Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
Curr Microbiol ; 81(8): 220, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38867024

RESUMEN

The bean yellow mosaic virus (BYMV) is one of the most serious economic diseases affecting faba bean crop production. Rhizobium spp., well known for its high nitrogen fixation capacity in legumes, has received little study as a possible biocontrol agent and antiviral. Under greenhouse conditions, foliar application of molecularly characterized Rhizobium leguminosarum bv. viciae strain 33504-Borg201 to the faba bean leaves 24 h before they were infected with BYMV made them much more resistant to the disease while also lowering its severity and accumulation. Furthermore, the treatment promoted plant growth and health, as evidenced by the increased total chlorophyll (32.75 mg/g f.wt.) and protein content (14.39 mg/g f.wt.), as well as the improved fresh and dry weights of the plants. The protective effects of 33504-Borg201 greatly lowered the levels of hydrogen peroxide (H2O2) (4.92 µmol/g f.wt.) and malondialdehyde (MDA) (173.72 µmol/g f.wt.). The antioxidant enzymes peroxidase (1.58 µM/g f.wt.) and polyphenol oxidase (0.57 µM/g f.wt.) inhibited the development of BYMV in plants treated with 33504-Borg201. Gene expression analysis showed that faba bean plants treated with 33504-Borg201 had higher amounts of pathogenesis-related protein-1 (PR-1) (3.28-fold) and hydroxycinnamoyl-CoA quinate hydroxycinnamoyltransferase (4.13-fold) than control plants. These findings demonstrate the potential of 33,504-Borg201 as a cost-effective and eco-friendly method to protect faba bean plants against BYMV. Implementing this approach could help develop a simple and sustainable strategy for protecting faba bean crops from the devastating effects of BYMV.


Asunto(s)
Enfermedades de las Plantas , Hojas de la Planta , Rhizobium leguminosarum , Vicia faba , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/crecimiento & desarrollo , Rhizobium leguminosarum/fisiología , Vicia faba/virología , Vicia faba/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/prevención & control , Hojas de la Planta/microbiología , Hojas de la Planta/virología , Resistencia a la Enfermedad , Peróxido de Hidrógeno/metabolismo
2.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38690786

RESUMEN

Bacterial persistence in the rhizosphere and colonization of root niches are critical for the establishment of many beneficial plant-bacteria interactions including those between Rhizobium leguminosarum and its host legumes. Despite this, most studies on R. leguminosarum have focused on its symbiotic lifestyle as an endosymbiont in root nodules. Here, we use random barcode transposon sequencing to assay gene contributions of R. leguminosarum during competitive growth in the rhizosphere and colonization of various plant species. This facilitated the identification of 189 genes commonly required for growth in diverse plant rhizospheres, mutation of 111 of which also affected subsequent root colonization (rhizosphere progressive), and a further 119 genes necessary for colonization. Common determinants reveal a need to synthesize essential compounds (amino acids, ribonucleotides, and cofactors), adapt metabolic function, respond to external stimuli, and withstand various stresses (such as changes in osmolarity). Additionally, chemotaxis and flagella-mediated motility are prerequisites for root colonization. Many genes showed plant-specific dependencies highlighting significant adaptation to different plant species. This work provides a greater understanding of factors promoting rhizosphere fitness and root colonization in plant-beneficial bacteria, facilitating their exploitation for agricultural benefit.


Asunto(s)
Raíces de Plantas , Rhizobium leguminosarum , Rizosfera , Simbiosis , Raíces de Plantas/microbiología , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/crecimiento & desarrollo , Rhizobium leguminosarum/fisiología , Fabaceae/microbiología , Fabaceae/crecimiento & desarrollo , Microbiología del Suelo
3.
Can J Microbiol ; 70(5): 150-162, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38427979

RESUMEN

This study characterizes seedling exudates of peas, tomatoes, and cucumbers at the level of chemical composition and functionality. A plant experiment confirmed that Rhizobium leguminosarum bv. viciae 3841 enhanced growth of pea shoots, while Azospirillum brasilense Sp7 supported growth of pea, tomato, and cucumber roots. Chemical analysis of exudates after 1 day of seedling incubation in water yielded differences between the exudates of the three plants. Most remarkably, cucumber seedling exudate did not contain detectable sugars. All exudates contained amino acids, nucleobases/nucleosides, and organic acids, among other compounds. Cucumber seedling exudate contained reduced glutathione. Migration on semi solid agar plates containing individual exudate compounds as putative chemoattractants revealed that R. leguminosarum bv. viciae was more selective than A. brasilense, which migrated towards any of the compounds tested. Migration on semi solid agar plates containing 1:1 dilutions of seedling exudate was observed for each of the combinations of bacteria and exudates tested. Likewise, R. leguminosarum bv. viciae and A. brasilense grew on each of the three seedling exudates, though at varying growth rates. We conclude that the seedling exudates of peas, tomatoes, and cucumbers contain everything that is needed for their symbiotic bacteria to migrate and grow on.


