Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.018
1.
Sci Rep ; 14(1): 13158, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38849437

Patients with acute exacerbation of lung fibrosis with usual interstitial pneumonia (EUIP) pattern are at increased risk for ventilator-induced lung injury (VILI) and mortality when exposed to mechanical ventilation (MV). Yet, lack of a mechanical model describing UIP-lung deformation during MV represents a research gap. Aim of this study was to develop a constitutive mathematical model for UIP-lung deformation during lung protective MV based on the stress-strain behavior and the specific elastance of patients with EUIP as compared to that of acute respiratory distress syndrome (ARDS) and healthy lung. Partitioned lung and chest wall mechanics were assessed for patients with EUIP and primary ARDS (1:1 matched based on body mass index and PaO2/FiO2 ratio) during a PEEP trial performed within 24 h from intubation. Patient's stress-strain curve and the lung specific elastance were computed and compared with those of healthy lungs, derived from literature. Respiratory mechanics were used to fit a novel mathematical model of the lung describing mechanical-inflation-induced lung parenchyma deformation, differentiating the contributions of elastin and collagen, the main components of lung extracellular matrix. Five patients with EUIP and 5 matched with primary ARDS were included and analyzed. Global strain was not different at low PEEP between the groups. Overall specific elastance was significantly higher in EUIP as compared to ARDS (28.9 [22.8-33.2] cmH2O versus 11.4 [10.3-14.6] cmH2O, respectively). Compared to ARDS and healthy lung, the stress/strain curve of EUIP showed a steeper increase, crossing the VILI threshold stress risk for strain values greater than 0.55. The contribution of elastin was prevalent at lower strains, while the contribution of collagen was prevalent at large strains. The stress/strain curve for collagen showed an upward shift passing from ARDS and healthy lungs to EUIP lungs. During MV, patients with EUIP showed different respiratory mechanics, stress-strain curve and specific elastance as compared to ARDS patients and healthy subjects and may experience VILI even when protective MV is applied. According to our mathematical model of lung deformation during mechanical inflation, the elastic response of UIP-lung is peculiar and different from ARDS. Our data suggest that patients with EUIP experience VILI with ventilatory setting that are lung-protective for patients with ARDS.


Lung , Respiration, Artificial , Respiratory Distress Syndrome , Humans , Male , Female , Middle Aged , Respiration, Artificial/adverse effects , Respiratory Distress Syndrome/physiopathology , Aged , Lung/physiopathology , Lung/pathology , Elasticity , Ventilator-Induced Lung Injury/physiopathology , Pulmonary Fibrosis/physiopathology , Pulmonary Fibrosis/metabolism , Respiratory Mechanics/physiology , Stress, Mechanical , Lung Diseases, Interstitial/physiopathology , Models, Theoretical
2.
Crit Care ; 28(1): 164, 2024 05 14.
Article En | MEDLINE | ID: mdl-38745253

BACKGROUND: Hypoinflammatory and hyperinflammatory phenotypes have been identified in both Acute Respiratory Distress Syndrome (ARDS) and sepsis. Attributable mortality of ARDS in each phenotype of sepsis is yet to be determined. We aimed to estimate the population attributable fraction of death from ARDS (PAFARDS) in hypoinflammatory and hyperinflammatory sepsis, and to determine the primary cause of death within each phenotype. METHODS: We studied 1737 patients with sepsis from two prospective cohorts. Patients were previously assigned to the hyperinflammatory or hypoinflammatory phenotype using latent class analysis. The PAFARDS in patients with sepsis was estimated separately in the hypo and hyperinflammatory phenotypes. Organ dysfunction, severe comorbidities, and withdrawal of life support were abstracted from the medical record in a subset of patients from the EARLI cohort who died (n = 130/179). Primary cause of death was defined as the organ system that most directly contributed to death or withdrawal of life support. RESULTS: The PAFARDS was 19% (95%CI 10,28%) in hypoinflammatory sepsis and, 14% (95%CI 6,20%) in hyperinflammatory sepsis. Cause of death differed between the two phenotypes (p < 0.001). Respiratory failure was the most common cause of death in hypoinflammatory sepsis, whereas circulatory shock was the most common cause in hyperinflammatory sepsis. Death with severe underlying comorbidities was more frequent in hypoinflammatory sepsis (81% vs. 67%, p = 0.004). CONCLUSIONS: The PAFARDS is modest in both phenotypes whereas primary cause of death among patients with sepsis differed substantially by phenotype. This study identifies challenges in powering future clinical trials to detect changes in mortality outcomes among patients with sepsis and ARDS.


