Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Int J Med Sci ; 21(11): 2158-2169, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39239542

RESUMEN

Pancreatic cancer (PC) is a challenging and heterogeneous disease with a high mortality rate. Despite advancements in treatment, the prognosis for PC patients remains poor, with a high chance of disease recurrence. Biomarkers are crucial for diagnosing cancer, predicting patient prognosis and selecting treatments. However, the current lack of effective biomarkers for PC could contribute to the insufficiency of existing treatments. These findings underscore the urgent need to develop novel strategies to fight this disease. This study utilized multiple comprehensive bioinformatic analyses to identify potential therapeutic target genes in PC, focusing on histone lysine demethylases (KDMs). We found that high expression levels of KDM family genes, particularly KDM1A, KDM5A and KDM5B, were associated with improved overall survival in the cohort. Furthermore, the infiltration of various immune cells, including B cells, neutrophils, CD8+ T cells, dendritic cells, and macrophages, was positively correlated with KDM1A, KDM5A, and KDM5B expression. Moreover, MetaCore pathway analysis revealed interesting connections between KDM1A and the cell cycle and proliferation, between KDM5A and DNA damage and double-strand break repair through homologous recombination, and between KDM5B and WNT/ß-catenin signaling. These findings suggest that KDM1A, KDM5A and KDM5B may serve as promising biomarkers and therapeutic targets for PC, a disease of high importance due to its aggressive nature and urgent need for novel biomarkers to improve diagnosis and treatment.


Asunto(s)
Biomarcadores de Tumor , Regulación Neoplásica de la Expresión Génica , Histona Demetilasas con Dominio de Jumonji , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Histona Demetilasas con Dominio de Jumonji/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Pronóstico , Biología Computacional , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Histona Demetilasas/metabolismo , Histona Demetilasas/genética , Terapia Molecular Dirigida/métodos , Proteína 2 de Unión a Retinoblastoma/metabolismo , Proteína 2 de Unión a Retinoblastoma/genética , Vía de Señalización Wnt/genética , Proliferación Celular/genética , Proteínas Nucleares , Proteínas Represoras
2.
Pol J Pathol ; 75(2): 83-96, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39166517

RESUMEN

There is growing evidence that the KDM5 family of histone demethylases plays a causal role in human cancer. However, few studies have been reported on the KDM5 family in endometrial carcinoma (EC). Moreover, it was found that there was some correlation between the KDM5 family and FOXO1 in EC. The current study was performed to explore the expressions of KDM5A, KDM5B, and FOXO1 in endometrioid adenocarcinoma detected by immunohistochemistry; paracancer endometrium, simple hyperplastic endometrium, and normal endometrium were used as control groups to explore the possible diagnostic value of KDM5A and KDM5B expression in endometrioid adenocarcinoma, with the aim of evaluating the potential of this marker in predicting the prognosis of endometrioid adenocarcinoma.


Asunto(s)
Biomarcadores de Tumor , Carcinoma Endometrioide , Neoplasias Endometriales , Proteína Forkhead Box O1 , Inmunohistoquímica , Histona Demetilasas con Dominio de Jumonji , Humanos , Neoplasias Endometriales/patología , Neoplasias Endometriales/metabolismo , Femenino , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/metabolismo , Persona de Mediana Edad , Histona Demetilasas con Dominio de Jumonji/metabolismo , Carcinoma Endometrioide/patología , Carcinoma Endometrioide/metabolismo , Adulto , Anciano , Pronóstico , Proteína 2 de Unión a Retinoblastoma/metabolismo , Proteína 2 de Unión a Retinoblastoma/análisis , Relevancia Clínica , Proteínas Nucleares , Proteínas Represoras
3.
Antiviral Res ; 228: 105947, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925368

