RESUMEN
Lipid-binding proteins (LBPs) are soluble proteins responsible for the uptake, transport, and storage of a large variety of hydrophobic lipophilic molecules including fatty acids, steroids, and other lipids in the cellular environment. Among the LBPs, fatty acid binding proteins (FABPs) present preferential binding affinities for long-chain fatty acids. While most of FABPs in vertebrates and invertebrates present similar ß-barrel structures with ligands accommodated in their central cavity, parasitic nematode worms exhibit additional unusual α-helix rich fatty acid- and retinol-binding proteins (FAR). Herein, we report the comparison of extended molecular dynamics (MD) simulations performed on the ligand-free and palmitic acid-bond states of the Necator americanus FAR-1 (Na-FAR-1) with respect to other classical ß-barrel FABPs. Principal component analysis (PCA) has been used to identify the different conformations adopted by each system during MD simulations. The α-helix fold encompasses a complex internal ligand-binding cavity with a remarkable conformational plasticity that allows reversible switching between distinct states in the holo-Na-FAR-1. The cavity can change up to one-third of its size affected by conformational changes of the protein-ligand complex. Besides, the ligand inside the cavity is not fixed but experiences large conformational changes between bent and stretched conformations. These changes in the ligand conformation follow changes in the cavity size dictated by the transient protein conformation. On the contrary, protein-ligand complex in ß-barrel FABPs fluctuates around a unique conformation. The significantly more flexible holo-Na-FAR-1 ligand-cavity explains its larger ligand multiplicity respect to ß-barrel FABPs.
Asunto(s)
Proteínas de Unión a Ácidos Grasos/química , Proteínas de Unión a Ácidos Grasos/metabolismo , Simulación de Dinámica Molecular , Proteínas de Unión al Retinol/química , Proteínas de Unión al Retinol/metabolismo , Ligandos , Conformación ProteicaRESUMEN
Fatty acid and retinol-binding proteins (FARs) comprise a family of unusual α-helix rich lipid-binding proteins found exclusively in nematodes. They are secreted into host tissues by parasites of plants, animals and humans. The structure of a FAR protein from the free-living nematode Caenorhabditis elegans is available, but this protein [C. elegans FAR-7 (Ce-FAR-7)] is from a subfamily of FARs that does not appear to be important at the host/parasite interface. We have therefore examined [Necator americanus FAR-1 (Na-FAR-1)] from the blood-feeding intestinal parasite of humans, N. americanus. The 3D structure of Na-FAR-1 in its ligand-free and ligand-bound forms, determined by NMR (nuclear magnetic resonance) spectroscopy and X-ray crystallography respectively, reveals an α-helical fold similar to Ce-FAR-7, but Na-FAR-1 possesses a larger and more complex internal ligand-binding cavity and an additional C-terminal α-helix. Titration of apo-Na-FAR-1 with oleic acid, analysed by NMR chemical shift perturbation, reveals that at least four distinct protein-ligand complexes can be formed. Na-FAR-1 and possibly other FARs may have a wider repertoire for hydrophobic ligand binding, as confirmed in the present study by our finding that a range of neutral and polar lipids co-purify with the bacterially expressed recombinant protein. Finally, we show by immunohistochemistry that Na-FAR-1 is present in adult worms with a tissue distribution indicative of possible roles in nutrient acquisition by the parasite and in reproduction in the male.
Asunto(s)
Interacciones Huésped-Parásitos , Necator americanus/metabolismo , Necatoriasis/metabolismo , Proteínas de Unión al Retinol/metabolismo , Animales , Sitios de Unión , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/patogenicidad , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Ligandos , Necator americanus/química , Necator americanus/patogenicidad , Necatoriasis/parasitología , Reproducción , Proteínas de Unión al Retinol/químicaRESUMEN
The fatty acid and retinol-binding (FAR) proteins are a family of unusual helix-rich lipid binding proteins found exclusively in nematodes, and are secreted by a range of parasites of humans, animals and plants. Na-FAR-1 is from the parasitic nematode Necator americanus, an intestinal blood-feeding parasite of humans. Sequence-specific (1)H, (13)C and (15)N resonance assignments have been obtained for the recombinant 170 amino acid protein, using three-dimensional triple-resonance heteronuclear magnetic resonance experiments. Backbone assignments have been obtained for 99.3% of the non-proline HN/N pairs (146 out of 147). The amide resonance of T45 was not observed, probably due to rapid exchange with solvent water. A total of 96.9% of backbone resonances were identified, while 97.7% assignment of amino acid sidechain protons is complete. All Hα(166), Hß(250) and Hγ(160) and 98.4% of the Hδ (126 out of 128) atoms were assigned. In addition, 99.4% Cα (154 out of 155) and 99.3% Cß (143 out of 144) resonances have been assigned. No resonances were observed for the NH(n) groups of R93 NεHε, arginine, N(η1)H2, N(η2)H2, histidine N(δ1)H(δ1), N(ε1)H(ε1) and lysine N(ζ3)H3. Na-FAR-1 has a similar overall arrangement of α-helices to Ce-FAR-7 of the free-living Caeorhabditis elegans, but with an extra C-terminal helix.