Phenotype , Respiratory Distress Syndrome , Sepsis , Humans , Sepsis/mortality , Sepsis/complications , Sepsis/physiopathology , Respiratory Distress Syndrome/mortality , Respiratory Distress Syndrome/physiopathology , Male , Female , Middle Aged , Aged , Prospective Studies , Cause of Death/trends , Cohort Studies , Inflammation
3.
BMC Pulm Med ; 24(1): 249, 2024 May 20.
Article En | MEDLINE | ID: mdl-38769572

BACKGROUND: Assessing mechanical properties of the respiratory system (Cst) during mechanical ventilation necessitates an end-inspiration flow of zero, which requires an end-inspiratory occlusion maneuver. This lung model study aimed to observe the effect of airflow obstruction on the accuracy of respiratory mechanical properties during pressure-controlled ventilation (PCV) by analyzing dynamic signals. METHODS: A Hamilton C3 ventilator was attached to a lung simulator that mimics lung mechanics in healthy, acute respiratory distress syndrome (ARDS) and chronic obstructive pulmonary disease (COPD) models. PCV and volume-controlled ventilation (VCV) were applied with tidal volume (VT) values of 5.0, 7.0, and 10.0 ml/kg. Performance characteristics and respiratory mechanics were assessed and were calibrated by virtual extrapolation using expiratory time constant (RCexp). RESULTS: During PCV ventilation, drive pressure (DP) was significantly increased in the ARDS model. Peak inspiratory flow (PIF) and peak expiratory flow (PEF) gradually declined with increasing severity of airflow obstruction, while DP, end-inspiration flow (EIF), and inspiratory cycling ratio (EIF/PIF%) increased. Similar estimated values of Crs and airway resistance (Raw) during PCV and VCV ventilation were obtained in healthy adult and mild obstructive models, and the calculated errors did not exceed 5%. An underestimation of Crs and an overestimation of Raw were observed in the severe obstruction model. CONCLUSION: Using the modified dynamic signal analysis approach, respiratory system properties (Crs and Raw) could be accurately estimated in patients with non-severe airflow obstruction in the PCV mode.


Airway Resistance , Pulmonary Disease, Chronic Obstructive , Respiration, Artificial , Respiratory Distress Syndrome , Humans , Airway Resistance/physiology , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Disease, Chronic Obstructive/therapy , Respiration, Artificial/methods , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/physiopathology , Tidal Volume , Respiratory Mechanics/physiology , Lung/physiopathology , Lung/physiology , Lung Compliance/physiology , Models, Biological , Adult
4.
Ther Adv Respir Dis ; 18: 17534666241249152, 2024.
Article En | MEDLINE | ID: mdl-38726850