RESUMEN

Combinational antiretroviral therapy (cART) suppresses human immunodeficiency virus type 1 (HIV-1) viral replication and pathogenesis in acquired immunodeficiency syndrome (AIDS) patients. However, HIV-1 remains in the latent stage of infection by suppressing viral transcription, which hinders an HIV-1 cure. One approach for an HIV-1 cure is the "shock and kill" strategy. The strategy focuses on reactivating latent HIV-1, inducing the viral cytopathic effect and facilitating the immune clearance for the elimination of latent HIV-1 reservoirs. Here, we reported that the H3K4 trimethylation (H3K4me3)-specific demethylase KDM5A/B play a role in suppressing HIV-1 Tat/LTR-mediated viral transcription in HIV-1 latent cells. Furthermore, we evaluated the potential of KDM5-specific inhibitor JQKD82 as an HIV-1 "shock and kill" agent. Our results showed that JQKD82 increases the H3K4me3 level at HIV-1 5' LTR promoter regions, HIV-1 reactivation, and the cytopathic effects in an HIV-1-latent T cell model. In addition, we identified that the combination of JQKD82 and AZD5582, a non-canonical NF-κB activator, generates a synergistic impact on inducing HIV-1 lytic reactivation and cell death in the T cell. The latency-reversing potency of the JQKD82 and AZD5582 pair was also confirmed in peripheral blood mononuclear cells (PBMCs) isolated from HIV-1 aviremic patients and in an HIV-1 latent monocyte. In latently infected microglia (HC69) of the brain, either deletion or inhibition of KDM5A/B results in a reversal of the HIV-1 latency. Overall, we concluded that KDM5A/B function as a host repressor of the HIV-1 lytic reactivation and thus promote the latency and the survival of HIV-1 infected reservoirs.


Asunto(s)
Infecciones por VIH , VIH-1 , Activación Viral , Latencia del Virus , VIH-1/fisiología , VIH-1/efectos de los fármacos , VIH-1/genética , Humanos , Latencia del Virus/efectos de los fármacos , Infecciones por VIH/virología , Infecciones por VIH/tratamiento farmacológico , Activación Viral/efectos de los fármacos , Proteína 2 de Unión a Retinoblastoma/metabolismo , Proteína 2 de Unión a Retinoblastoma/genética , Infección Latente/virología , Replicación Viral/efectos de los fármacos , Duplicado del Terminal Largo de VIH/genética , Supervivencia Celular , Línea Celular , Histonas/metabolismo , Proteínas Nucleares , Proteínas Represoras , Histona Demetilasas con Dominio de Jumonji
4.
Chem Pharm Bull (Tokyo) ; 72(7): 638-647, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38945940

RESUMEN

Lysine demethylase 5 (KDM5) proteins are involved in various neurological disorders, including Alzheimer's disease, and KDM5 inhibition is expected to be a therapeutic strategy for these diseases. However, the pharmacological effects of conventional KDM5 inhibitors are insufficient, as they only target the catalytic functionality of KDM5. To identify compounds that exhibit more potent pharmacological activity, we focused on proteolysis targeting chimeras (PROTACs), which degrade target proteins and thus inhibit their entire functionality. We designed and synthesized novel KDM5 PROTAC candidates based on previously identified KDM5 inhibitors. The results of cellular assays revealed that two compounds, 20b and 23b, exhibited significant neurite outgrowth-promoting activity through the degradation of KDM5A in neuroblastoma neuro 2a cells. These results suggest that KDM5 PROTACs are promising drug candidates for the treatment of neurological disorders.


Asunto(s)
Proyección Neuronal , Proteolisis , Proteolisis/efectos de los fármacos , Humanos , Proyección Neuronal/efectos de los fármacos , Relación Estructura-Actividad , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Línea Celular Tumoral , Estructura Molecular , Proteína 2 de Unión a Retinoblastoma/metabolismo , Proteína 2 de Unión a Retinoblastoma/antagonistas & inhibidores , Animales , Ratones , Relación Dosis-Respuesta a Droga , Quimera Dirigida a la Proteólisis
5.
Exp Cell Res ; 437(1): 113991, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38462208

