Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.354
1.
Sci Rep ; 14(1): 10096, 2024 05 02.
Article En | MEDLINE | ID: mdl-38698014

Pou6f2 is a genetic connection between central corneal thickness (CCT) in the mouse and a risk factor for developing primary open-angle glaucoma. POU6F2 is also a risk factor for several conditions in humans, including glaucoma, myopia, and dyslexia. Recent findings demonstrate that POU6F2-positive retinal ganglion cells (RGCs) comprise a number of RGC subtypes in the mouse, some of which also co-stain for Cdh6 and Hoxd10. These POU6F2-positive RGCs appear to be novel of ON-OFF directionally selective ganglion cells (ooDSGCs) that do not co-stain with CART or SATB2 (typical ooDSGCs markers). These POU6F2-positive cells are sensitive to damage caused by elevated intraocular pressure. In the DBA/2J mouse glaucoma model, heavily-labeled POU6F2 RGCs decrease by 73% at 8 months of age compared to only 22% loss of total RGCs (labeled with RBPMS). Additionally, Pou6f2-/- mice suffer a significant loss of acuity and spatial contrast sensitivity along with an 11.4% loss of total RGCs. In the rhesus macaque retina, POU6F2 labels the large parasol ganglion cells that form the magnocellular (M) pathway. The association of POU6F2 with the M-pathway may reveal in part its role in human glaucoma, myopia, and dyslexia.


Dyslexia , Glaucoma , Myopia , Retinal Ganglion Cells , Animals , Humans , Mice , Disease Models, Animal , Dyslexia/genetics , Dyslexia/metabolism , Dyslexia/pathology , Glaucoma/pathology , Glaucoma/metabolism , Glaucoma/genetics , Intraocular Pressure , Mice, Inbred DBA , Mice, Knockout , Myopia/pathology , Myopia/metabolism , Myopia/genetics , Retinal Ganglion Cells/pathology , Retinal Ganglion Cells/metabolism , Risk Factors
2.
Am J Ophthalmol ; 259: 7-14, 2024 Mar.
Article En | MEDLINE | ID: mdl-38708401

Purpose: To evaluate the diagnostic accuracy of retinal nerve fiber layer thickness (RNFLT) by spectral-domain optical coherence tomography (OCT) in primary open-angle glaucoma (POAG) in eyes of African (AD) and European descent (ED). Design: Comparative diagnostic accuracy analysis by race. Participants: 379 healthy eyes (125 AD and 254 ED) and 442 glaucomatous eyes (226 AD and 216 ED) from the Diagnostic Innovations in Glaucoma Study and the African Descent and Glaucoma Evaluation Study. Methods: Spectralis (Heidelberg Engineering GmbH) and Cirrus (Carl Zeiss Meditec) OCT scans were taken within one year from each other. Main Outcome Measures: Diagnostic accuracy of RNFLT measurements. Results: Diagnostic accuracy for Spectralis-RNFLT was significantly lower in eyes of AD compared to those of ED (area under the receiver operating curve [AUROC]: 0.85 and 0.91, respectively, P=0.04). Results for Cirrus-RNFLT were similar but did not reach statistical significance (AUROC: 0.86 and 0.90 in AD and ED, respectively, P =0.33). Adjustments for age, central corneal thickness, axial length, disc area, visual field mean deviation, and intraocular pressure yielded similar results. Conclusions: OCT-RNFLT has lower diagnostic accuracy in eyes of AD compared to those of ED. This finding was generally robust across two OCT instruments and remained after adjustment for many potential confounders. Further studies are needed to explore the potential sources of this difference.


Glaucoma, Open-Angle , Intraocular Pressure , Nerve Fibers , Optic Disk , ROC Curve , Retinal Ganglion Cells , Tomography, Optical Coherence , Visual Fields , White People , Humans , Glaucoma, Open-Angle/ethnology , Glaucoma, Open-Angle/diagnosis , Tomography, Optical Coherence/methods , Nerve Fibers/pathology , Retinal Ganglion Cells/pathology , Female , Male , Middle Aged , Intraocular Pressure/physiology , Visual Fields/physiology , White People/ethnology , Reproducibility of Results , Aged , Optic Disk/pathology , Optic Disk/diagnostic imaging , Optic Nerve Diseases/diagnosis , Optic Nerve Diseases/ethnology , Black or African American/ethnology , Area Under Curve , Sensitivity and Specificity
3.
Invest Ophthalmol Vis Sci ; 65(5): 5, 2024 May 01.
Article En | MEDLINE | ID: mdl-38696189

Purpose: Neuroinflammation plays a significant role in the pathology of Alzheimer's disease (AD). Mouse models of AD and postmortem biopsy of patients with AD reveal retinal glial activation comparable to central nervous system immunoreactivity. We hypothesized that the surface area of putative retinal gliosis observed in vivo using en face optical coherence tomography (OCT) imaging will be larger in patients with preclinical AD versus controls. Methods: The Spectralis II instrument was used to acquire macular centered 20 × 20 and 30 × 25-degrees spectral domain OCT images of 76 participants (132 eyes). A cohort of 22 patients with preclinical AD (40 eyes, mean age = 69 years, range = 60-80 years) and 20 control participants (32 eyes, mean age = 66 years, range = 58-82 years, P = 0.11) were included for the assessment of difference in surface area of putative retinal gliosis and retinal nerve fiber layer (RNFL) thickness. The surface area of putative retinal gliosis and RNFL thickness for the nine sectors of the Early Treatment Diabetic Retinopathy Study (ETDRS) map were compared between groups using generalized linear mixed models. Results: The surface area of putative retinal gliosis was significantly greater in the preclinical AD group (0.97 ± 0.55 mm2) compared to controls (0.68 ± 0.40 mm2); F(1,70) = 4.41, P = 0.039; Cohen's d = 0.61. There was no significant difference between groups for RNFL thickness in the 9 ETDRS sectors, P > 0.05. Conclusions: Our analysis shows greater putative retinal gliosis in preclinical AD compared to controls. This demonstrates putative retinal gliosis as a potential biomarker for AD-related neuroinflammation.


