on hyperuricemia and renal inflammation and the underlying mechanisms remain to be elucidated. Here, we comprehensively examined the effects of naringenin on hyperuricemia and the attenuation of renal impairment. Mice were injected with 250 mg/kg of potassium oxonate (PO) and given 5% fructose water to induce hyperuricemia. The pharmacological effects of naringenin (10 and 50 mg/kg) and benzbromarone (positive control group, 20 mg/kg) on hyperuricemic mice were evaluated in vivo. The disordered expression of urate transporters in HK-2 cells was stimulated by 8 mg/dL UA, which was used to determine the mechanisms underlying the effects of naringenin in vitro. Naringenin markedly reduced the serum UA level in a dose-dependent manner and improved renal dysfunction. Moreover, the increased elimination of UA in urine showed that the effects of naringenin were associated with the regulation of renal excretion. Further examination indicated that naringenin reduced the expression of GLUT9 by inhibiting the PI3K/AKT signaling pathway and reinforced the expression of ABCG2 by increasing the abundance of PDZK1 in vivo and in vitro. Furthermore, sirius red staining and western blotting indicated that naringenin plays a protective role in renal injury by suppressing increases in the levels of pro-inflammatory cytokines, including IL-6 and TNF-α, which contribute to the inhibition of the TLR4/NF-κB signaling pathway in vivo and in vitro. Naringenin supplementation might be a potential therapeutic strategy to ameliorate hyperuricemia by promoting UA excretion in the kidney and attenuating the inflammatory response by decreasing the release of inflammatory cytokines. This study shows that naringenin could be used as a functional food or dietary supplement for hyperuricemia prevention and treatment.


Hyperuricemia , Mice , Animals , Hyperuricemia/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Uric Acid/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Renal Elimination , Kidney/metabolism , Signal Transduction , Inflammation/drug therapy , Inflammation/genetics , Inflammation/metabolism , Cytokines/metabolism , Oxonic Acid
15.
Braz. J. Pharm. Sci. (Online) ; 59: e22453, 2023. tab, graf
Article En | LILACS | ID: biblio-1439540

Abstract In the present study, the application of ultra-high performance liquid chromatography-tandem mass spectrometry allowed us to study of known-as well as hitherto unknown-trimetazidine (TMZ) metabolites in human urine and to propose their renal excretion profiles. Urine samples from a healthy volunteer were analyzed at baseline and at 0-4 h, 4-8 h, 8-12 h, and 12-24 h after a single dose of TMZ. A dilute-and-shoot procedure was used as sample treatment before separation. Full-scan spectra of possible metabolites were acquired. Additionally, product ion scan spectra of precursor ions of interest were also acquired at two collision energies. Intact TMZ was a major excretion product, with a maximum concentration at 4-8 h after administration. Moreover, five minor metabolites were observed, namely trimetazidine-N-oxide (M1), N-formyl trimetazidine (M2), desmethyl-trimetazidine O-sulfate (M3), desmethyl-trimetazidine O-glucuronide (M4), and desmethyl-trimetazidine-N-oxide-O-glucuronide (M5). Metabolite M5 has not previously been reported. Excretion curves were constructed based on the chromatographic peak areas of specific mass transitions (precursor ion > product ion) related to each of the detected metabolites


Humans , Male , Middle Aged , Trimetazidine/analysis , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Urine , Single Dose/classification , Healthy Volunteers/classification , Renal Elimination/drug effects
16.
Nefrologia (Engl Ed) ; 42(3): 273-279, 2022.
Article En | MEDLINE | ID: mdl-36210617