RESUMEN

The compound 2-4(4-methylphenyl)-1,2-benzisothiazol-3(2H)-one (PBIT) is an inhibitor of the KDM5 family of lysine-specific histone demethylases that has been suggested as a lead compound for cancer therapy. The goal of this study was to explore the effects of PBIT within human prostate cancers. Micromolar concentrations of PBIT altered proliferation of castration-sensitive LNCaP and castration-resistant C4-2B, LNCaP-MDV3100 and PC-3 human prostate cancer cell lines. We then characterized the mechanism underlying the anti-proliferative effects of PBIT within the C4-2B and PC-3 cell lines. Data from Cell Death ELISAs suggest that PBIT does not induce apoptosis within C4-2B or PC-3 cells. However, PBIT did increase the amount of senescence associated beta-galactosidase. PBIT also altered cell cycle progression and increased protein levels of the cell cycle protein p21. PC-3 and C4-2B cells express varying amounts of KDM5A, KDM5B, and KDM5C, the therapeutic targets of PBIT. siRNA-mediated knockdown studies suggest that inhibition of multiple KDM5 isoforms contribute to the anti-proliferative effect of PBIT. Furthermore, combination treatments involving PBIT and the PPARγ agonist 15-deoxy-Δ-12, 14 -prostaglandin J2 (15d-PGJ2) also reduced PC-3 cell proliferation. Together, these data strongly suggest that PBIT significantly reduces the proliferation of prostate cancers via a mechanism that involves cell cycle arrest and senescence.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Proliferación Celular , Línea Celular Tumoral , Puntos de Control del Ciclo Celular , Apoptosis , Ciclo Celular , Proteína 2 de Unión a Retinoblastoma/metabolismo
7.
Cardiovasc Res ; 120(6): 630-643, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38230606

RESUMEN

AIMS: Human pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) provide a platform to identify and characterize factors that regulate the maturation of CMs. The transition from an immature foetal to an adult CM state entails coordinated regulation of the expression of genes involved in myofibril formation and oxidative phosphorylation (OXPHOS) among others. Lysine demethylase 5 (KDM5) specifically demethylates H3K4me1/2/3 and has emerged as potential regulators of expression of genes involved in cardiac development and mitochondrial function. The purpose of this study is to determine the role of KDM5 in iPSC-CM maturation. METHODS AND RESULTS: KDM5A, B, and C proteins were mainly expressed in the early post-natal stages, and their expressions were progressively downregulated in the post-natal CMs and were absent in adult hearts and CMs. In contrast, KDM5 proteins were persistently expressed in the iPSC-CMs up to 60 days after the induction of myogenic differentiation, consistent with the immaturity of these cells. Inhibition of KDM5 by KDM5-C70 -a pan-KDM5 inhibitor, induced differential expression of 2372 genes, including upregulation of genes involved in fatty acid oxidation (FAO), OXPHOS, and myogenesis in the iPSC-CMs. Likewise, genome-wide profiling of H3K4me3 binding sites by the cleavage under targets and release using nuclease assay showed enriched of the H3K4me3 peaks at the promoter regions of genes encoding FAO, OXPHOS, and sarcomere proteins. Consistent with the chromatin and gene expression data, KDM5 inhibition increased the expression of multiple sarcomere proteins and enhanced myofibrillar organization. Furthermore, inhibition of KDM5 increased H3K4me3 deposits at the promoter region of the ESRRA gene and increased its RNA and protein levels. Knockdown of ESRRA in KDM5-C70-treated iPSC-CM suppressed expression of a subset of the KDM5 targets. In conjunction with changes in gene expression, KDM5 inhibition increased oxygen consumption rate and contractility in iPSC-CMs. CONCLUSION: KDM5 inhibition enhances maturation of iPSC-CMs by epigenetically upregulating the expressions of OXPHOS, FAO, and sarcomere genes and enhancing myofibril organization and mitochondrial function.


Asunto(s)
Diferenciación Celular , Ácidos Grasos , Miocitos Cardíacos , Miofibrillas , Fosforilación Oxidativa , Proteína 2 de Unión a Retinoblastoma , Humanos , Células Cultivadas , Ácidos Grasos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Histonas/metabolismo , Histonas/genética , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/enzimología , Mitocondrias Cardíacas/enzimología , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/genética , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/metabolismo , Miofibrillas/metabolismo , Miofibrillas/enzimología , Oxidación-Reducción , Regiones Promotoras Genéticas , Proteína 2 de Unión a Retinoblastoma/metabolismo , Proteína 2 de Unión a Retinoblastoma/genética
8.
Environ Toxicol ; 39(1): 341-356, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37713600