Asunto(s)
Ácidos Grasos/metabolismo , Proteínas del Helminto/química , Necator americanus/metabolismo , Parásitos/metabolismo , Proteínas de Unión al Retinol/química , Animales , Isótopos de Carbono , Hidrógeno , Isótopos de Nitrógeno , Resonancia Magnética Nuclear Biomolecular , Estructura Secundaria de Proteína , Proteínas Recombinantes/químicaRESUMEN
Carrot, tomato and papaya represent important dietary sources of ß-carotene and lycopene. The main objective of the present study was to compare the bioavailability of carotenoids from these food sources in healthy human subjects. A total of sixteen participants were recruited for a randomised cross-over study. Test meals containing raw carrots, tomatoes and papayas were adjusted to deliver an equal amount of ß-carotene and lycopene. For the evaluation of bioavailability, TAG-rich lipoprotein (TRL) fractions containing newly absorbed carotenoids were analysed over 9·5 h after test meal consumption. The bioavailability of ß-carotene from papayas was approximately three times higher than that from carrots and tomatoes, whereas differences in the bioavailability of ß-carotene from carrots and tomatoes were insignificant. Retinyl esters appeared in the TRL fractions at a significantly higher concentration after the consumption of the papaya test meal. Similarly, lycopene was approximately 2·6 times more bioavailable from papayas than from tomatoes. Furthermore, the bioavailability of ß-cryptoxanthin from papayas was shown to be 2·9 and 2·3 times higher than that of the other papaya carotenoids ß-carotene and lycopene, respectively. The morphology of chromoplasts and the physical deposition form of carotenoids were hypothesised to play a major role in the differences observed in the bioavailability of carotenoids from the foods investigated. Particularly, the liquid-crystalline deposition of ß-carotene and the storage of lycopene in very small crystalloids in papayas were found to be associated with their high bioavailability. In conclusion, papaya was shown to provide highly bioavailable ß-carotene, ß-cryptoxanthin and lycopene and may represent a readily available dietary source of provitamin A for reducing the incidence of vitamin A deficiencies in many subtropical and tropical developing countries.
Asunto(s)
Carica/química , Carotenoides/metabolismo , Daucus carota/química , Frutas/química , Absorción Intestinal , Raíces de Plantas/química , Solanum lycopersicum/química , Adulto , Carotenoides/análisis , Carotenoides/sangre , Costa Rica , Estudios Cruzados , Criptoxantinas , Femenino , Alimentos Funcionales/análisis , Humanos , Lipoproteínas/sangre , Lipoproteínas/química , Licopeno , Valor Nutritivo , Periodo Posprandial , Proteínas de Unión al Retinol/química , Ésteres de Retinilo , Xantófilas/análisis , Xantófilas/sangre , Xantófilas/metabolismo , Adulto Joven , beta Caroteno/análisis , beta Caroteno/sangre , beta Caroteno/metabolismoRESUMEN
Human transthyretin (TTR) is a homotetrameric protein involved in several amyloidoses. Zn(2+) enhances TTR aggregation in vitro, and is a component of ex vivo TTR amyloid fibrils. We report the first crystal structure of human TTR in complex with Zn(2+) at pH 4.6-7.5. All four structures reveal three tetra-coordinated Zn(2+)-binding sites (ZBS 1-3) per monomer, plus a fourth site (ZBS 4) involving amino acid residues from a symmetry-related tetramer that is not visible in solution by NMR. Zn(2+) binding perturbs loop E-α-helix-loop F, the region involved in holo-retinol-binding protein (holo-RBP) recognition, mainly at acidic pH; TTR affinity for holo-RBP decreases â¼5-fold in the presence of Zn(2+). Interestingly, this same region is disrupted in the crystal structure of the amyloidogenic intermediate of TTR formed at acidic pH in the absence of Zn(2+). HNCO and HNCA experiments performed in solution at pH 7.5 revealed that upon Zn(2+) binding, although the α-helix persists, there are perturbations in the resonances of the residues that flank this region, suggesting an increase in structural flexibility. While stability of the monomer of TTR decreases in the presence of Zn(2+), which is consistent with the tertiary structural perturbation provoked by Zn(2+) binding, tetramer stability is only marginally affected by Zn(2+). These data highlight structural and functional roles of Zn(2+) in TTR-related amyloidoses, as well as in holo-RBP recognition and vitamin A homeostasis.