BACKGROUND: Ventilator-induced lung injury (VILI) presents a grave risk to acute respiratory failure patients undergoing mechanical ventilation. Low tidal volume (LTV) ventilation has been advocated as a protective strategy against VILI. However, the effectiveness of limited driving pressure (plateau pressure minus positive end-expiratory pressure) remains unclear. OBJECTIVES: This study evaluated the efficacy of LTV against limited driving pressure in preventing VILI in adults with respiratory failure. DESIGN: A single-centre, prospective, open-labelled, randomized controlled trial. METHODS: This study was executed in medical intensive care units at Siriraj Hospital, Mahidol University, Bangkok, Thailand. We enrolled acute respiratory failure patients undergoing intubation and mechanical ventilation. They were randomized in a 1:1 allocation to limited driving pressure (LDP; ⩽15 cmH2O) or LTV (⩽8 mL/kg of predicted body weight). The primary outcome was the acute lung injury (ALI) score 7 days post-enrolment. RESULTS: From July 2019 to December 2020, 126 patients participated, with 63 each in the LDP and LTV groups. The cohorts had the mean (standard deviation) ages of 60.5 (17.6) and 60.9 (17.9) years, respectively, and they exhibited comparable baseline characteristics. The primary reasons for intubation were acute hypoxic respiratory failure (LDP 49.2%, LTV 63.5%) and shock-related respiratory failure (LDP 39.7%, LTV 30.2%). No significant difference emerged in the primary outcome: the median (interquartile range) ALI scores for LDP and LTV were 1.75 (1.00-2.67) and 1.75 (1.25-2.25), respectively (p = 0.713). Twenty-eight-day mortality rates were comparable: LDP 34.9% (22/63), LTV 31.7% (20/63), relative risk (RR) 1.08, 95% confidence interval (CI) 0.74-1.57, p = 0.705. Incidences of newly developed acute respiratory distress syndrome also aligned: LDP 14.3% (9/63), LTV 20.6% (13/63), RR 0.81, 95% CI 0.55-1.22, p = 0.348. CONCLUSIONS: In adults with acute respiratory failure, the efficacy of LDP and LTV in averting lung injury 7 days post-mechanical ventilation was indistinguishable. CLINICAL TRIAL REGISTRATION: The study was registered with the ClinicalTrials.gov database (identification number NCT04035915).


Limited breathing pressure or low amount of air given to the lung; which one is better for adults who need breathing help by ventilator machineWe conducted this research at Siriraj Hospital in Bangkok, Thailand, aiming to compare two ways of helping patients with breathing problems. We studied 126 patients who were randomly put into two groups. One group received a method where the pressure during breathing was limited (limited driving pressure: LDP), and the other group got a method where the amount of air given to the lungs was kept low (low tidal volume: LTV). We checked how bad the lung injury was at seven days later. The results showed that there was no difference between the two methods. Both ways of helping patients breathe had similar outcomes, and neither was significantly better than the other in preventing lung problems. The study suggests that both approaches work about the same for patients who need help with breathing using a machine.


Respiratory Insufficiency , Tidal Volume , Ventilator-Induced Lung Injury , Humans , Male , Female , Prospective Studies , Middle Aged , Aged , Respiratory Insufficiency/therapy , Respiratory Insufficiency/physiopathology , Thailand , Ventilator-Induced Lung Injury/prevention & control , Ventilator-Induced Lung Injury/etiology , Treatment Outcome , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/physiopathology , Respiratory Distress Syndrome/mortality , Respiration, Artificial/adverse effects , Time Factors , Positive-Pressure Respiration/adverse effects , Positive-Pressure Respiration/methods , Lung/physiopathology , Risk Factors , Adult
5.
Crit Care Sci ; 36: e20240210en, 2024.
Article En, Pt | MEDLINE | ID: mdl-38775567