Gout is recurrent inflammatory arthritis caused by the deposition of monosodium urate crystals in the joints. The risk factors that predispose to suffering from gout include non-modifiable factors such as gender, age, ethnicity and genetics, and modifiable factors such as diet and lifestyle. It has been shown that the heritability of uric acid levels in the blood is greater than 30%, which indicates that genetics play a key role in these levels. Hyperuricaemia is often a consequence of reduced renal urate excretion since more than 70% is excreted by the kidneys, mainly through the proximal tubule. The mechanisms that explain that hyperuricaemia associated with reduced renal urate excretion is, to a large extent, a proximal renal tubular disorder, have begun to be understood following the identification of two genes that encode the URAT1 and GLUT9 transporters. When they are carriers of loss-of-function mutations, they explain the two known variants of renal tubular hypouricaemia. Some polymorphisms in these genes may have an opposite gain-of-function effect, with a consequent increase in urate reabsorption. Conversely, loss-of-function polymorphisms in other genes that encode transporters involved in urate excretion (ABCG2, ABCC4) can lead to hyperuricaemia. Genome-wide association study (GWAS) methods have made it possible to locate new gout-related loci associated with reduced renal urate excretion (NIPAL1, FAM35A).


Gout , Hyperuricemia , Kidney Diseases , Genome-Wide Association Study , Gout/genetics , Humans , Hyperuricemia/genetics , Kidney Diseases/complications , Nephrologists , Renal Elimination , Uric Acid
17.
Sci Rep ; 12(1): 17517, 2022 10 20.
Article En | MEDLINE | ID: mdl-36266435

Renal dysfunction is a major risk factor for premature death and has been studied extensively. A new renal syndrome, shrunken pore syndrome (SPS), confers higher mortality in all studied populations. SPS is a condition in which cystatin C-based estimation of glomerular filtration rate (eGFRcystatin C) is ≥ 60% than creatinine-based estimation of glomerular filtration rate (eGFRcreatinine). We aimed to study the impact of SPS on mortality in a cohort of patients with follow up of up to 10 years. This was a retrospective single centre cohort study. We enrolled 3993 consecutive patients undergoing elective cardiac surgery. Outcome was evaluated using Kaplan Meier analysis and multivariable Cox regression. 1-, 5- and 10-year survival for patients with SPS was 90%, 59% and 45%, and without SPS 98%, 88% and 80% (p < 0.001). SPS was found to be an independent predictor for mortality with an HR of 1.96 (95% CI 1.63-2.36). SPS negatively affected survival regardless of pre-operative renal function. SPS is an independent predictor for mortality after elective cardiac surgery, equal to or greater than risk factors such as diabetes, impaired left ventricular function or renal dysfunction. SPS affected mortality even in patients with normal eGFR.Clinical registration number: ClinicalTrials.gov, ID NCT04141072.


Cystatin C , Kidney Diseases , Humans , Creatinine , Renal Elimination , Cohort Studies , Retrospective Studies
18.
Biochem Biophys Res Commun ; 630: 158-166, 2022 11 19.
Article En | MEDLINE | ID: mdl-36155062

We previously demonstrated that monosodium glutamate (MSG) consumption increases trimethylamine (TMA) level in the renal tissue as well as dimethylamine and methylamine levels in urine of rats, suggesting the effects of MSG on humans. To better define the findings, we investigated whether MSG consumption alters serum trimethylamine N-oxide (TMAO) level, and as a consequence, induces kidney injury in the rat model. Adult male Wistar rats (n = 40) were randomized to be fed with a standard diet (control group) or a standard diet with 0.5, 1.5 or 3.0 g% MSG corresponding to 7, 21, or 42 g/day in 60 kg man, respectively in drinking water (MSG-treated groups), or a standard diet with 3.0 g% MSG in drinking water which was withdrawn after 4 weeks (MSG-withdrawal group). Blood and urine samples were collected to analyze the TMAO levels using 1H NMR and markers of kidney injury. Fecal samples were also collected for gut microbiota analysis. We found serum TMAO levels increased and urinary TMAO excretion decreased during MSG consumption, in parallel with the increase of the neutrophil gelatinase-associated lipocalin (NGAL) excretion which subsided with the withdrawal of MSG. The fecal 16 S rRNA analysis during MSG consumption showed gut microbiota changes with a consistent suppression of Akkermansia muciniphila, a mucin producing bacteria, but not of TMA-producing bacteria. In conclusions, our findings suggested that prolonged high dose MSG consumption may cause TMAO accumulation in the blood via reduction of renal excretion associated with acute kidney injury. The mechanisms by which MSG reduced TMAO excretion require further investigation.