Asunto(s)
Azospirillum brasilense , Cucumis sativus , Pisum sativum , Rhizobium leguminosarum , Plantones , Solanum lycopersicum , Solanum lycopersicum/microbiología , Solanum lycopersicum/crecimiento & desarrollo , Cucumis sativus/microbiología , Cucumis sativus/crecimiento & desarrollo , Plantones/crecimiento & desarrollo , Plantones/microbiología , Rhizobium leguminosarum/crecimiento & desarrollo , Rhizobium leguminosarum/metabolismo , Azospirillum brasilense/crecimiento & desarrollo , Azospirillum brasilense/metabolismo , Pisum sativum/microbiología , Pisum sativum/crecimiento & desarrollo , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Quimiotaxis , Exudados de Plantas/química , Exudados de Plantas/metabolismo
4.
Sci Rep ; 11(1): 24142, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34921154

RESUMEN

Water deficit has devastating impacts on legume production, particularly with the current abrupt climate changes in arid environments. The application of plant growth-promoting rhizobacteria (PGPR) is an effective approach for producing natural nitrogen and attenuating the detrimental effects of drought stress. This study investigated the influence of inoculation with the PGPR Rhizobium leguminosarum biovar viciae (USDA 2435) and Pseudomonas putida (RA MTCC5279) solely or in combination on the physio-biochemical and agronomic traits of five diverse Vicia faba cultivars under well-watered (100% crop evapotranspiration [ETc]), moderate drought (75% ETc), and severe drought (50% ETc) conditions in newly reclaimed poor-fertility sandy soil. Drought stress substantially reduced the expression of photosynthetic pigments and water relation parameters. In contrast, antioxidant enzyme activities and osmoprotectants were considerably increased in plants under drought stress compared with those in well-watered plants. These adverse effects of drought stress reduced crop water productivity (CWP) and seed yield-related traits. However, the application of PGPR, particularly a consortium of both strains, improved these parameters and increased seed yield and CWP. The evaluated cultivars displayed varied tolerance to drought stress: Giza-843 and Giza-716 had the highest tolerance under well-watered and moderate drought conditions, whereas Giza-843 and Sakha-4 were more tolerant under severe drought conditions. Thus, co-inoculation of drought-tolerant cultivars with R. leguminosarum and P. putida enhanced their tolerance and increased their yield and CWP under water-deficit stress conditions. This study showed for the first time that the combined use of R. leguminosarum and P. putida is a promising and ecofriendly strategy for increasing drought tolerance in legume crops.


Asunto(s)
Aclimatación , Pseudomonas putida/crecimiento & desarrollo , Rhizobium leguminosarum/crecimiento & desarrollo , Microbiología del Suelo , Vicia faba , Deshidratación/metabolismo , Deshidratación/microbiología , Vicia faba/genética , Vicia faba/crecimiento & desarrollo , Vicia faba/microbiología
5.
Pak J Biol Sci ; 24(6): 672-679, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34486343

RESUMEN

<b>Background and Objective:</b> Rhizobia are bacteria including genes codes for enzymes involved in the fixing of the atmospheric nitrogen. A set of twenty rhizobial isolates were studied to determine their morphological, biochemical, molecular characteristics using the 16S rRNA gene in addition to assess their growth and symbiotic performance. <b>Materials and Methods:</b> Rhizobial isolates were isolated from root nodules of <i>Vicia faba </i>L. plants. The isolates were morphologically characterized by determining cell shapes, size, Gram stain reaction, motility, sporulation, bacterial growth performance was determined by IAA production and biomass density. Symbiotic performance was measured by evaluation of nodulation status and shoot/root dry weight. Sequencing of 16S rRNA and phylogenetic analysis were done for the five promising isolates. Statistical analysis was performed using a one-sample Student t-test. <b>Results:</b> Only five rhizobial isolates (Rh 32, Rh 6-A, Rh 3-4, Rh RL3 and Rh 8-A) were selected according to their growth and symbiotic performance and subjected to further molecular characterizations. All isolates were found to have remarkable nodulation status, IAA production, nitrogenase activity and increasing the root and shoot dry weight. The five selected rhizobial isolates were identified by partial sequencing of 16S rRNA genes and registered in the GenBank database. The alignment and phylogenetic analyses of 16S rRNA sequences closely related in the GenBank revealed that all isolates belonging to <i>Rhizobium leguminosarum</i> bv. viciae. <b>Conclusion:</b> The results confirmed that the five Rhizobial strains will be promising as a source of genes for nitrogen fixation and plant growth promotion.