BACKGROUND: Driving pressure has been suggested to be the main driver of ventilator-induced lung injury and mortality in observational studies of acute respiratory distress syndrome. Whether a driving pressure-limiting strategy can improve clinical outcomes is unclear. OBJECTIVE: To describe the protocol and statistical analysis plan that will be used to test whether a driving pressure-limiting strategy including positive end-expiratory pressure titration according to the best respiratory compliance and reduction in tidal volume is superior to a standard strategy involving the use of the ARDSNet low-positive end-expiratory pressure table in terms of increasing the number of ventilator-free days in patients with acute respiratory distress syndrome due to community-acquired pneumonia. METHODS: The ventilator STrAtegy for coMmunIty acquired pNeumoniA (STAMINA) study is a randomized, multicenter, open-label trial that compares a driving pressure-limiting strategy to the ARDSnet low-positive end-expiratory pressure table in patients with moderate-to-severe acute respiratory distress syndrome due to community-acquired pneumonia admitted to intensive care units. We expect to recruit 500 patients from 20 Brazilian and 2 Colombian intensive care units. They will be randomized to a driving pressure-limiting strategy group or to a standard strategy using the ARDSNet low-positive end-expiratory pressure table. In the driving pressure-limiting strategy group, positive end-expiratory pressure will be titrated according to the best respiratory system compliance. OUTCOMES: The primary outcome is the number of ventilator-free days within 28 days. The secondary outcomes are in-hospital and intensive care unit mortality and the need for rescue therapies such as extracorporeal life support, recruitment maneuvers and inhaled nitric oxide. CONCLUSION: STAMINA is designed to provide evidence on whether a driving pressure-limiting strategy is superior to the ARDSNet low-positive end-expiratory pressure table strategy for increasing the number of ventilator-free days within 28 days in patients with moderate-to-severe acute respiratory distress syndrome. Here, we describe the rationale, design and status of the trial.


Community-Acquired Infections , Positive-Pressure Respiration , Respiratory Distress Syndrome , Humans , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/physiopathology , Community-Acquired Infections/therapy , Prospective Studies , Positive-Pressure Respiration/methods , Pneumonia/therapy , Brazil/epidemiology , Colombia/epidemiology , Intensive Care Units , Tidal Volume
6.
Eur J Med Res ; 29(1): 299, 2024 May 28.
Article En | MEDLINE | ID: mdl-38807163

BACKGROUND: Previously identified phenotypes of acute respiratory distress syndrome (ARDS) could not reveal the dynamic change of phenotypes over time. We aimed to identify novel clinical phenotypes in ARDS using trajectories of fluid balance, to test whether phenotypes respond differently to different treatment, and to develop a simplified model for phenotype identification. METHODS: FACTT (conservative vs liberal fluid management) trial was classified as a development cohort, joint latent class mixed models (JLCMMs) were employed to identify trajectories of fluid balance. Heterogeneity of treatment effect (HTE) for fluid management strategy across phenotypes was investigated. We also constructed a parsimonious probabilistic model using baseline data to predict the fluid trajectories in the development cohort. The trajectory groups and the probabilistic model were externally validated in EDEN (initial trophic vs full enteral feeding) trial. RESULTS: Using JLCMM, we identified two trajectory groups in the development cohort: Class 1 (n = 758, 76.4% of the cohort) had an early positive fluid balance, but achieved negative fluid balance rapidly, and Class 2 (n = 234, 24.6% of the cohort) was characterized by persistent positive fluid balance. Compared to Class 1 patients, patients in Class 2 had significantly higher 60-day mortality (53.5% vs. 17.8%, p < 0.001), and fewer ventilator-free days (0 vs. 20, p < 0.001). A significant HTE between phenotypes and fluid management strategies was observed in the FACTT. An 8-variables model was derived for phenotype assignment. CONCLUSIONS: We identified and validated two novel clinical trajectories for ARDS patients, with both prognostic and predictive enrichment. The trajectories of ARDS can be identified with simple classifier models.


Fluid Therapy , Phenotype , Respiratory Distress Syndrome , Water-Electrolyte Balance , Humans , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/physiopathology , Female , Male , Middle Aged , Fluid Therapy/methods , Water-Electrolyte Balance/physiology , Randomized Controlled Trials as Topic , Aged
7.
Crit Care ; 28(1): 186, 2024 05 29.
Article En | MEDLINE | ID: mdl-38812006

Critical illness syndromes including sepsis, acute respiratory distress syndrome, and acute kidney injury (AKI) are associated with high in-hospital mortality and long-term adverse health outcomes among survivors. Despite advancements in care, clinical and biological heterogeneity among patients continues to hamper identification of efficacious therapies. Precision medicine offers hope by identifying patient subclasses based on clinical, laboratory, biomarker and 'omic' data and potentially facilitating better alignment of interventions. Within the previous two decades, numerous studies have made strides in identifying gene-expression based endotypes and clinico-biomarker based phenotypes among critically ill patients associated with differential outcomes and responses to treatment. In this state-of-the-art review, we summarize the biological similarities and differences across the various subclassification schemes among critically ill patients. In addition, we highlight current translational gaps, the need for advanced scientific tools, human-relevant disease models, to gain a comprehensive understanding of the molecular mechanisms underlying critical illness subclasses.