Alzheimer Disease , Gliosis , Retinal Ganglion Cells , Tomography, Optical Coherence , Humans , Gliosis/pathology , Gliosis/diagnosis , Alzheimer Disease/diagnosis , Alzheimer Disease/pathology , Tomography, Optical Coherence/methods , Aged , Female , Male , Aged, 80 and over , Middle Aged , Retinal Ganglion Cells/pathology , Nerve Fibers/pathology , Retinal Diseases/diagnosis , Retinal Diseases/etiology , Retina/pathology , Retina/diagnostic imaging
4.
PLoS One ; 19(5): e0300621, 2024.
Article En | MEDLINE | ID: mdl-38696393

The prone position reduces mortality in severe cases of COVID-19 with acute respiratory distress syndrome. However, visual loss and changes to the peripapillary retinal nerve fiber layer (p-RNFL) and the macular ganglion cell layer and inner plexiform layer (m-GCIPL) have occurred in patients undergoing surgery in the prone position. Moreover, COVID-19-related eye problems have been reported. This study compared the p-RNFL and m-GCIPL thicknesses of COVID-19 patients who were placed in the prone position with patients who were not. This prospective longitudinal and case-control study investigated 15 COVID-19 patients placed in the prone position (the "Prone Group"), 23 COVID-19 patients not in the prone position (the "Non-Prone Group"), and 23 healthy, non-COVID individuals without ocular disease or systemic conditions (the "Control Group"). The p-RNFL and m-GCIPL thicknesses of the COVID-19 patients were measured at 1, 3, and 6 months and compared within and between groups. The result showed that the Prone and Non-Prone Groups had no significant differences in their p-RNFL thicknesses at the 3 follow-ups. However, the m-GCIPL analysis revealed significant differences in the inferior sector of the Non-Prone Group between months 1 and 3 (mean difference, 0.74 µm; P = 0.009). The p-RNFL analysis showed a significantly greater thickness at 6 months for the superior sector of the Non-Prone Group (131.61 ± 12.08 µm) than for the Prone Group (118.87 ± 18.21 µm; P = 0.039). The m-GCIPL analysis revealed that the inferior sector was significantly thinner in the Non-Prone Group than in the Control Group (at 1 month 80.57 ± 4.60 versus 83.87 ± 5.43 µm; P = 0.031 and at 6 months 80.48 ± 3.96 versus 83.87 ± 5.43 µm; P = 0.044). In conclusion, the prone position in COVID-19 patients can lead to early loss of p-RNFL thickness due to rising intraocular pressure, which is independent of the timing of prone positioning. Consequently, there is no increase in COVID-19 patients' morbidity burden.


COVID-19 , Nerve Fibers , Retinal Ganglion Cells , Humans , COVID-19/pathology , COVID-19/complications , Male , Prone Position , Female , Middle Aged , Retinal Ganglion Cells/pathology , Case-Control Studies , Nerve Fibers/pathology , Prospective Studies , SARS-CoV-2 , Adult , Aged , Tomography, Optical Coherence , Retina/pathology , Longitudinal Studies
5.
Pol J Pathol ; 75(1): 40-53, 2024.
Article En | MEDLINE | ID: mdl-38741428

C1q/TNF-related protein-9 (CTRP9) has been reported to play roles in several types of retinal diseases. However, the role and the potential mechanism of CTRP9 in glaucoma are still incompletely understood. The expression of CTRP9 in OGD/R-induced retinal ganglion cells (RGCs) was detected by quantitative real-time polymerase chain reaction and western blot assay. Cell proliferation was identified by cell counting Kit-8 assay. Flow cytometry, enzyme-linked immunosorbent assay and western blot assay were performed to assess cell apoptosis. Unfolded protein response (UPR), endoplasmic reticulum (ER) stress and the AMPK pathway were evaluated by western blot assay. The data showed that the expression of CTRP9 was significantly downregulated in OGD/R-induced 661W cells. OGD/R treatment reduced cell viability, promoted cell apoptosis and activated the UPR and ER stress. The overexpression of CTRP9 reversed the effects of OGD/R on 661W cell viability, apoptosis, the UPR and ER stress, as well as the AMPK pathway. However, Compound C, an inhibitor of AMPK signaling, reversed the protection of CTRP9 overexpression against injury from OGD/R in 661W cells. In summary, the results revealed that CTRP9 abated the apoptosis and UPR of OGD/R-induced RGCs by regulating the AMPK pathway, which may provide a promising target for the treatment of glaucoma.


AMP-Activated Protein Kinases , Apoptosis , Endoplasmic Reticulum Stress , Retinal Ganglion Cells , Signal Transduction , Unfolded Protein Response , Retinal Ganglion Cells/pathology , Retinal Ganglion Cells/metabolism , Animals , AMP-Activated Protein Kinases/metabolism , Mice , Cell Line , Adiponectin/metabolism , Cell Survival , Glucose/metabolism , Glaucoma/metabolism , Glaucoma/pathology , Glycoproteins
6.
Transl Vis Sci Technol ; 13(5): 20, 2024 May 01.
Article En | MEDLINE | ID: mdl-38780955