RESUMEN

The Warburg effect is the preference of cancer cells to use glycolysis rather than oxidative phosphorylation to generate energy. Accumulating evidence suggests that aerobic glycolysis is widespread in hepatocellular carcinoma (HCC) and closely related to tumorigenesis. The purpose of this study was to investigate the role and mechanism of forkhead box P2 (FOXP2) in aerobic glycolysis and tumorigenesis in HCC. Here, we found that FOXP2 was lower expressed in HCC tissues and cells than in nontumor tissues and normal hepatocytes. Overexpression of FOXP2 suppressed cell proliferation and invasion of HCC cells and promoted cell apoptosis in vitro, and hindered the growth of mouse xenograft tumors in vivo. Further researches showed that FOXP2 inhibited the Warburg effect in HCC cells. Moreover, we demonstrated that FOXP2 up-regulated the expression of fructose-1, 6-diphosphatase (FBP1), and the inhibitory effect of FOXP2 on glycolysis was dependent on FBP1. Mechanistically, as a transcription factor, FOXP2 negatively regulated the transcription of lysine-specific demethylase 5A (KDM5A), and then blocked KDM5A-induced H3K4me3 demethylation in FBP1 promoter region, thereby promoting the expression of FBP1. Consistently, overexpressing KDM5A or silencing FBP1 effectively reversed the inhibitory effect of FOXP2 on HCC progression. Together, our findings revealed the mechanistic role of the FOXP2/KDM5A/FBP1 axis in glycolysis and malignant progression of HCC cells, providing a potential molecular target for the therapy of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animales , Ratones , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Línea Celular Tumoral , Glucólisis , Transformación Celular Neoplásica/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Proteína 2 de Unión a Retinoblastoma/metabolismo , Factores de Transcripción Forkhead/metabolismo
9.
Epigenetics ; 18(1): 2268813, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37838974

RESUMEN

Tri-methylation of Histone 3 lysine 4 (H3K4) is an important epigenetic modification whose deposition and removal can affect the chromatin at structural and functional levels. KDM5A is one of the four known H3K4-specific demethylases. It is a part of the KDM5 family, which is characterized by a catalytic Jumonji domain capable of removing H3K4 di- and tri-methylation marks. KDM5A has been found to be involved in multiple cellular processes such as differentiation, metabolism, cell cycle, and transcription. Its link to various diseases, including cancer, makes KDM5A an important target for drug development. However, despite several studies outlining its significance in various pathways, our lack of understanding of its recruitment and function at the target sites on the chromatin presents a challenge in creating effective and targeted treatments. Therefore, it is essential to understand the recruitment mechanism of KDM5A to chromatin, and its activity therein, to comprehend how various roles of KDM5A are regulated. In this review, we discuss how KDM5A functions in a context-dependent manner on the chromatin, either directly through its structural domain, or through various interacting partners, to bring about a diverse range of functions.


Asunto(s)
Cromatina , Neoplasias , Humanos , Cromatina/genética , Metilación de ADN , Histonas/genética , Histonas/metabolismo , Diferenciación Celular , Proteína 2 de Unión a Retinoblastoma/genética , Proteína 2 de Unión a Retinoblastoma/metabolismo
10.
Exp Hematol ; 125-126: 45-54, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37419299

RESUMEN

The biology of the matrix remodeling-associated 7 (MXRA7) gene has been ill defined. Bioinformatic analysis of public data sets revealed that MXRA7 messenger RNA (mRNA) was highly expressed in acute myeloid leukemia (AML), especially acute promyelocytic leukemia (APL). High expression of MXRA7 was associated with poor overall survival of patients with AML. We confirmed that MXRA7 expression was upregulated in patients with APL and cell lines. Knockdown or overexpression of MXRA7 did not affect the proliferation of NB4 cells directly. Knockdown of MXRA7 in NB4 cells promoted drug-induced cell apoptosis, whereas overexpression of MXRA7 had no obvious influence on drug-induced cell apoptosis. Lowering MXRA7 protein levels in NB4 cells promoted all-trans retinoic acid (ATRA)-induced cell differentiation possibly through decreasing the PML-RARα level and increasing PML and RARα levels. Correspondingly, overexpression of MXRA7 showed consistent results. We also demonstrated that MXRA7 altered the expression of genes involved in leukemic cell differentiation and growth. Knockdown of MXRA7 upregulated the expression levels of C/EBPB, C/EBPD, and UBE2L6, and downregulated the expression levels of KDM5A, CCND2, and SPARC. Moreover, knockdown of MXRA7 inhibited the malignancy of NB4 cells in a non-obese diabetic-severe combined immune-deficient mice model. In conclusion, this study demonstrated that MXRA7 influences the pathogenesis of APL via regulation of cell differentiation. The novel findings about the role of MXRA7 in leukemia not only shed light on the biology of this gene but also proposed this gene as a new target for APL treatment.