Asunto(s)
Raíces de Plantas/microbiología , Rhizobium leguminosarum , Vicia faba/microbiología , Egipto , Fijación del Nitrógeno , Filogenia , Nodulación de la Raíz de la Planta , Raíces de Plantas/crecimiento & desarrollo , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/crecimiento & desarrollo , Rhizobium leguminosarum/metabolismo , Ribotipificación , Simbiosis , Vicia faba/crecimiento & desarrollo , Vicia faba/metabolismo
6.
Methods Mol Biol ; 2309: 179-187, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34028687

RESUMEN

Strigolactones play a potent role in the rhizosphere as a signal to symbiotic microbes including arbuscular mycorrhizal fungi and rhizobial bacteria. This chapter outlines guidelines for application of strigolactones to pea roots to influence symbiotic relationships, and includes careful consideration of type of strigolactones applied, solvent use, frequency of application and nutrient regime to optimize experimental conditions.


Asunto(s)
Compuestos Heterocíclicos con 3 Anillos/farmacología , Lactonas/farmacología , Pisum sativum/microbiología , Reguladores del Crecimiento de las Plantas/farmacología , Nodulación de la Raíz de la Planta/efectos de los fármacos , Raíces de Plantas/microbiología , Rhizobium leguminosarum/efectos de los fármacos , Bioensayo , Rhizobium leguminosarum/crecimiento & desarrollo , Simbiosis
7.
Proc Natl Acad Sci U S A ; 117(19): 10234-10245, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32341157

RESUMEN

The nitrogen-related phosphotransferase system (PTSNtr) of Rhizobium leguminosarum bv. viciae 3841 transfers phosphate from PEP via PtsP and NPr to two output regulators, ManX and PtsN. ManX controls central carbon metabolism via the tricarboxylic acid (TCA) cycle, while PtsN controls nitrogen uptake, exopolysaccharide production, and potassium homeostasis, each of which is critical for cellular adaptation and survival. Cellular nitrogen status modulates phosphorylation when glutamine, an abundant amino acid when nitrogen is available, binds to the GAF sensory domain of PtsP, preventing PtsP phosphorylation and subsequent modification of ManX and PtsN. Under nitrogen-rich, carbon-limiting conditions, unphosphorylated ManX stimulates the TCA cycle and carbon oxidation, while unphosphorylated PtsN stimulates potassium uptake. The effects are reversed with the phosphorylation of ManX and PtsN, occurring under nitrogen-limiting, carbon-rich conditions; phosphorylated PtsN triggers uptake and nitrogen metabolism, the TCA cycle and carbon oxidation are decreased, while carbon-storage polymers such as surface polysaccharide are increased. Deleting the GAF domain from PtsP makes cells "blind" to the cellular nitrogen status. PTSNtr constitutes a switch through which carbon and nitrogen metabolism are rapidly, and reversibly, regulated by protein:protein interactions. PTSNtr is widely conserved in proteobacteria, highlighting its global importance.


Asunto(s)
Proteínas Bacterianas/metabolismo , Carbono/metabolismo , Regulación Bacteriana de la Expresión Génica , Nitrógeno/metabolismo , Fosfatos/metabolismo , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/metabolismo , Rhizobium leguminosarum/metabolismo , Proteínas Bacterianas/genética , Ciclo del Ácido Cítrico , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/genética , Fosforilación , Regiones Promotoras Genéticas , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/crecimiento & desarrollo
8.
J Hazard Mater ; 388: 121783, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-31836364

RESUMEN

Volatile organic compounds (VOCs) are produced by plants, fungi, bacteria and animals. These compounds are metabolites originated mainly in catabolic reactions and can be involved in biological processes. In this study, the airborne effects of five monoterpenes (α-pinene, limonene, eucalyptol, linalool, and menthol) on the growth and oxidative status of the rhizobial strain Rhizobium leguminosarum E20-8 were studied, testing the hypothesis that these VOCs could influence Rhizobium growth and tolerance to cadmium. The tested monoterpenes were reported to have diverse effects, such as antibacterial activity (linalool, limonene, α-pinene, eucalyptol), modulation of antioxidant response or antioxidant properties (α-pinene and menthol). Our results showed that non-stressed cells of Rhizobium E20-8 have different responses (growth, cell damage and biochemistry) to monoterpenes, with α-pinene and eucalyptol increasing colonies growth. In stressed cells the majority of monoterpenes failed to minimize the detrimental effects of Cd and increased damage, decreased growth and altered cell biochemistry were observed. However, limonene (1 and 100 mM) and eucalyptol (100 nM) were able to increase the growth of Cd-stressed cells. Our study evidences the influence at-a-distance that organisms able to produce monoterpenes may have on the growth and tolerance of bacterial cells challenged by different environmental conditions.