Purpose: We sough to develop an automatic method of quantifying optic disc pallor in fundus photographs and determine associations with peripapillary retinal nerve fiber layer (pRNFL) thickness. Methods: We used deep learning to segment the optic disc, fovea, and vessels in fundus photographs, and measured pallor. We assessed the relationship between pallor and pRNFL thickness derived from optical coherence tomography scans in 118 participants. Separately, we used images diagnosed by clinical inspection as pale (n = 45) and assessed how measurements compared with healthy controls (n = 46). We also developed automatic rejection thresholds and tested the software for robustness to camera type, image format, and resolution. Results: We developed software that automatically quantified disc pallor across several zones in fundus photographs. Pallor was associated with pRNFL thickness globally (ß = -9.81; standard error [SE] = 3.16; P < 0.05), in the temporal inferior zone (ß = -29.78; SE = 8.32; P < 0.01), with the nasal/temporal ratio (ß = 0.88; SE = 0.34; P < 0.05), and in the whole disc (ß = -8.22; SE = 2.92; P < 0.05). Furthermore, pallor was significantly higher in the patient group. Last, we demonstrate the analysis to be robust to camera type, image format, and resolution. Conclusions: We developed software that automatically locates and quantifies disc pallor in fundus photographs and found associations between pallor measurements and pRNFL thickness. Translational Relevance: We think our method will be useful for the identification, monitoring, and progression of diseases characterized by disc pallor and optic atrophy, including glaucoma, compression, and potentially in neurodegenerative disorders.


Deep Learning , Nerve Fibers , Optic Disk , Photography , Software , Tomography, Optical Coherence , Humans , Optic Disk/diagnostic imaging , Optic Disk/pathology , Tomography, Optical Coherence/methods , Male , Female , Middle Aged , Nerve Fibers/pathology , Photography/methods , Adult , Retinal Ganglion Cells/pathology , Retinal Ganglion Cells/cytology , Aged , Optic Nerve Diseases/diagnostic imaging , Optic Nerve Diseases/diagnosis , Optic Nerve Diseases/pathology , Fundus Oculi
7.
Transl Vis Sci Technol ; 13(5): 8, 2024 May 01.
Article En | MEDLINE | ID: mdl-38739084

Purpose: This study aimed to evaluate the ocular characteristics associated with spontaneously high myopia in adult nonhuman primates (NHPs). Methods: A total of 537 eyes of 277 macaques with an average age of 18.53 ± 3.01 years (range = 5-26 years), raised in a controlled environment, were included. We measured ocular parameters, including spherical equivalent (SE), axial length (AXL), and intraocular pressure. The 45-degree fundus images centered on the macula and the disc assessed the fundus tessellation and parapapillary atrophy (PPA). Additionally, optical coherence tomography (OCT) was used to measure the thickness of the retinal nerve fiber layer (RNFL). Results: The mean SE was -1.58 ± 3.71 diopters (D). The mean AXL was 18.76 ± 0.86 mm. The prevalence rate of high myopia was 17.7%. As myopia aggravated, the AXL increased (r = -0.498, P < 0.001). Compared with non-high myopia, highly myopic eyes had a greater AXL (P < 0.001), less RNFL thickness (P = 0.004), a higher incidence of PPA (P < 0.001), and elevated grades of fundus tessellation (P < 0.001). The binary logistic regression was performed, which showed PPA (odds ratio [OR] = 4.924, 95% confidence interval [CI] = 2.375-10.207, P < 0.001) and higher grades of fundus tessellation (OR = 1.865, 95% CI = 1.474-2.361, P < 0.001) were independent risk characteristics for high myopia. Conclusions: In NHPs, a higher grade of fundus tessellation and PPA were significant biomarkers of high myopia. Translational Relevance: The study demonstrates adult NHPs raised in conditioned rooms have a similar prevalence and highly consistent fundus changes with human beings, which strengthens the foundation for utilizing macaques as an animal model in high myopic studies.


Fundus Oculi , Tomography, Optical Coherence , Animals , Male , Female , Disease Models, Animal , Optic Disk/pathology , Optic Disk/diagnostic imaging , Optic Atrophy/pathology , Optic Atrophy/epidemiology , Intraocular Pressure/physiology , Myopia, Degenerative/pathology , Myopia, Degenerative/epidemiology , Nerve Fibers/pathology , Axial Length, Eye/pathology , Retinal Ganglion Cells/pathology , Myopia/pathology , Myopia/epidemiology , Myopia/veterinary
8.
Transl Vis Sci Technol ; 13(5): 9, 2024 May 01.
Article En | MEDLINE | ID: mdl-38743409

Purpose: To assess the diagnostic performance and structure-function association of retinal retardance (RR), a customized metric measured by a prototype polarization-sensitive optical coherence tomography (PS-OCT), across various stages of glaucoma. Methods: This cross-sectional pilot study analyzed 170 eyes from 49 healthy individuals and 68 patients with glaucoma. The patients underwent PS-OCT imaging and conventional spectral-domain optical coherence tomography (SD-OCT), as well as visual field (VF) tests. Parameters including RR and retinal nerve fiber layer thickness (RNFLT) were extracted from identical circumpapillary regions of the fundus. Glaucomatous eyes were categorized into early, moderate, or severe stages based on VF mean deviation (MD). The diagnostic performance of RR and RNFLT in discriminating glaucoma from controls was assessed using receiver operating characteristic (ROC) curves. Correlations among VF-MD, RR, and RNFLT were evaluated and compared within different groups of disease severity. Results: The diagnostic performance of both RR and RNFLT was comparable for glaucoma detection (RR AUC = 0.98, RNFLT AUC = 0.97; P = 0.553). RR showed better structure-function association with VF-MD than RNFLT (RR VF-MD = 0.68, RNFLT VF-MD = 0.58; z = 1.99; P = 0.047) in glaucoma cases, especially in severe glaucoma, where the correlation between VF-MD and RR (r = 0.73) was significantly stronger than with RNFLT (r = 0.43, z = 1.96, P = 0.050). In eyes with early and moderate glaucoma, the structure-function association was similar when using RNFLT and RR. Conclusions: RR and RNFLT have similar performance in glaucoma diagnosis. However, in patients with glaucoma especially severe glaucoma, RR showed a stronger correlation with VF test results. Further research is needed to validate RR as an indicator for severe glaucoma evaluation and to explore the benefits of using PS-OCT in clinical practice. Translational Relevance: We demonstrated that PS-OCT has the potential to evaluate the status of RNFL structural damage in eyes with severe glaucoma, which is currently challenging in clinics.