Asunto(s)
Leucemia Promielocítica Aguda , Animales , Humanos , Ratones , Apoptosis , Diferenciación Celular , Línea Celular Tumoral , Leucemia Promielocítica Aguda/tratamiento farmacológico , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteína 2 de Unión a Retinoblastoma/metabolismo , Tretinoina/farmacología , Tretinoina/metabolismo
11.
Cell Death Dis ; 14(6): 357, 2023 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-37301844

RESUMEN

Pediatric Acute Myeloid Leukemia (AML) is a rare and heterogeneous disease characterized by a high prevalence of gene fusions as driver mutations. Despite the improvement of survival in the last years, about 50% of patients still experience a relapse. It is not possible to improve prognosis only with further intensification of chemotherapy, as come with a severe cost to the health of patients, often resulting in treatment-related death or long-term sequels. To design more effective and less toxic therapies we need a better understanding of pediatric AML biology. The NUP98-KDM5A chimeric protein is exclusively found in a particular subgroup of young pediatric AML patients with complex karyotypes and poor prognosis. In this study, we investigated the impact of NUP98-KDM5A expression on cellular processes in human Pluripotent Stem Cell models and a patient-derived cell line. We found that NUP98-KDM5A generates genomic instability through two complementary mechanisms that involve accumulation of DNA damage and direct interference of RAE1 activity during mitosis. Overall, our data support that NUP98-KDM5A promotes genomic instability and likely contributes to malignant transformation.


Asunto(s)
Leucemia Mieloide Aguda , Proteínas de Fusión Oncogénica , Humanos , Niño , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Oncogénicas/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Inestabilidad Genómica , Proteína 2 de Unión a Retinoblastoma/metabolismo
12.
Reprod Biol ; 23(2): 100764, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37084543

RESUMEN

Mounting literatures suggest that follicular fluid-derived exosomes (FF-Evs) influence the progression of progression of polycystic ovary syndrome (PCOS). The present study was designed to dissect the underlying mechanisms by which FF-Evs affect the PCOS. A rat model of PCOS was established using Letrozole induction. After treatment with FF-Evs, rats were examined for alterations in hormones, blood glucose, and lipid levels in serum, oestrus cycle, pathology in the ovaries, and apoptosis of ovarian cells. The functional rescue assays were performed to analyze the impact of long non-coding RNA 00092 (LINC00092) on PCOS rats. The cis-regulatory elements involved in the regulation of phosphatase and tensin homolog (PTEN) expression were analyzed using bioinformatic analysis, followed by verification of the mechanism. FF-Evs treatment ameliorated Letrozole-induced enhancement of weight, insulin resistance, dyslipidemia, and LH/FSH ratio, reduction of luteal cells, granulosa cells, and healthy follicles, prolonged oestrus, oestrous cycle arrest, ovarian tissue fibrosis, and ovarian cell apoptosis in rats, which were counteracted by treatment with shRNA targeting LINC00092. Regarding the mechanism, FF-Evs augmented LINC00092 expression in rats. LINC00092 bound to lysine demethylase 5 A (KDM5A), and KDM5A facilitated the demethylation of H3K4me3 to restrain the transcriptional activity of PTEN. Taken together, FF-Evs delivered LINC00092 repressed the transcriptional activity of PTEN by binding to KDM5A to enhance demethylation of H3K4me3, thereby reducing apoptosis in ovarian cells and alleviating PCOS symptoms.