Drinking Water , Sodium Glutamate , Akkermansia , Animals , Dimethylamines , Intestines , Lipocalin-2 , Male , Methylamines , Mucins , Rats , Rats, Wistar , Renal Elimination , Verrucomicrobia
19.
J Clin Pharmacol ; 62 Suppl 1: S129-S139, 2022 09.
Article En | MEDLINE | ID: mdl-36106785

Physiologically based pharmacokinetic modeling (PBPK) could be used to predict changes in exposure during pregnancy and possibly inform medicine use in pregnancy in situations where there are currently no available clinical data. The Medicines and Healthcare Product Regulatory Agency has been evaluating the available models for a number of medicines cleared by the kidney. Models were evaluated for ceftazidime, cefuroxime, metformin, oseltamivir, and amoxicillin. Because the passive renal process contributes significantly to the renal elimination of these drugs and changes of the process during pregnancy have been implemented in existing pregnancy physiology models, simulations using these models can reasonably describe the pharmacokinetics of ceftazidime changes during pregnancy and appears to generally capture the changes in the other medicines; however, there are insufficient data on drugs solely passively cleared to fully qualify the models. In addition, in many cases, active transport processes are involved in a drug's renal clearance. Knowledge of changes in renal transport functions during pregnancy is emerging, and incorporation of such changes in current physiologically based pharmacokinetic modeling software is a work in progress. Filling this gap is expected to further enhance predictive performance of the models and increase the confidence in predicting pharmacokinetic changes in pregnant women for other renally cleared drugs.


Ceftazidime , Models, Biological , Female , Humans , Kidney/metabolism , Kidney Function Tests , Pregnancy , Renal Elimination
20.
Environ Sci Process Impacts ; 24(8): 1152-1164, 2022 Aug 17.
Article En | MEDLINE | ID: mdl-35678632

Per- and polyfluoroalkyl substances (PFAS) are a large class of highly fluorinated anthropogenic chemicals. Some PFAS bioaccumulate in aquatic food webs, thereby posing risks for seafood consumers. Existing models for persistent organic pollutants (POPs) perform poorly for ionizable PFAS. Here we adapt a well-established food web bioaccumulation model for neutral POPs to predict the bioaccumulation behavior of six perfluoroalkyl acids (PFAAs) and two perfluoroalkyl ether acids (HFPO-DA, 9-Cl-PF3ONS) produced as PFAA replacements. The new model includes sorption to blood plasma proteins and phospholipids, empirically parameterized membrane transport, and renal elimination for PFAAs. Improved performance relative to prior models without these updates is shown by comparing simulations to field and lab measurements. PFAS with eight or more perfluorinated carbons (ηpfc ≥ 8, i.e., C8 perfluorosulfonic acid, C10-C11 perfluorocarboxylic acid, 9-Cl-PF3ONS) are often the most abundant in aquatic food webs. The new model reproduces their observed bioaccumulation potential within a factor of two for >80% of fish species, indicating its readiness to support development of fish consumption advisories for these compounds. Results suggest bioaccumulation of ηpfc ≥ 8 PFAS is primarily driven by phospholipid partitioning, and that renal elimination is negligible for these compounds. However, specific protein binding mechanisms are important for reproducing the observed tissue concentrations of many shorter-chain PFAAs, including protein transporter-mediated renal elimination. Additional data on protein-binding and membrane transport mechanisms for PFAS are needed to better understand the biological behavior of shorter-chain PFAAs and their alternatives.


Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Alkanesulfonic Acids/metabolism , Animals , Bioaccumulation , Fishes/metabolism , Fluorocarbons/analysis , Food Chain , Renal Elimination , Water Pollutants, Chemical/metabolism
...