Glaucoma , Nerve Fibers , Retinal Ganglion Cells , Tomography, Optical Coherence , Visual Fields , Humans , Tomography, Optical Coherence/methods , Cross-Sectional Studies , Male , Female , Middle Aged , Nerve Fibers/pathology , Pilot Projects , Visual Fields/physiology , Glaucoma/physiopathology , Glaucoma/diagnostic imaging , Aged , Retinal Ganglion Cells/pathology , ROC Curve , Visual Field Tests/methods , Adult , Intraocular Pressure/physiology
9.
Invest Ophthalmol Vis Sci ; 65(5): 36, 2024 May 01.
Article En | MEDLINE | ID: mdl-38776115

Purpose: The purpose of this study was to investigate the protective effect of CD38 deletion on retinal ganglion cells (RGCs) in a mouse retinal ischemia/reperfusion (I/R) model and an optic nerve crush (ONC) model, and to elucidate the underlying molecular mechanisms. Methods: Retinal I/R and ONC models were constructed in mice. PCR was used to identify the deletion of CD38 gene in mice, hematoxylin and eosin (H&E) staining was used to evaluate the changes in retinal morphology, and electroretinogram (ERG) was used to evaluate the changes in retinal function. The survival of RGCs and activation of retinal macroglia were evaluated by immunofluorescence staining. The expression of Sirt1, CD38, Ac-p65, Ac-p53, TNF-α, IL-1ß, and Caspase3 proteins in the retina was further evaluated by protein imprinting. Results: In retinal I/R and ONC models, CD38 deficiency reduced the loss of RGCs and activation of macroglia and protected the retinal function. CD38 deficiency increased the concentration of NAD+, reduced the degree of acetylation of NF-κB p65 and p53, and reduced expression of the downstream inflammatory cytokines TNFα, IL-1ß, and apoptotic protein Caspase3 in the retina in the ONC model. Intraperitoneal injection of the Sirt1 inhibitor EX-527 partially counteracted the effects of CD38 deficiency, suggesting that CD38 deficiency acts at least in part through the NAD+/Sirt1 pathway. Conclusions: CD38 plays an important role in the pathogenesis of retinal I/R and ONC injury. CD38 deletion protects RGCs by attenuating inflammatory responses and apoptosis through the NAD+/Sirt1 pathway.


ADP-ribosyl Cyclase 1 , Disease Models, Animal , Mice, Inbred C57BL , NAD , Optic Nerve Injuries , Reperfusion Injury , Retinal Ganglion Cells , Sirtuin 1 , Animals , Sirtuin 1/metabolism , Sirtuin 1/genetics , Retinal Ganglion Cells/pathology , Retinal Ganglion Cells/metabolism , ADP-ribosyl Cyclase 1/metabolism , ADP-ribosyl Cyclase 1/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/prevention & control , Mice , NAD/metabolism , Optic Nerve Injuries/metabolism , Electroretinography , Nerve Crush , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Male , Signal Transduction/physiology
10.
Cell Rep Med ; 5(5): 101554, 2024 May 21.
Article En | MEDLINE | ID: mdl-38729157

The axons of retinal ganglion cells (RGCs) form the optic nerve, transmitting visual information from the eye to the brain. Damage or loss of RGCs and their axons is the leading cause of visual functional defects in traumatic injury and degenerative diseases such as glaucoma. However, there are no effective clinical treatments for nerve damage in these neurodegenerative diseases. Here, we report that LIM homeodomain transcription factor Lhx2 promotes RGC survival and axon regeneration in multiple animal models mimicking glaucoma disease. Furthermore, following N-methyl-D-aspartate (NMDA)-induced excitotoxicity damage of RGCs, Lhx2 mitigates the loss of visual signal transduction. Mechanistic analysis revealed that overexpression of Lhx2 supports axon regeneration by systematically regulating the transcription of regeneration-related genes and inhibiting transcription of Semaphorin 3C (Sema3C). Collectively, our studies identify a critical role of Lhx2 in promoting RGC survival and axon regeneration, providing a promising neural repair strategy for glaucomatous neurodegeneration.


Axons , Disease Models, Animal , Glaucoma , LIM-Homeodomain Proteins , Nerve Regeneration , Retinal Ganglion Cells , Transcription Factors , Animals , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/pathology , LIM-Homeodomain Proteins/metabolism , LIM-Homeodomain Proteins/genetics , Glaucoma/genetics , Glaucoma/pathology , Glaucoma/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Axons/metabolism , Axons/pathology , Mice , Nerve Regeneration/genetics , Nerve Regeneration/physiology , Mice, Inbred C57BL , Cell Survival/genetics , Semaphorins/metabolism , Semaphorins/genetics , N-Methylaspartate/metabolism
11.
Invest Ophthalmol Vis Sci ; 65(5): 16, 2024 May 01.
Article En | MEDLINE | ID: mdl-38717425