Asunto(s)
Síndrome del Ovario Poliquístico , ARN Largo no Codificante , Animales , Femenino , Ratas , Líquido Folicular/metabolismo , Letrozol/metabolismo , Síndrome del Ovario Poliquístico/metabolismo , Proteína 2 de Unión a Retinoblastoma/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Tensinas/metabolismo
13.
FEBS Lett ; 597(7): 933-946, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36700827

RESUMEN

The demethylation of Nε -methyllysine residues on histones by Jumonji-C lysine demethylases (JmjC-KDMs) has been established. A subset of JmjC-KDMs has also been reported to have Nω -methylarginine residue demethylase (RDM) activity. Here, we describe biochemical screening studies, showing that the catalytic domains of all human KDM5s (KDM5A-KDM5D), KDM4E and, to a lesser extent, KDM4A/D, have both KDM and RDM activities with histone peptides. Ras GTPase-activating protein-binding protein 1 peptides were shown to be RDM substrates for KDM5C/D. No RDM activity was observed with KDM1A and the other JmjC-KDMs tested. The results highlight the potential of JmjC-KDMs to catalyse reactions other than Nε -methyllysine demethylation. Although our study is limited to peptide fragments, the results should help guide biological studies investigating JmjC functions.


Asunto(s)
Arginina , Histona Demetilasas con Dominio de Jumonji , Humanos , Dominio Catalítico , Histona Demetilasas con Dominio de Jumonji/química , Arginina/metabolismo , Histona Demetilasas/metabolismo , Histonas/metabolismo , Catálisis , Desmetilación , Proteína 2 de Unión a Retinoblastoma/metabolismo , Antígenos de Histocompatibilidad Menor/metabolismo
14.
Cell Biol Toxicol ; 39(4): 1641-1655, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36112263

RESUMEN

The importance of Fbxo22 in carcinogenesis has been highly documented. Here, we discussed downstream regulatory factors of Fbxo22 in TNBC. RNA-sequencing was conducted for identifying differentially expressed genes, followed by construction of a regulatory network. Expression patterns of Fbxo22/KDM5A in TNBC were determined by their correlation with the prognosis analyzed. Then, regulation mechanisms between Fbxo22 and KDM5A as well as between KDM5A and H3K4me3 were assayed. After silencing and overexpression experiments, the significance of Fbxo22 in repressing tumorigenesis in vitro and in vivo was explored. Fbxo22 was poorly expressed, while KDM5A was highly expressed in TNBC. Patients with elevated Fbxo22, decreased KDM5A, or higher p16 had long overall survival. Fbxo22 reduced the levels of KDM5A by ubiquitination. KDM5A promoted histone H3K4me3 demethylation to downregulate p16 expression. Fbxo22 reduced KDM5A expression to enhance p16, thus inducing DNA damage as well as reducing tumorigenesis and metastasis in TNBC. Our study validated FBXO22 as a tumor suppressor in TNBC through ubiquitination of KDM5A and regulation of p16.


Asunto(s)
Proteínas F-Box , Neoplasias de la Mama Triple Negativas , Humanos , Histonas/metabolismo , Ubiquitina/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Carcinogénesis/genética , Desmetilación , Línea Celular Tumoral , Proteína 2 de Unión a Retinoblastoma/genética , Proteína 2 de Unión a Retinoblastoma/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo
15.
Eur J Pharmacol ; 940: 175465, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36566915

RESUMEN

Liver cancer is a kind of malignant tumor with poor sensitivity to chemotherapy. It is urgent to investigate approaches to improve the outcome of chemotherapy. KDM5A has been reported to be an oncogene in various cancers and is associated with drug resistance. However, the functions of KDM5A in chemotherapeutic sensitivity of liver cancer not been well illustrated. In this study, we found that KDM5A was upregulated in liver cancer tissue and cell lines. KDM5A knockdown using a gene interference strategy suppressed the growth of liver cancer in vitro and in vivo. CPI-455, a pharmacological inactivation of KDM5A enhanced the cytotoxicity of cisplatin (CDDP) in liver cells. CPI-455 and CDDP cotreatment resulted in apoptosis and mitochondrial dysfunction. We also found that knockdown or inactivation of KDM5A resulted in the downregulation of ROCK1, an oncogene regulating the activation of the PTEN/AKT signaling pathway. In particular, overexpression of ROCK1 or SF1670, a pharmacological inhibitor of PTEN, alleviated the cytotoxicity of CPI-455 and CDDP cotreatment. In HCCLM3 xenografts, CPI-455 and CDDP cotreatment dramatically inhibited the growth of xenograft tumor compared to CPI-455 or CDDP treatment alone. In conclusion, this study suggested that targeting the inactivation of KDM5A is an efficient strategy to enhance the chemosensitivity of liver cancer cells to CDDP by modulating the ROCK1/PTEN/AKT signaling pathway.