Critical Illness , Sepsis , Humans , Critical Illness/classification , Critical Illness/therapy , Sepsis/classification , Sepsis/physiopathology , Acute Kidney Injury/classification , Acute Kidney Injury/physiopathology , Acute Kidney Injury/therapy , Respiratory Distress Syndrome/classification , Respiratory Distress Syndrome/physiopathology , Respiratory Distress Syndrome/therapy , Biomarkers/analysis , Precision Medicine/methods
8.
Crit Care ; 28(1): 165, 2024 05 15.
Article En | MEDLINE | ID: mdl-38750543

BACKGROUND: Mechanical ventilation, a lifesaving intervention in critical care, can lead to damage in the extracellular matrix (ECM), triggering inflammation and ventilator-induced lung injury (VILI), particularly in conditions such as acute respiratory distress syndrome (ARDS). This review discusses the detailed structure of the ECM in healthy and ARDS-affected lungs under mechanical ventilation, aiming to bridge the gap between experimental insights and clinical practice by offering a thorough understanding of lung ECM organization and the dynamics of its alteration during mechanical ventilation. MAIN TEXT: Focusing on the clinical implications, we explore the potential of precise interventions targeting the ECM and cellular signaling pathways to mitigate lung damage, reduce inflammation, and ultimately improve outcomes for critically ill patients. By analyzing a range of experimental studies and clinical papers, particular attention is paid to the roles of matrix metalloproteinases (MMPs), integrins, and other molecules in ECM damage and VILI. This synthesis not only sheds light on the structural changes induced by mechanical stress but also underscores the importance of cellular responses such as inflammation, fibrosis, and excessive activation of MMPs. CONCLUSIONS: This review emphasizes the significance of mechanical cues transduced by integrins and their impact on cellular behavior during ventilation, offering insights into the complex interactions between mechanical ventilation, ECM damage, and cellular signaling. By understanding these mechanisms, healthcare professionals in critical care can anticipate the consequences of mechanical ventilation and use targeted strategies to prevent or minimize ECM damage, ultimately leading to better patient management and outcomes in critical care settings.


Extracellular Matrix , Lung , Respiration, Artificial , Respiratory Distress Syndrome , Humans , Extracellular Matrix/metabolism , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/physiopathology , Respiration, Artificial/adverse effects , Respiration, Artificial/methods , Lung/physiopathology , Lung/metabolism , Ventilator-Induced Lung Injury/physiopathology , Ventilator-Induced Lung Injury/prevention & control , Matrix Metalloproteinases/metabolism , Animals
9.
BMC Pulm Med ; 24(1): 252, 2024 May 23.
Article En | MEDLINE | ID: mdl-38783268

BACKGROUND: Conventional Mechanical ventilation modes used for individuals suffering from acute respiratory distress syndrome have the potential to exacerbate lung injury through regional alveolar overinflation and/or repetitive alveolar collapse with shearing, known as atelectrauma. Animal studies have demonstrated that airway pressure release ventilation (APRV) offers distinct advantages over conventional mechanical ventilation modes. However, the methodologies for implementing APRV vary widely, and the findings from clinical studies remain controversial. This study (APRVplus trial), aims to assess the impact of an early pathophysiology-driven APRV ventilation approach compared to a low tidal volume ventilation (LTV) strategy on the prognosis of patients with moderate to severe ARDS. METHODS: The APRVplus trial is a prospective, multicenter, randomized clinical trial, building upon our prior single-center study, to enroll 840 patients from at least 35 hospitals in China. This investigation plans to compare the early pathophysiology-driven APRV ventilation approach with the control intervention of LTV lung-protective ventilation. The primary outcome measure will be all-cause mortality at 28 days after randomization in the intensive care units (ICU). Secondary outcome measures will include assessments of oxygenation, and physiology parameters at baseline, as well as on days 1, 2, and 3. Additionally, clinical outcomes such as ventilator-free days at 28 days, duration of ICU and hospital stay, ICU and hospital mortality, and the occurrence of adverse events will be evaluated. TRIAL ETHICS AND DISSEMINATION: The research project has obtained approval from the Ethics Committee of West China Hospital of Sichuan University (2019-337). Informed consent is required. The results will be submitted for publication in a peer-reviewed journal and presented at one or more scientific conferences. TRIAL REGISTRATION: The study was registered at Clinical Trials.gov (NCT03549910) on June 8, 2018.


Continuous Positive Airway Pressure , Respiration, Artificial , Respiratory Distress Syndrome , Tidal Volume , Humans , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/physiopathology , Prospective Studies , Continuous Positive Airway Pressure/methods , Respiration, Artificial/methods , Randomized Controlled Trials as Topic , Intensive Care Units , China , Multicenter Studies as Topic
10.
Crit Care Sci ; 36: e20240208en, 2024.
Article En, Pt | MEDLINE | ID: mdl-38747818

OBJECTIVE: To evaluate the association between driving pressure and tidal volume based on predicted body weight and mortality in a cohort of patients with acute respiratory distress syndrome caused by COVID-19. METHODS: This was a prospective, observational study that included patients with acute respiratory distress syndrome due to COVID-19 admitted to two intensive care units. We performed multivariable analyses to determine whether driving pressure and tidal volume/kg predicted body weight on the first day of mechanical ventilation, as independent variables, are associated with hospital mortality. RESULTS: We included 231 patients. The mean age was 64 (53 - 74) years, and the mean Simplified Acute and Physiology Score 3 score was 45 (39 - 54). The hospital mortality rate was 51.9%. Driving pressure was independently associated with hospital mortality (odds ratio 1.21, 95%CI 1.04 - 1.41 for each cm H2O increase in driving pressure, p = 0.01). Based on a double stratification analysis, we found that for the same level of tidal volume/kg predicted body weight, the risk of hospital death increased with increasing driving pressure. However, changes in tidal volume/kg predicted body weight were not associated with mortality when they did not lead to an increase in driving pressure. CONCLUSION: In patients with acute respiratory distress syndrome caused by COVID-19, exposure to higher driving pressure, as opposed to higher tidal volume/kg predicted body weight, is associated with greater mortality. These results suggest that driving pressure might be a primary target for lung-protective mechanical ventilation in these patients.


Body Weight , COVID-19 , Hospital Mortality , Respiration, Artificial , Respiratory Distress Syndrome , Tidal Volume , Humans , COVID-19/mortality , COVID-19/complications , COVID-19/physiopathology , Tidal Volume/physiology , Prospective Studies , Middle Aged , Male , Female , Aged , Respiratory Distress Syndrome/mortality , Respiratory Distress Syndrome/physiopathology , Intensive Care Units , SARS-CoV-2
16.
Crit Care ; 28(1): 179, 2024 05 27.
Article En | MEDLINE | ID: mdl-38802959

Acute respiratory distress syndrome (ARDS) represents a life-threatening inflammatory reaction marked by refractory hypoxaemia and pulmonary oedema. Despite advancements in treatment perspectives, ARDS still carries a high mortality rate, often due to systemic inflammatory responses leading to multiple organ dysfunction syndrome (MODS). Indeed, the deterioration and associated mortality in patients with acute lung injury (LI)/ARDS is believed to originate alongside respiratory failure mainly from the involvement of extrapulmonary organs, a consequence of the complex interaction between initial inflammatory cascades related to the primary event and ongoing mechanical ventilation-induced injury resulting in multiple organ failure (MOF) and potentially death. Even though recent research has increasingly highlighted the role of the gastrointestinal tract in this process, the pathophysiology of gut dysfunction in patients with ARDS remains mainly underexplored. This review aims to elucidate the complex interplay between lung and gut in patients with LI/ARDS. We will examine various factors, including systemic inflammation, epithelial barrier dysfunction, the effects of mechanical ventilation (MV), hypercapnia, and gut dysbiosis. Understanding these factors and their interaction may provide valuable insights into the pathophysiology of ARDS and potential therapeutic strategies to improve patient outcomes.


Respiratory Distress Syndrome , Humans , Respiratory Distress Syndrome/physiopathology , Respiratory Distress Syndrome/therapy , Lung/physiopathology , Respiration, Artificial/methods , Respiration, Artificial/adverse effects , Gastrointestinal Tract/physiopathology
18.
Crit Care ; 28(1): 132, 2024 04 22.
Article En | MEDLINE | ID: mdl-38649920

BACKGROUND: Rapidly improving acute respiratory distress syndrome (RIARDS) is an increasingly appreciated subgroup of ARDS in which hypoxemia improves within 24 h after initiation of mechanical ventilation. Detailed clinical and biological features of RIARDS have not been clearly defined, and it is unknown whether RIARDS is associated with the hypoinflammatory or hyperinflammatory phenotype of ARDS. The purpose of this study was to define the clinical and biological features of RIARDS and its association with inflammatory subphenotypes. METHODS: We analyzed data from 215 patients who met Berlin criteria for ARDS (endotracheally intubated) and were enrolled in a prospective observational cohort conducted at two sites, one tertiary care center and one urban safety net hospital. RIARDS was defined according to previous studies as improvement of hypoxemia defined as (i) PaO2:FiO2 > 300 or (ii) SpO2: FiO2 > 315 on the day following diagnosis of ARDS (day 2) or (iii) unassisted breathing by day 2 and for the next 48 h (defined as absence of endotracheal intubation on day 2 through day 4). Plasma biomarkers were measured on samples collected on the day of study enrollment, and ARDS phenotypes were allocated as previously described. RESULTS: RIARDS accounted for 21% of all ARDS participants. Patients with RIARDS had better clinical outcomes compared to those with persistent ARDS, with lower hospital mortality (13% vs. 57%; p value < 0.001) and more ICU-free days (median 24 vs. 0; p value < 0.001). Plasma levels of interleukin-6, interleukin-8, and plasminogen activator inhibitor-1 were significantly lower among patients with RIARDS. The hypoinflammatory phenotype of ARDS was more common among patients with RIARDS (78% vs. 51% in persistent ARDS; p value = 0.001). CONCLUSIONS: This study identifies a high prevalence of RIARDS in a multicenter observational cohort and confirms the more benign clinical course of these patients. We report the novel finding that RIARDS is characterized by lower concentrations of plasma biomarkers of inflammation compared to persistent ARDS, and that hypoinflammatory ARDS is more prevalent among patients with RIARDS. Identification and exclusion of RIARDS could potentially improve prognostic and predictive enrichment in clinical trials.


Biomarkers , Respiration, Artificial , Respiratory Distress Syndrome , Humans , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/blood , Respiratory Distress Syndrome/physiopathology , Male , Female , Middle Aged , Prospective Studies , Aged , Biomarkers/blood , Biomarkers/analysis , Respiration, Artificial/methods , Respiration, Artificial/statistics & numerical data , Adult , Cohort Studies , Hypoxia/blood
19.
Crit Care ; 28(1): 136, 2024 04 23.
Article En | MEDLINE | ID: mdl-38654391

BACKGROUND: In acute respiratory distress syndrome (ARDS), respiratory drive often differs among patients with similar clinical characteristics. Readily observable factors like acid-base state, oxygenation, mechanics, and sedation depth do not fully explain drive heterogeneity. This study evaluated the relationship of systemic inflammation and vascular permeability markers with respiratory drive and clinical outcomes in ARDS. METHODS: ARDS patients enrolled in the multicenter EPVent-2 trial with requisite data and plasma biomarkers were included. Neuromuscular blockade recipients were excluded. Respiratory drive was measured as PES0.1, the change in esophageal pressure during the first 0.1 s of inspiratory effort. Plasma angiopoietin-2, interleukin-6, and interleukin-8 were measured concomitantly, and 60-day clinical outcomes evaluated. RESULTS: 54.8% of 124 included patients had detectable respiratory drive (PES0.1 range of 0-5.1 cm H2O). Angiopoietin-2 and interleukin-8, but not interleukin-6, were associated with respiratory drive independently of acid-base, oxygenation, respiratory mechanics, and sedation depth. Sedation depth was not significantly associated with PES0.1 in an unadjusted model, or after adjusting for mechanics and chemoreceptor input. However, upon adding angiopoietin-2, interleukin-6, or interleukin-8 to models, lighter sedation was significantly associated with higher PES0.1. Risk of death was less with moderate drive (PES0.1 of 0.5-2.9 cm H2O) compared to either lower drive (hazard ratio 1.58, 95% CI 0.82-3.05) or higher drive (2.63, 95% CI 1.21-5.70) (p = 0.049). CONCLUSIONS: Among patients with ARDS, systemic inflammatory and vascular permeability markers were independently associated with higher respiratory drive. The heterogeneous response of respiratory drive to varying sedation depth may be explained in part by differences in inflammation and vascular permeability.


Biomarkers , Capillary Permeability , Inflammation , Respiratory Distress Syndrome , Humans , Respiratory Distress Syndrome/physiopathology , Respiratory Distress Syndrome/blood , Male , Female , Middle Aged , Capillary Permeability/physiology , Capillary Permeability/drug effects , Inflammation/physiopathology , Inflammation/blood , Aged , Biomarkers/blood , Biomarkers/analysis , Angiopoietin-2/blood , Angiopoietin-2/analysis , Interleukin-8/blood , Interleukin-8/analysis , Interleukin-6/blood , Interleukin-6/analysis , Respiratory Mechanics/physiology
20.
Crit Care ; 28(1): 141, 2024 04 29.
Article En | MEDLINE | ID: mdl-38679712

Clinicians currently monitor pressure and volume at the airway opening, assuming that these observations relate closely to stresses and strains at the micro level. Indeed, this assumption forms the basis of current approaches to lung protective ventilation. Nonetheless, although the airway pressure applied under static conditions may be the same everywhere in healthy lungs, the stresses within a mechanically non-uniform ARDS lung are not. Estimating actual tissue stresses and strains that occur in a mechanically non-uniform environment must account for factors beyond the measurements from the ventilator circuit of airway pressures, tidal volume, and total mechanical power. A first conceptual step for the clinician to better define the VILI hazard requires consideration of lung unit tension, stress focusing, and intracycle power concentration. With reasonable approximations, better understanding of the value and limitations of presently used general guidelines for lung protection may eventually be developed from clinical inputs measured by the caregiver. The primary purpose of the present thought exercise is to extend our published model of a uniform, spherical lung unit to characterize the amplifications of stress (tension) and strain (area change) that occur under static conditions at interface boundaries between a sphere's surface segments having differing compliances. Together with measurable ventilating power, these are incorporated into our perspective of VILI risk. This conceptual exercise brings to light how variables that are seldom considered by the clinician but are both recognizable and measurable might help gauge the hazard for VILI of applied pressure and power.


Pulmonary Alveoli , Humans , Pulmonary Alveoli/physiology , Pulmonary Alveoli/physiopathology , Respiratory Distress Syndrome/physiopathology , Respiratory Distress Syndrome/therapy , Stress, Mechanical , Respiration, Artificial/methods , Respiration, Artificial/adverse effects , Models, Biological
...