Purpose: Research on Alzheimer's disease (AD) and precursor states demonstrates a thinner retinal nerve fiber layer (NFL) compared to age-similar controls. Because AD and age-related macular degeneration (AMD) both impact older adults and share risk factors, we asked if retinal layer thicknesses, including NFL, are associated with cognition in AMD. Methods: Adults ≥ 70 years with normal retinal aging, early AMD, or intermediate AMD per Age-Related Eye Disease Study (AREDS) nine-step grading of color fundus photography were enrolled in a cross-sectional study. Optical coherence tomography (OCT) volumes underwent 11-line segmentation and adjustments by a trained operator. Evaluated thicknesses reflect the vertical organization of retinal neurons and two vascular watersheds: NFL, ganglion cell layer-inner plexiform layer complex (GCL-IPL), inner retina, outer retina (including retinal pigment epithelium-Bruch's membrane), and total retina. Thicknesses were area weighted to achieve mean thickness across the 6-mm-diameter Early Treatment of Diabetic Retinopathy Study (ETDRS) grid. Cognitive status was assessed by the National Institutes of Health Toolbox cognitive battery for fluid and crystallized cognition. Correlations estimated associations between cognition and thicknesses, adjusting for age. Results: Based on 63 subjects (21 per group), thinning of the outer retina was significantly correlated with lower cognition scores (P < 0.05). No other retinal thickness variables were associated with cognition. Conclusions: Only the outer retina (photoreceptors, supporting glia, retinal pigment epithelium, Bruch's membrane) is associated with cognition in aging to intermediate AMD; NFL was not associated with cognition, contrary to AD-associated condition reports. Early and intermediate AMD constitute a retinal disease whose earliest, primary impact is in the outer retina. Our findings hint at a unique impact on the brain from the outer retina in persons with AMD.


Aging , Cognition , Macular Degeneration , Retina , Tomography, Optical Coherence , Humans , Tomography, Optical Coherence/methods , Male , Aged , Female , Cross-Sectional Studies , Aging/physiology , Aged, 80 and over , Macular Degeneration/physiopathology , Cognition/physiology , Retina/diagnostic imaging , Retina/pathology , Retina/physiopathology , Nerve Fibers/pathology , Retinal Ganglion Cells/pathology
12.
Invest Ophthalmol Vis Sci ; 65(5): 15, 2024 May 01.
Article En | MEDLINE | ID: mdl-38717426

Purpose: Mutations in the genes encoding type IV collagen alpha 1 (COL4A1) and alpha 2 (COL4A2) cause a multisystem disorder that includes ocular anterior segment dysgenesis (ASD) and glaucoma. We previously showed that transforming growth factor beta (TGFß) signaling was elevated in developing anterior segments from Col4a1 mutant mice and that reducing TGFß signaling ameliorated ASD, supporting a role for the TGFß pathway in disease pathogenesis. Here, we tested whether altered TGFß signaling also contributes to glaucoma-related phenotypes in Col4a1 mutant mice. Methods: To test the role of TGFß signaling in glaucoma-relevant phenotypes, we genetically reduced TGFß signaling using mice with mutated Tgfbr2, which encodes the common receptor for all TGFß ligands in Col4a1+/G1344D mice. We performed slit-lamp biomicroscopy and optical coherence tomography for qualitative and quantitative analyses of anterior and posterior ocular segments, histological analyses of ocular tissues and optic nerves, and intraocular pressure assessments using rebound tonometry. Results: Col4a1+/G1344D mice showed defects of the ocular drainage structures, including iridocorneal adhesions, and phenotypes consistent with glaucomatous neurodegeneration, including thinning of the nerve fiber layer, retinal ganglion cell loss, optic nerve head excavation, and optic nerve degeneration. We found that reducing TGFß receptor 2 (TGFBR2) was protective for ASD, ameliorated ocular drainage structure defects, and protected against glaucomatous neurodegeneration in Col4a1+/G1344D mice. Conclusions: Our results suggest that elevated TGFß signaling contributes to glaucomatous neurodegeneration in Col4a1 mutant mice.


Collagen Type IV , Glaucoma , Intraocular Pressure , Receptor, Transforming Growth Factor-beta Type II , Signal Transduction , Tomography, Optical Coherence , Transforming Growth Factor beta , Animals , Mice , Collagen Type IV/metabolism , Collagen Type IV/genetics , Signal Transduction/physiology , Intraocular Pressure/physiology , Glaucoma/metabolism , Glaucoma/genetics , Glaucoma/pathology , Transforming Growth Factor beta/metabolism , Receptor, Transforming Growth Factor-beta Type II/genetics , Receptor, Transforming Growth Factor-beta Type II/metabolism , Disease Models, Animal , Optic Nerve Diseases/metabolism , Optic Nerve Diseases/genetics , Mice, Inbred C57BL , Retinal Ganglion Cells/pathology , Retinal Ganglion Cells/metabolism , Anterior Eye Segment/metabolism , Anterior Eye Segment/pathology , Optic Nerve/pathology , Optic Nerve/metabolism , Slit Lamp Microscopy , Phenotype , Tonometry, Ocular , Mutation
13.
J Transl Med ; 22(1): 447, 2024 May 13.
Article En | MEDLINE | ID: mdl-38741132

BACKGROUND: Retinal ischemia/reperfusion (RIR) is implicated in various forms of optic neuropathies, yet effective treatments are lacking. RIR leads to the death of retinal ganglion cells (RGCs) and subsequent vision loss, posing detrimental effects on both physical and mental health. Apigenin (API), derived from a wide range of sources, has been reported to exert protective effects against ischemia/reperfusion injuries in various organs, such as the brain, kidney, myocardium, and liver. In this study, we investigated the protective effect of API and its underlying mechanisms on RGC degeneration induced by retinal ischemia/reperfusion (RIR). METHODS: An in vivo model was induced by anterior chamber perfusion following intravitreal injection of API one day prior to the procedure. Meanwhile, an in vitro model was established through 1% oxygen and glucose deprivation. The neuroprotective effects of API were evaluated using H&E staining, spectral-domain optical coherence tomography (SD-OCT), Fluoro-Gold retrograde labeling, and Photopic negative response (PhNR). Furthermore, transmission electron microscopy (TEM) was employed to observe mitochondrial crista morphology and integrity. To elucidate the underlying mechanisms of API, the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, flow cytometry assay, western blot, cell counting kit-8 (CCK-8) assay, lactate dehydrogenase (LDH) assay, JC-1 kit assay, dichlorofluorescein-diacetate (DCFH-DA) assay, as well as TMRE and Mito-tracker staining were conducted. RESULTS: API treatment protected retinal inner plexiform layer (IPL) and ganglion cell complex (GCC), and improved the function of retinal ganglion cells (RGCs). Additionally, API reduced RGC apoptosis and decreased lactate dehydrogenase (LDH) release by upregulating Bcl-2 and Bcl-xL expression, while downregulating Bax and cleaved caspase-3 expression. Furthermore, API increased mitochondrial membrane potential (MMP) and decreased extracellular reactive oxygen species (ROS) production. These effects were achieved by enhancing mitochondrial function, restoring mitochondrial cristae morphology and integrity, and regulating the expression of OPA1, MFN2, and DRP1, thereby regulating mitochondrial dynamics involving fusion and fission. CONCLUSION: API protects RGCs against RIR injury by modulating mitochondrial dynamics, promoting mitochondrial fusion and fission.


Apigenin , Mitochondrial Dynamics , Neuroprotective Agents , Reperfusion Injury , Retinal Ganglion Cells , Retinal Ganglion Cells/drug effects , Retinal Ganglion Cells/pathology , Retinal Ganglion Cells/metabolism , Apigenin/pharmacology , Apigenin/therapeutic use , Animals , Reperfusion Injury/drug therapy , Reperfusion Injury/pathology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Mitochondrial Dynamics/drug effects , Male , Apoptosis/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Models, Biological , Mice, Inbred C57BL
14.
Int Ophthalmol ; 44(1): 226, 2024 May 17.
Article En | MEDLINE | ID: mdl-38758396

PURPOSE: Glaucoma and multiple sclerosis (MS) can cause optic disc pathology and, in this way, affect optical coherence tomography (OCT) data. In this context, the objective of this study is to investigate the changes in the mean, quadrant, and sector data measured by OCT in glaucoma and MS patients. METHODS: The sample of this prospective cohort study consisted of 42 MS patients (84 eyes), 34 Primary open-angle glaucomas patients (67 eyes), and 24 healthy control subjects (48 eyes). The MS group was divided into two groups according to the presence of a history of optic neuritis. Accordingly, those with a history of optic neuritis were included in the MS ON group, and those without a history of optic neuritis were included in the MS NON group. The differences between these groups in the mean, quadrant, and sector data related to the retinal nerve fiber layer (RNFL) and ganglion cell complex (GCC) were evaluated. RESULTS: Superior nasal (SN), superior temporal (ST), inferior nasal (IN), and superior quadrant (SUP) values were significantly lower in the glaucoma group than in the MS group (p < 0.05). The mean superior GCC (GCC SUP) value was significantly lower in the MS ON group than in the glaucoma group (p < 0.05). On the other hand, SN, ST, inferior temporal (IT), IN, average RNFL (AVE RNFL), semi-average superior RNFL (SUP AVE RNFL), semi-average inferior RNFL (INF AVE RNFL), SUP, and inferior quadrant RNFL (INF) values were significantly lower in the glaucoma group than in the MS NON group (p < 0.05). CONCLUSION: RNFL and GCC parameters get thinner in MS and glaucoma patients. While the inferior and superior RNFL quadrants are more frequently affected in glaucoma patients, the affected quadrants vary according to the presence of a history of optic neuritis in MS patients. It is noteworthy that the GCC superior quadrant was thin in MS ON patients. The findings of this study indicate that OCT data may be valuable in the differential diagnosis of glaucoma and MS.


Intraocular Pressure , Multiple Sclerosis , Nerve Fibers , Optic Disk , Retinal Ganglion Cells , Tomography, Optical Coherence , Humans , Tomography, Optical Coherence/methods , Female , Male , Multiple Sclerosis/diagnosis , Multiple Sclerosis/complications , Prospective Studies , Retinal Ganglion Cells/pathology , Nerve Fibers/pathology , Optic Disk/pathology , Optic Disk/diagnostic imaging , Middle Aged , Adult , Intraocular Pressure/physiology , Glaucoma, Open-Angle/diagnosis , Visual Fields/physiology , Optic Neuritis/diagnosis
15.
Cells ; 13(9)2024 May 01.
Article En | MEDLINE | ID: mdl-38727311

Glaucoma is a heterogeneous group of optic neuropathies characterized by a progressive degeneration of the retinal ganglion cells (RGCs), leading to irreversible vision loss. Nowadays, the traditional therapeutic approach to glaucoma consists of lowering the intraocular pressure (IOP), which does not address the neurodegenerative features of the disease. Besides animal models of glaucoma, there is a considerable need for in vitro experimental models to propose new therapeutic strategies for this ocular disease. In this study, we elucidated the pathological mechanisms leading to neuroretinal R28 cell death after exposure to glutamate and hydrogen peroxide (H2O2) in order to develop new therapeutic approaches for oxidative stress-induced retinal diseases, including glaucoma. We were able to show that glutamate and H2O2 can induce a decrease in R28 cell viability in a concentration-dependent manner. A cell viability of about 42% was found after exposure to 3 mM of glutamate and about 56% after exposure to 100 µM of H2O2 (n = 4). Label-free quantitative mass spectrometry analysis revealed differential alterations of 193 and 311 proteins in R28 cells exposed to 3 mM of glutamate and 100 µM of H2O2, respectively (FDR < 1%; p < 0.05). Bioinformatics analysis indicated that the protein changes were associated with the dysregulation of signaling pathways, which was similar to those observed in glaucoma. Thus, the proteomic alteration induced by glutamate was associated with the inhibition of the PI3K/AKT signaling pathway. On the other hand, H2O2-induced toxicity in R28 cells was linked to the activation of apoptosis signaling and the inhibition of the mTOR and ERK/MAPK signaling pathways. Furthermore, the data show a similarity in the inhibition of the EIF2 and AMPK signaling pathways and the activation of the sumoylation and WNT/ß-catenin signaling pathways in both groups. Our findings suggest that the exposure of R28 cells to glutamate and H2O2 could induce glaucoma-like neurodegenerative features and potentially provide a suitable tool for the development of new therapeutic strategies for retinal diseases.


Glaucoma , Glutamic Acid , Hydrogen Peroxide , Oxidative Stress , Glaucoma/metabolism , Glaucoma/pathology , Glaucoma/drug therapy , Oxidative Stress/drug effects , Animals , Hydrogen Peroxide/pharmacology , Glutamic Acid/metabolism , Cell Survival/drug effects , Rats , Cell Line , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/drug effects , Retinal Ganglion Cells/pathology , Signal Transduction/drug effects , Models, Biological , Humans
16.
Sci Rep ; 14(1): 11758, 2024 05 23.
Article En | MEDLINE | ID: mdl-38783015

Glaucoma is a progressive neurodegenerative disease characterized by the gradual degeneration of retinal ganglion cells, leading to irreversible blindness worldwide. Therefore, timely and accurate diagnosis of glaucoma is crucial, enabling early intervention and facilitating effective disease management to mitigate further vision deterioration. The advent of optical coherence tomography (OCT) has marked a transformative era in ophthalmology, offering detailed visualization of the macula and optic nerve head (ONH) regions. In recent years, both 2D and 3D convolutional neural network (CNN) algorithms have been applied to OCT image analysis. While 2D CNNs rely on post-prediction aggregation of all B-scans within OCT volumes, 3D CNNs allow for direct glaucoma prediction from the OCT data. However, in the absence of extensively pre-trained 3D models, the comparative efficacy of 2D and 3D-CNN algorithms in detecting glaucoma from volumetric OCT images remains unclear. Therefore, this study explores the efficacy of glaucoma detection through volumetric OCT images using select state-of-the-art (SOTA) 2D-CNN models, 3D adaptations of these 2D-CNN models with specific weight transfer techniques, and a custom 5-layer 3D-CNN-Encoder algorithm. The performance across two distinct datasets is evaluated, each focusing on the macula and the ONH, to provide a comprehensive understanding of the models' capabilities in identifying glaucoma. Our findings demonstrate that the 2D-CNN algorithm consistently provided robust results compared to their 3D counterparts tested in this study for glaucoma detection, achieving AUC values of 0.960 and 0.943 for the macular and ONH OCT test images, respectively. Given the scarcity of pre-trained 3D models trained on extensive datasets, this comparative analysis underscores the overall utility of 2D and 3D-CNN algorithms in advancing glaucoma diagnostic systems in ophthalmology and highlights the potential of 2D algorithms for volumetric OCT image-based glaucoma detection.


Algorithms , Glaucoma , Neural Networks, Computer , Tomography, Optical Coherence , Tomography, Optical Coherence/methods , Humans , Glaucoma/diagnostic imaging , Glaucoma/diagnosis , Imaging, Three-Dimensional/methods , Optic Disk/diagnostic imaging , Optic Disk/pathology , Retinal Ganglion Cells/pathology
17.
Biomolecules ; 14(5)2024 Apr 27.
Article En | MEDLINE | ID: mdl-38785932

Augmenting the natural melanocortin pathway in mouse eyes with uveitis or diabetes protects the retinas from degeneration. The retinal cells are protected from oxidative and apoptotic signals of death. Therefore, we investigated the effects of a therapeutic application of the melanocortin alpha-melanocyte-stimulating hormone (α-MSH) on an ischemia and reperfusion (I/R) model of retinal degenerative disease. Eyes were subjected to an I/R procedure and were treated with α-MSH. Retinal sections were histopathologically scored. Also, the retinal sections were immunostained for viable ganglion cells, activated Muller cells, microglial cells, and apoptosis. The I/R caused retinal deformation and ganglion cell loss that was significantly reduced in I/R eyes treated with α-MSH. While α-MSH treatment marginally reduced the number of GFAP-positive Muller cells, it significantly suppressed the density of Iba1-positive microglial cells in the I/R retinas. Within one hour after I/R, there was apoptosis in the ganglion cell layer, and by 48 h, there was apoptosis in all layers of the neuroretina. The α-MSH treatment significantly reduced and delayed the onset of apoptosis in the retinas of I/R eyes. The results demonstrate that therapeutically augmenting the melanocortin pathways preserves retinal structure and cell survival in eyes with progressive neuroretinal degenerative disease.


Apoptosis , Homeostasis , Reperfusion Injury , Retina , Retinal Ganglion Cells , alpha-MSH , Animals , alpha-MSH/pharmacology , alpha-MSH/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Mice , Apoptosis/drug effects , Retina/metabolism , Retina/drug effects , Retina/pathology , Homeostasis/drug effects , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/drug effects , Retinal Ganglion Cells/pathology , Mice, Inbred C57BL , Microglia/metabolism , Microglia/drug effects , Male , Ependymoglial Cells/metabolism , Ependymoglial Cells/drug effects , Ependymoglial Cells/pathology , Disease Models, Animal , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Retinal Degeneration/drug therapy
18.
Acta Neuropathol Commun ; 12(1): 79, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773545

Neurodegenerative diseases have common underlying pathological mechanisms including progressive neuronal dysfunction, axonal and dendritic retraction, and mitochondrial dysfunction resulting in neuronal death. The retina is often affected in common neurodegenerative diseases such as Parkinson's and Alzheimer's disease. Studies have demonstrated that the retina in patients with Parkinson's disease undergoes changes that parallel the dysfunction in the brain. These changes classically include decreased levels of dopamine, accumulation of alpha-synuclein in the brain and retina, and death of dopaminergic nigral neurons and retinal amacrine cells leading to gross neuronal loss. Exploring this disease's retinal phenotype and vision-related symptoms is an important window for elucidating its pathophysiology and progression, and identifying novel ways to diagnose and treat Parkinson's disease. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is commonly used to model Parkinson's disease in animal models. MPTP is a neurotoxin converted to its toxic form by astrocytes, transported to neurons through the dopamine transporter, where it causes mitochondrial Complex I inhibition and neuron degeneration. Systemic administration of MPTP induces retinal changes in different animal models. In this study, we assessed the effects of MPTP on the retina directly via intravitreal injection in mice (5 mg/mL and 50 mg/mL to 7, 14 and 21 days post-injection). MPTP treatment induced the reduction of retinal ganglion cells-a sensitive neuron in the retina-at all time points investigated. This occurred without a concomitant loss of dopaminergic amacrine cells or neuroinflammation at any of the time points or concentrations tested. The observed neurodegeneration which initially affected retinal ganglion cells indicated that this method of MPTP administration could yield a fast and straightforward model of retinal ganglion cell neurodegeneration. To assess whether this model could be amenable to neuroprotection, mice were treated orally with nicotinamide (a nicotinamide adenine dinucleotide precursor) which has been demonstrated to be neuroprotective in several retinal ganglion cell injury models. Nicotinamide was strongly protective following intravitreal MPTP administration, further supporting intravitreal MPTP use as a model of retinal ganglion cell injury. As such, this model could be utilized for testing neuroprotective treatments in the context of Parkinson's disease and retinal ganglion cell injury.


Mice, Inbred C57BL , Neuroprotective Agents , Niacinamide , Retinal Ganglion Cells , Animals , Retinal Ganglion Cells/drug effects , Retinal Ganglion Cells/pathology , Retinal Ganglion Cells/metabolism , Niacinamide/pharmacology , Niacinamide/administration & dosage , Neuroprotective Agents/pharmacology , Neuroprotective Agents/administration & dosage , Male , Mice , Administration, Oral , Intravitreal Injections , Disease Models, Animal , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/pathology , Parkinsonian Disorders/drug therapy , MPTP Poisoning/pathology , MPTP Poisoning/metabolism , MPTP Poisoning/drug therapy
19.
Exp Eye Res ; 243: 109907, 2024 Jun.
Article En | MEDLINE | ID: mdl-38649019

Sleep loss is common in modern society and is increasingly associated with eye diseases. However, the precise effects of sleep loss on retinal structure and function, particularly on the retinal circadian system, remain largely unexplored. This study investigates these effects using a chronic sleep deprivation (CSD) model in mice. Our investigation reveals that CSD significantly alters the retinal circadian transcriptome, leading to remarkable changes in the temporal patterns of enriched pathways. This perturbation extends to metabolic and immune-related transcriptomes, coupled with an accumulation of reactive oxygen species in the retina. Notably, CSD rhythmically affects the thickness of the ganglion cell complex, along with diurnal shifts in microglial migration and morphology within the retina. Most critically, we observe a marked decrease in both scotopic and photopic retinal function under CSD conditions. These findings underscore the broad impact of sleep deprivation on retinal health, highlighting its role in altering circadian gene expression, metabolism, immune response, and structural integrity. Our study provides new insights into the broader impact of sleep loss on retinal health.


Circadian Rhythm , Mice, Inbred C57BL , Retina , Sleep Deprivation , Transcriptome , Animals , Sleep Deprivation/physiopathology , Sleep Deprivation/metabolism , Sleep Deprivation/genetics , Mice , Circadian Rhythm/physiology , Male , Retina/metabolism , Retina/physiopathology , Disease Models, Animal , Retinal Ganglion Cells/pathology , Retinal Ganglion Cells/metabolism , Electroretinography , Gene Expression Regulation , Chronic Disease
20.
BMC Ophthalmol ; 24(1): 185, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38654214

PURPOSE: The present study tested the hypothesis that repeated anti-VEGF injections are associated with reduced retinal nerve fiber layer (RNFL) and minimum rim width (MRW) of the optic nerve head. PATIENTS AND METHODS: Sixty-six patients with a history of intravitreal injections due to neovascular age-related macular degeneration were included. RNFL and MRW were measured using optical coherence tomography (Spectralis OCT, Heidelberg Engineering, Heidelberg, Germany). RESULTS: Mean global RNFL was 90.62 µm and both RNFL as well as MRW significantly decreased with advanced age (p = 0.005 and p = 0.019, respectively). Correlating for the number of injections, no significant impact on RNFL was found globally (p = 0.642) or in any of the sectors. In contrast, however, global MRW was significantly reduced with increasing numbers of intravitreal injections (p = 0.012). The same holds true when adjusted for the confounding factor age (RNFL p = 0.566 and MRW p = 0.023). CONCLUSION: Our study shows that repeated intravitreal injections due to choroidal neovascularization seem to have a deleterious effect on MRW but not on RNFL. This suggests that MRW is a more sensitive marker than RNFL for evaluating the effect of frequent intravitreal injections on the optic nerve head since it seems to be the first structure affected.


Angiogenesis Inhibitors , Intravitreal Injections , Nerve Fibers , Retinal Ganglion Cells , Tomography, Optical Coherence , Humans , Cross-Sectional Studies , Male , Female , Aged , Tomography, Optical Coherence/methods , Angiogenesis Inhibitors/administration & dosage , Nerve Fibers/pathology , Retinal Ganglion Cells/pathology , Aged, 80 and over , Optic Disk/pathology , Middle Aged , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Wet Macular Degeneration/drug therapy , Wet Macular Degeneration/diagnosis , Visual Acuity , Ranibizumab/administration & dosage , Bevacizumab/administration & dosage
...