Asunto(s)
Neoplasias Hepáticas , Proteínas Proto-Oncogénicas c-akt , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Línea Celular Tumoral , Cisplatino/farmacología , Cisplatino/uso terapéutico , Transducción de Señal , Apoptosis , Neoplasias Hepáticas/tratamiento farmacológico , Resistencia a Antineoplásicos , Proteína 2 de Unión a Retinoblastoma/metabolismo , Quinasas Asociadas a rho/metabolismo , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo
16.
Exp Mol Med ; 54(12): 2107-2117, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36509829

RESUMEN

Distinct epigenetic modifiers ensure coordinated control over genes that govern a myriad of cellular processes. Growing evidence shows that dynamic regulation of histone methylation is critical for almost all stages of development. Notably, the KDM5 subfamily of histone lysine-specific demethylases plays essential roles in the proper development and differentiation of tissues, and aberrant regulation of KDM5 proteins during development can lead to chronic developmental defects and even cancer. In this review, we adopt a unique perspective regarding the context-dependent roles of KDM5A and KDM5B in development and tumorigenesis. It is well known that these two proteins show a high degree of sequence homology, with overlapping functions. However, we provide deeper insights into their substrate specificity and distinctive function in gene regulation that at times divert from each other. We also highlight both the possibility of targeting KDM5A and KDM5B to improve cancer treatment and the limitations that must be overcome to increase the efficacy of current drugs.


Asunto(s)
Histonas , Neoplasias , Humanos , Histonas/metabolismo , Transformación Celular Neoplásica/genética , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Regulación de la Expresión Génica , Neoplasias/genética , Proteína 2 de Unión a Retinoblastoma/genética , Proteína 2 de Unión a Retinoblastoma/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Represoras/genética , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo
17.
Exp Mol Med ; 54(9): 1461-1471, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36056186

RESUMEN

Mitochondria in neural progenitors play a crucial role in adult hippocampal neurogenesis by being involved in fate decisions for differentiation. However, the molecular mechanisms by which mitochondria are related to the genetic regulation of neuronal differentiation in neural progenitors are poorly understood. Here, we show that mitochondrial dysfunction induced by amyloid-beta (Aß) in neural progenitors inhibits neuronal differentiation but has no effect on the neural progenitor stage. In line with the phenotypes shown in Alzheimer's disease (AD) model mice, Aß-induced mitochondrial damage in neural progenitors results in deficits in adult hippocampal neurogenesis and cognitive function. Based on hippocampal proteome changes after mitochondrial damage in neural progenitors identified through proteomic analysis, we found that lysine demethylase 5A (KDM5A) in neural progenitors epigenetically suppresses differentiation in response to mitochondrial damage. Mitochondrial damage characteristically causes KDM5A degradation in neural progenitors. Since KDM5A also binds to and activates neuronal genes involved in the early stage of differentiation, functional inhibition of KDM5A consequently inhibits adult hippocampal neurogenesis. We suggest that mitochondria in neural progenitors serve as the checkpoint for neuronal differentiation via KDM5A. Our findings not only reveal a cell-type-specific role of mitochondria but also suggest a new role of KDM5A in neural progenitors as a mediator of retrograde signaling from mitochondria to the nucleus, reflecting the mitochondrial status.


Asunto(s)
Enfermedad de Alzheimer , Neuronas , Proteoma , Proteína 2 de Unión a Retinoblastoma/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Diferenciación Celular , Lisina/metabolismo , Ratones , Mitocondrias/metabolismo , Neuronas/citología , Neuronas/metabolismo , Proteoma/metabolismo , Proteómica
18.
Hum Cell ; 35(5): 1512-1520, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35896939