Asunto(s)
Antioxidantes/farmacología , Cadmio/toxicidad , Monoterpenos/farmacología , Rhizobium leguminosarum/efectos de los fármacos , Compuestos Orgánicos Volátiles/farmacología , Estrés Oxidativo/efectos de los fármacos , Rhizobium leguminosarum/crecimiento & desarrollo , Rhizobium leguminosarum/metabolismo
9.
Environ Microbiol Rep ; 10(3): 355-368, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29633524

RESUMEN

Rhizobium leguminosarum bv. trifolii is a soil bacterium that establishes symbiosis with clover (Trifolium spp.) under nitrogen-limited conditions. This microorganism produces exopolysaccharide (EPS), which plays an important role in symbiotic interactions with the host plant. The aim of the current study was to establish the role of EPS in the response of R. leguminosarum bv. trifolii cells, free-living and during symbiosis, to zinc stress. We show that EPS-deficient mutants were more sensitive to Zn2+ exposure than EPS-producing strains, and that EPS overexpression conferred some protection onto the strains beyond that observed in the wild type. Exposure of the bacteria to Zn2+ ions stimulated EPS and biofilm production, and increased cell hydrophobicity. However, zinc stress negatively affected the motility and attachment of bacteria to clover roots, as well as the symbiosis with the host plant. In the presence of Zn2+ ions, cell viability, root attachment, biofilm formation and symbiotic efficiency of EPS-overproducing strains were significantly higher than those of the EPS-deficient mutants. We conclude that EPS plays an important role in the adaptation of rhizobia to zinc stress, in both the free-living stage and during symbiosis.


Asunto(s)
Polisacáridos Bacterianos/fisiología , Rhizobium leguminosarum/crecimiento & desarrollo , Estrés Fisiológico , Simbiosis , Trifolium/microbiología , Zinc/metabolismo , Biopelículas , Mutación , Rhizobium leguminosarum/genética
10.
Lett Appl Microbiol ; 66(1): 14-18, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29117429

RESUMEN

Metagenomics and metatranscriptomics provide insights into biological processes in complex substrates such as soil, but linking the presence and expression of genes with functions can be difficult. Here, we obtain traditional most probable number estimates (MPN) of Rhizobium abundance in soil as a form of sample validation. Our work shows that in the Highfield experiment at Rothamsted, which has three contrasting conditions (>50 years continual bare fallow, wheat and grassland), MPN based on host plant nodulation assays corroborate metagenomic and metatranscriptomic estimates for Rhizobium leguminosarum sv. trifolii abundance. This validation is important to legitimize soil metagenomics and metatranscriptomics for the study of complex relationships between gene function and phylogeny. SIGNIFICANCE AND IMPACT OF THE STUDY: This study has demonstrated for the first time a functional assay validation of metagenomic and metatranscriptomic datasets by utilizing the clover and Rhizobium leguminosarum sv. trifolii mutualism. The results show that the Most Probable Number results corroborate the results of the 'omics approaches and gives confidence to the study of other biological systems where such a cross-check is not available.


Asunto(s)
Bacterias/aislamiento & purificación , Metagenómica/métodos , Rhizobium leguminosarum/genética , Microbiología del Suelo , Bacterias/clasificación , Bacterias/genética , Medicago/crecimiento & desarrollo , Medicago/microbiología , Filogenia , Rhizobium/genética , Rhizobium/crecimiento & desarrollo , Rhizobium/aislamiento & purificación , Rhizobium leguminosarum/crecimiento & desarrollo , Rhizobium leguminosarum/aislamiento & purificación
11.
Plant Physiol ; 174(3): 1289-1306, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28495892

RESUMEN

Plants engineer the rhizosphere to their advantage by secreting various nutrients and secondary metabolites. Coupling transcriptomic and metabolomic analyses of the pea (Pisum sativum) rhizosphere, a suite of bioreporters has been developed in Rhizobium leguminosarum bv viciae strain 3841, and these detect metabolites secreted by roots in space and time. Fourteen bacterial lux fusion bioreporters, specific for sugars, polyols, amino acids, organic acids, or flavonoids, have been validated in vitro and in vivo. Using different bacterial mutants (nodC and nifH), the process of colonization and symbiosis has been analyzed, revealing compounds important in the different steps of the rhizobium-legume association. Dicarboxylates and sucrose are the main carbon sources within the nodules; in ineffective (nifH) nodules, particularly low levels of sucrose were observed, suggesting that plant sanctions affect carbon supply to nodules. In contrast, high myo-inositol levels were observed prior to nodule formation and also in nifH senescent nodules. Amino acid biosensors showed different patterns: a γ-aminobutyrate biosensor was active only inside nodules, whereas the phenylalanine bioreporter showed a high signal also in the rhizosphere. The bioreporters were further validated in vetch (Vicia hirsuta), producing similar results. In addition, vetch exhibited a local increase of nod gene-inducing flavonoids at sites where nodules developed subsequently. These bioreporters will be particularly helpful in understanding the dynamics of root exudation and the role of different molecules secreted into the rhizosphere.


Asunto(s)
Técnicas Biosensibles , Pisum sativum/metabolismo , Exudados de Plantas/metabolismo , Raíces de Plantas/metabolismo , Rhizobium leguminosarum/fisiología , Recuento de Colonia Microbiana , Regulación de la Expresión Génica de las Plantas , Hesperidina/análisis , Procesamiento de Imagen Asistido por Computador , Luminiscencia , Metaboloma , Fijación del Nitrógeno , Pisum sativum/genética , Pisum sativum/microbiología , Nodulación de la Raíz de la Planta , Raíces de Plantas/genética , Raíces de Plantas/microbiología , Rhizobium leguminosarum/crecimiento & desarrollo , Rizosfera , Nódulos de las Raíces de las Plantas/microbiología , Simbiosis , Factores de Tiempo , Vicia/microbiología
12.
FEMS Microbiol Lett ; 364(5)2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28204472

RESUMEN

Rhizobium leguminosarum is a plant-associated bacterium that can form a symbiotic relationship with leguminous plants. Rhizobia must respond to significantly different environments during their biphasic lifestyle. The cell envelope is an important cellular feature that must be able to adapt to changing environments. Mutations in rhizobial genes required for proper cell envelope development have been identified based on growth deficiencies on peptide-rich media. Using transposon mutagenesis and screening of mutants for loss of growth on peptide-rich media, this study identified RL4716 as being required for proper cell envelope function in R. leguminosarum. Mutation of RL4716 results in an altered cell morphology, and an increase in permeability to the non-polar probe 1-N-phenylnaphthylamine, indicating a role of RL4716 in maintaining cell envelope integrity. The mutation also affected phenotypes that are known to be dependent on genes associated with a functional cell envelope including decreased desiccation tolerance and a decreased ability to form biofilms.


Asunto(s)
Proteínas Bacterianas/genética , Membrana Celular/metabolismo , Pared Celular/metabolismo , Peptidoglicano Glicosiltransferasa/genética , Peptidoglicano Glicosiltransferasa/metabolismo , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/metabolismo , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Medios de Cultivo/química , Genes Bacterianos , Mutagénesis , Mutación , Peptidoglicano/metabolismo , Fenotipo , Rhizobium leguminosarum/enzimología , Rhizobium leguminosarum/crecimiento & desarrollo
13.
Mol Plant Microbe Interact ; 30(2): 161-175, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28054497

RESUMEN

Rhizobium bacteria live in soil and plant environments, are capable of inducing symbiotic nodules on legumes, invade these nodules, and develop into bacteroids that fix atmospheric nitrogen into ammonia. Rhizobial lipopolysaccharide (LPS) is anchored in the bacterial outer membrane through a specialized lipid A containing a very long-chain fatty acid (VLCFA). VLCFA function for rhizobial growth in soil and plant environments is not well understood. Two genes, acpXL and lpxXL, encoding acyl carrier protein and acyltransferase, are among the six genes required for biosynthesis and transfer of VLCFA to lipid A. Rhizobium leguminosarum mutant strains acpXL, acpXL-/lpxXL-, and lpxXL- were examined for LPS structure, viability, and symbiosis. Mutations in acpXL and lpxXL abolished VLCFA attachment to lipid A. The acpXL mutant transferred a shorter acyl chain instead of VLCFA. Strains without lpxXL neither added VLCFA nor a shorter acyl chain. In all strains isolated from nodule bacteria, lipid A had longer acyl chains compared with laboratory-cultured bacteria, whereas mutant strains displayed altered membrane properties, modified cationic peptide sensitivity, and diminished levels of cyclic ß-glucans. In pea nodules, mutant bacteroids were atypically formed and nitrogen fixation and senescence were affected. The role of VLCFA for rhizobial environmental fitness is discussed.


Asunto(s)
Adaptación Fisiológica , Ácidos Grasos/metabolismo , Lípido A/metabolismo , Lipopolisacáridos/metabolismo , Rhizobium leguminosarum/crecimiento & desarrollo , Rhizobium leguminosarum/metabolismo , Nódulos de las Raíces de las Plantas/microbiología , Estrés Fisiológico , Etilenos/metabolismo , Ácidos Grasos/química , Glucosa/metabolismo , Lípido A/química , Lipopolisacáridos/química , Mutación/genética , Fijación del Nitrógeno , Ósmosis , Pisum sativum/microbiología , Rhizobium leguminosarum/ultraestructura , Nódulos de las Raíces de las Plantas/ultraestructura , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , beta-Glucanos/metabolismo
14.
J Bacteriol ; 199(1)2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27795326

RESUMEN

Insertion sequencing (INSeq) analysis of Rhizobium leguminosarum bv. viciae 3841 (Rlv3841) grown on glucose or succinate at both 21% and 1% O2 was used to understand how O2 concentration alters metabolism. Two transcriptional regulators were required for growth on glucose (pRL120207 [eryD] and RL0547 [phoB]), five were required on succinate (pRL100388, RL1641, RL1642, RL3427, and RL4524 [ecfL]), and three were required on 1% O2 (pRL110072, RL0545 [phoU], and RL4042). A novel toxin-antitoxin system was identified that could be important for generation of new plasmidless rhizobial strains. Rlv3841 appears to use the methylglyoxal pathway alongside the Entner-Doudoroff (ED) pathway and tricarboxylic acid (TCA) cycle for optimal growth on glucose. Surprisingly, the ED pathway was required for growth on succinate, suggesting that sugars made by gluconeogenesis must undergo recycling. Altered amino acid metabolism was specifically needed for growth on glucose, including RL2082 (gatB) and pRL120419 (opaA, encoding omega-amino acid:pyruvate transaminase). Growth on succinate specifically required enzymes of nucleobase synthesis, including ribose-phosphate pyrophosphokinase (RL3468 [prs]) and a cytosine deaminase (pRL90208 [codA]). Succinate growth was particularly dependent on cell surface factors, including the PrsD-PrsE type I secretion system and UDP-galactose production. Only RL2393 (glnB, encoding nitrogen regulatory protein PII) was specifically essential for growth on succinate at 1% O2, conditions similar to those experienced by N2-fixing bacteroids. Glutamate synthesis is constitutively activated in glnB mutants, suggesting that consumption of 2-ketoglutarate may increase flux through the TCA cycle, leading to excess reductant that cannot be reoxidized at 1% O2 and cell death. IMPORTANCE: Rhizobium leguminosarum, a soil bacterium that forms N2-fixing symbioses with several agriculturally important leguminous plants (including pea, vetch, and lentil), has been widely utilized as a model to study Rhizobium-legume symbioses. Insertion sequencing (INSeq) has been used to identify factors needed for its growth on different carbon sources and O2 levels. Identification of these factors is fundamental to a better understanding of the cell physiology and core metabolism of this bacterium, which adapts to a variety of different carbon sources and O2 tensions during growth in soil and N2 fixation in symbiosis with legumes.


Asunto(s)
Glucosa/metabolismo , Oxígeno/farmacología , Rhizobium leguminosarum/crecimiento & desarrollo , Ácido Succínico/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Medios de Cultivo , Relación Dosis-Respuesta a Droga , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/fisiología , Técnicas de Amplificación de Ácido Nucleico , Oxígeno/administración & dosificación , Oxígeno/metabolismo , Rhizobium leguminosarum/metabolismo
15.
BMC Microbiol ; 16(1): 260, 2016 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-27814683

RESUMEN

BACKGROUND: Evidence based on genomic sequences is extremely important to confirm the phylogenetic relationships within the Rhizobium group. SEMIA3007 was analyzed within the Mesorhizobium groups to define the underlying causes of taxonomic identification. We previously used biochemical tests and phenotypic taxonomic methods to identify bacteria, which can lead to erroneous classification. An improved understanding of bacterial strains such as the Mesorhizobium genus would increase our knowledge of classification and evolution of these species. RESULTS: In this study, we sequenced the complete genome of SEMIA3007 and compared it with five other Mesorhizobium and two Rhizobium genomes. The genomes of isolated SEMIA3007 showed several orthologs with M. huakuii, M. erdmanii and M. loti. We identified SEMIA3007 as a Mesorhizobium by comparing the 16S rRNA gene and the complete genome. CONCLUSION: Our ortholog, 16S rRNA gene and average nucleotide identity values (ANI) analysis all demonstrate SEMIA3007 is not Rhizobium leguminosarum bv. viceae. The results of the phylogenetic analysis clearly show SEMIA3007 is part of the Mesorhizobium group and suggest a reclassification is warranted.


Asunto(s)
Biología Computacional , Filogenia , Rhizobium leguminosarum/clasificación , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/aislamiento & purificación , Secuencia de Bases , Clasificación , ADN Bacteriano/genética , ADN Ribosómico/genética , Genoma Bacteriano , Mesorhizobium/clasificación , Mesorhizobium/genética , México , Anotación de Secuencia Molecular , ARN Ribosómico 16S/genética , Rhizobium/clasificación , Rhizobium/genética , Rhizobium leguminosarum/crecimiento & desarrollo , Análisis de Secuencia de ADN
16.
Syst Appl Microbiol ; 39(5): 345-9, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27269381

RESUMEN

It is known that the genetic diversity of conspecific rhizobia present in root nodules differs greatly among populations of a legume species, which has led to the suggestion that both dispersal limitation and the local environment affect rhizobial genotypic composition. However, it remains unclear whether rhizobial genotypes residing in root nodules are representative of the entire population of compatible symbiotic rhizobia. Since symbiotic preferences differ among legume populations, the genetic composition of rhizobia found within nodules may reflect the preferences of the local hosts, rather than the full diversity of potential nodulating rhizobia present in the soil. Here, we assessed whether Vicia cracca legume hosts of different provenances select different Rhizobium leguminosarum genotypes than sympatric V. cracca hosts, when presented a natural soil rhizobial population. Through combining V. cracca plants and rhizobia from adjacent and more distant populations, we found that V. cracca hosts are relatively randomly associated with rhizobial genotypes. This indicates that pre-infection partner choice is relatively weak in certain legume hosts when faced with a natural population of rhizobia.


Asunto(s)
Rhizobium leguminosarum/crecimiento & desarrollo , Rhizobium leguminosarum/genética , Nódulos de las Raíces de las Plantas/microbiología , Vicia/microbiología , Proteínas Bacterianas/genética , Secuencia de Bases , Variación Genética/genética , Genotipo , Geografía , N-Acetilglucosaminiltransferasas/genética , Rec A Recombinasas/genética , Análisis de Secuencia de ADN , Suelo/química , Microbiología del Suelo , Simbiosis
17.
Int J Mol Sci ; 17(5)2016 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-27213363

RESUMEN

Inoculation of legume seeds with Rhizobium affects soil microbial community and processes, especially in the rhizosphere. This study aimed at assessing the effect of Rhizobium inoculation on microbial activity in the faba bean rhizosphere during the growing season in a field experiment on a Haplic Luvisol derived from loess. Faba bean (Vicia faba L.) seeds were non-inoculated (NI) or inoculated (I) with Rhizobium leguminosarum bv. viciae and sown. The rhizosphere soil was analyzed for the enzymatic activities of dehydrogenases, urease, protease and acid phosphomonoesterase, and functional diversity (catabolic potential) using the Average Well Color Development, Shannon-Weaver, and Richness indices following the community level physiological profiling from Biolog EcoPlate™. The analyses were done on three occasions corresponding to the growth stages of: 5-6 leaf, flowering, and pod formation. The enzymatic activities were higher in I than NI (p < 0.05) throughout the growing season. However, none of the functional diversity indices differed significantly under both treatments, regardless of the growth stage. This work showed that the functional diversity of the microbial communities was a less sensitive tool than enzyme activities in assessment of rhizobial inoculation effects on rhizosphere microbial activity.


Asunto(s)
Rhizobium leguminosarum/crecimiento & desarrollo , Rizoma , Rizosfera , Semillas , Microbiología del Suelo , Vicia faba , Rizoma/crecimiento & desarrollo , Rizoma/microbiología , Semillas/crecimiento & desarrollo , Semillas/microbiología , Vicia faba/crecimiento & desarrollo , Vicia faba/microbiología
18.
FEMS Microbiol Lett ; 363(5): fnw024, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26832644

RESUMEN

The phylogenetic diversity of 29 rhizobial strains nodulating Phaseolus vulgaris in Iran was analysed on the basis of their core and symbiotic genes. These strains displayed five 16S rRNA-RFLP patterns and belong to eight ERIC-PCR clusters. The phylogenetic analyses of 16S rRNA, recA and atpD core genes allowed the identification of several strains as Rhizobium sophoriradicis, R. leguminosarum, R. tropici and Pararhizobium giardinii, whereas other strains represented a new phylogenetic lineage related to R. vallis. These strains and those identified as R. sophoriradicis and R. leguminosarum belong to the symbiovar phaseoli carrying the γ nodC allele distributed in P. vulgaris endosymbionts in America, Europe, Africa and Asia. The strain identified as R. tropici belongs to the symbiovar tropici carried by strains of R. tropici, R. leucaenae, R. lusitanum and R. freirei nodulating P. vulgaris in America, Africa and Asia. The strain identified as P. giardinii belongs to the symbiovar giardinii together with the type strain of this species nodulating P. vulgaris in France. It is remarkable that the recently described species R. sophoriradicis is worldwide distributed in P. vulgaris nodules carrying the γ nodC allele of symbiovar phaseoli harboured by rhizobia isolated in the American distribution centers of this legume.


Asunto(s)
Phaseolus/microbiología , Rhizobium leguminosarum/clasificación , Rhizobium leguminosarum/genética , Rhizobium tropici/genética , Nódulos de las Raíces de las Plantas/microbiología , Proteínas Bacterianas/genética , Secuencia de Bases , ADN Bacteriano/genética , Irán , Proteínas de la Membrana/genética , N-Acetilglucosaminiltransferasas/genética , Filogenia , Polimorfismo de Longitud del Fragmento de Restricción , ARN Ribosómico 16S/genética , Rec A Recombinasas/genética , Rhizobium leguminosarum/crecimiento & desarrollo , Rhizobium tropici/clasificación , Rhizobium tropici/crecimiento & desarrollo , Análisis de Secuencia de ADN , Microbiología del Suelo , Simbiosis
19.
Braz J Microbiol ; 46(2): 407-13, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26273255

RESUMEN

The objective of this study was to evaluate the exopolysaccharide (EPS) production by Rhizobium leguminosarum cultivated in wastewater generated by oil companies (WWOC1 and WWOC2) and fish processing industry (WWFP). The results obtained in Erlenmeyer flasks indicated that the rhizobial strain grew well in industrial wastewater. Generally, wastewater composition affected the growth and the EPS production. WWFP allowed good bacterial growth similar to that obtained with the standard medium (YMB). During growth, various quantities of EPS were produced and yields varied depending on the media. Growing in YMB, EPS production did not exceed 9.7 g/L obtained after 72 h of growth. In wastewater, the maximum EPS value reached 11.1 g/L obtained with the fish processing wastewater, after 72 h of growth. The use of a mixture of the oil company wastewater (WWOC2) and the fish processing wastewater (WWFP) as culture medium affected not only the rhizobial strain growth, but also EPS production. The highest EPS (42.4 g/L, after 96 h of culture) was obtained using a ratio of WWFP and WWOC2 of 50:50 (v:v). Therefore, this work shows the ability of Rhizobium leguminosarum, growing in industrial wastewater as new economic medium, to produce EPS. This biopolymer could be applied in enormous biotechnological areas.


Asunto(s)
Polisacáridos Bacterianos/metabolismo , Rhizobium leguminosarum/crecimiento & desarrollo , Rhizobium leguminosarum/metabolismo , Aguas Residuales/microbiología , Industria de Alimentos , Residuos Industriales , Industria del Petróleo y Gas
20.
Braz. j. microbiol ; 46(2): 407-413, Apr-Jun/2015. tab, graf
Artículo en Inglés | LILACS | ID: lil-749745

RESUMEN

The objective of this study was to evaluate the exopolysaccharide (EPS) production by Rhizobium leguminosarum cultivated in wastewater generated by oil companies (WWOC1 and WWOC2) and fish processing industry (WWFP). The results obtained in Erlenmeyer flasks indicated that the rhizobial strain grew well in industrial wastewater. Generally, wastewater composition affected the growth and the EPS production. WWFP allowed good bacterial growth similar to that obtained with the standard medium (YMB). During growth, various quantities of EPS were produced and yields varied depending on the media. Growing in YMB, EPS production did not exceed 9.7 g/L obtained after 72 h of growth. In wastewater, the maximum EPS value reached 11.1 g/L obtained with the fish processing wastewater, after 72 h of growth. The use of a mixture of the oil company wastewater (WWOC2) and the fish processing wastewater (WWFP) as culture medium affected not only the rhizobial strain growth, but also EPS production. The highest EPS (42.4 g/L, after 96 h of culture) was obtained using a ratio of WWFP and WWOC2 of 50:50 (v:v). Therefore, this work shows the ability of Rhizobium leguminosarum, growing in industrial wastewater as new economic medium, to produce EPS. This biopolymer could be applied in enormous biotechnological areas.


Asunto(s)
Polisacáridos Bacterianos/metabolismo , Rhizobium leguminosarum/crecimiento & desarrollo , Rhizobium leguminosarum/metabolismo , Aguas Residuales/microbiología , Industria de Alimentos , Residuos Industriales , Industria del Petróleo y Gas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...