RESUMEN

Colorectal cancer (CRC) is one of the leading causes of cancer-related death worldwide. The aim of the present study was to explore the expression level of tumor protein 73 (TP73) in highly malignant CRC tumors and how the long non-coding RNA tumor protein 73 antisense RNA 1 (TP73-AS1) influences that transcription. We found that TP73-AS1 was highly expressed in malignant CRC samples in The Cancer Genome Atlas (TCGA) database. We also demonstrated TP73-AS1 was expressed in thirty samples of CRC tissues collected from China Medical University patients as well as in HCT116, RKO and SW480 CRC cell lines but not in HCoEpiC or CCD-18Co normal colon cells. Only wild-type TP73-AS1, but not any of its alternate splicing isoforms, was positively correlated with tumor malignancy. TP73-AS1 transcripts were shown to be located in cell nuclei especially in close proximity to the TP73 promoter in CRC cells, but not in normal colon cells. In addition, an interaction between lysine demethylase 5A (KDM5A) and TP73-AS1 in CRC cells, but not normal colon cells, and KDM5A localization on the TP73 promoter were influenced by TP73-AS1. Interestingly, the H3K4me3 level on the TP73 promoter was reduced, but was elevated by TP73-AS1 knockdown in CRC cells. In conclusion, these results suggest a novel epigenetic role of TP73-AS1 on histone demethylation that influences TP73 transcription, and shed light on malignancy in CRC.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , ARN Largo no Codificante/metabolismo , Proteína Tumoral p73/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Lisina/metabolismo , MicroARNs/genética , Proteínas de Neoplasias/genética , ARN sin Sentido/genética , ARN Largo no Codificante/genética , Proteína 2 de Unión a Retinoblastoma/genética , Proteína 2 de Unión a Retinoblastoma/metabolismo
19.
Cancer Immunol Res ; 10(8): 1028-1038, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35726891

RESUMEN

The extent to which effector CD8+ T cells infiltrate into tumors is one of the major predictors of clinical outcome for patients with epithelial ovarian cancer (EOC). Immune cell infiltration into EOC is a complex process that could be affected by the epigenetic makeup of the tumor. Here, we have demonstrated that a lysine 4 histone H3 (H3K4) demethylase, (lysine-specific demethylase 5A; KDM5A) impairs EOC infiltration by immune cells and inhibits antitumor immune responses. Mechanistically, we found that KDM5A silenced genes involved in the antigen processing and presentation pathway. KDM5A inhibition restored the expression of genes involved in the antigen-presentation pathway in vitro and promoted antitumor immune responses mediated by CD8+ T cells in vivo in a syngeneic EOC mouse model. A negative correlation between expression of KDM5A and genes involved in the antigen processing and presentation pathway such as HLA-A and HLA-B was observed in the majority of cancer types. In summary, our results establish KDM5A as a regulator of CD8+ T-cell infiltration of tumors and demonstrate that KDM5A inhibition may provide a novel therapeutic strategy to boost antitumor immune responses.


Asunto(s)
Presentación de Antígeno , Neoplasias Ováricas , Proteína 2 de Unión a Retinoblastoma , Animales , Regulación hacia Abajo , Femenino , Humanos , Inmunidad , Lisina/metabolismo , Ratones , Neoplasias Ováricas/genética , Neoplasias Ováricas/inmunología , Proteína 2 de Unión a Retinoblastoma/metabolismo
20.
Bioessays ; 44(7): e2200015, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35532219

RESUMEN

The lysine demethylase KDM5A collaborates with PARP1 and the histone variant macroH2A1.2 to modulate chromatin to promote DNA repair. Indeed, KDM5A engages poly(ADP-ribose) (PAR) chains at damage sites through a previously uncharacterized coiled-coil domain, a novel binding mode for PAR interactions. While KDM5A is a well-known transcriptional regulator, its function in DNA repair is only now emerging. Here we review the molecular mechanisms that regulate this PARP1-macroH2A1.2-KDM5A axis in DNA damage and consider the potential involvement of this pathway in transcription regulation and cancer. Using KDM5A as an example, we discuss how multifunctional chromatin proteins transition between several DNA-based processes, which must be coordinated to protect the integrity of the genome and epigenome. The dysregulation of chromatin and loss of genome integrity that is prevalent in human diseases including cancer may be related and could provide opportunities to target multitasking proteins with these pathways as therapeutic strategies.


Asunto(s)
Inhibidores de Poli(ADP-Ribosa) Polimerasas , Poli(ADP-Ribosa) Polimerasas , Cromatina/genética , Daño del ADN/genética , Reparación del ADN/genética , Humanos , Poli Adenosina Difosfato Ribosa/metabolismo , Poli(ADP-Ribosa) Polimerasas/química , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteína 2 de Unión a Retinoblastoma/genética , Proteína 2 de Unión a Retinoblastoma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA