Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Cell Cycle ; 20(9): 839-854, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33938392

RESUMEN

Eukaryotic translation initiation factor 4E was recently shown to be a substrate of mTORC1, suggesting it may be a mediator of mTORC1 signaling. Here, we present evidence that eIF4E phosphorylated at S209 interacts with TOS motif of S6 Kinase1 (S6K1). We also show that this interaction is sufficient to overcome rapamycin sensitivity and mTORC1 dependence of S6K1. Furthermore, we show that eIF4E-TOS interaction relieves S6K1 from auto-inhibition due to carboxy terminal domain (CTD) and primes it for hydrophobic motif (HM) phosphorylation and activation in mTORC1 independent manner. We conclude that the role of mTORC1 is restricted to engaging eIF4E with S6K1-TOS motif to influence its state of HM phosphorylation and inducing its activation.


Asunto(s)
Factor 4E Eucariótico de Iniciación/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas Quinasas S6 Ribosómicas/química , Proteínas Quinasas S6 Ribosómicas/metabolismo , Secuencias de Aminoácidos , Animales , Línea Celular Tumoral , Activación Enzimática/efectos de los fármacos , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Modelos Biológicos , Células 3T3 NIH , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Sirolimus/farmacología
2.
FEBS Lett ; 594(4): 776-787, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31705659

RESUMEN

The S6 kinases (S6Ks) are known to be activated by the target of rapamycin through phosphorylation of their hydrophobic motif (HM). However, our previous research showed that the HM site of plant S6Ks is not phosphorylated and is not essential for their activity in yeast cells lacking Ypk3, an ortholog of mammalian S6K. Here, we demonstrate that the HM site of mammalian S6Ks is phosphorylated and is indispensable for their activity in yeast ypk3∆ cells. Furthermore, pseudo-phosphorylation at the HM site of plant S6Ks results in regaining of activity that is lost due to mutation in the conserved phosphorylation sites, namely the T-loop and Turn motif. These results indicate the activation mechanism of plant S6Ks is different from that of mammals.


Asunto(s)
Plantas/enzimología , Proteínas Quinasas S6 Ribosómicas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Activación Enzimática , Humanos , Fosforilación , Unión Proteica , Proteínas Quinasas S6 Ribosómicas/química , Especificidad de la Especie
3.
J Insect Sci ; 19(1)2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30715437

RESUMEN

Proteins p38 map kinase and ribosomal S6 kinase (S6K) as members of mitogen-activated protein kinases (MAPKs) play important roles against pathogens. In this study, Bmp38 and BmS6K were identified as differentially expressed proteins from iTRAQ database. Bmp38 and BmS6K were expressed, and recombinant proteins were purified. The bioinformatics analysis showed that both proteins have serine/threonine-protein kinases, catalytic domain (S_TKc) with 360 and 753 amino acids, respectively. The real-time quantitative polymerase chain reaction (RT-qPCR) results suggest that Bmp38 and BmS6K had high expression in the midgut and hemolymph. The comparative expression level of Bmp38 and BmS6K in BC9 was upregulated than in P50 in the midgut after Bombyx mori nucleopolyhedrovirus (BmNPV) infection. Western bolt results showed a positive correlation between RT-qPCR and iTRAQ data for Bmp38, but BmS6K data showed partial correlation with iTRAQ. Injection of anti-Bmp38 and anti-BmS6K serum suggested that Bmp38 may be involved against BmNPV infection, whereas BmS6K may require phosphorylation modification to inhibit BmNPV infection. Taken together, our results suggest that Bmp38 and BmS6k might play an important role in innate immunity of silkworm against BmNPV.


Asunto(s)
Bombyx/genética , Proteínas de Insectos/genética , Nucleopoliedrovirus/fisiología , Proteínas Quinasas S6 Ribosómicas/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Bombyx/crecimiento & desarrollo , Bombyx/inmunología , Bombyx/virología , Inmunidad Innata/genética , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Larva/genética , Larva/crecimiento & desarrollo , Larva/inmunología , Larva/virología , Filogenia , Proteínas Quinasas S6 Ribosómicas/química , Proteínas Quinasas S6 Ribosómicas/metabolismo , Alineación de Secuencia , Proteínas Quinasas p38 Activadas por Mitógenos/química , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
4.
Biochem Biophys Res Commun ; 501(3): 643-647, 2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29738770

RESUMEN

In our previous studies, we have demonstrated that a stretch of amino-acid sequences identified from Arabidopsis ribosomal S6 kinase 1 (AtS6K1) provided a plant version of the TOS (TOR-signaling) motif, mediating the interaction with the Raptor protein in the TOR (Target of Rapamycin) kinase complex. Here we report the presence of same element in Arabidopsis Autophagy related-13 (AtATG13) protein, which is a key component of the plant autophagy response. Its composition is nearly identical to that found in the AtS6K1 in the five-amino-acid core sequence, and the presence of this five-amino-acid sequence was found to be essential for its interaction with the Raptor protein. A mutant AtATG13 protein lacking this five-amino-acid element conferred an elevated autophagy response and could not effectively phosphorylated by TOR kinase activity, demonstrating its role in mediating the TOR signaling to the components that carry it as a possible TOS motif. A ligand-binding simulation model using the MM-PBSA method indicates that both of the five-amino-acid sequence elements of AtS6K1 and AtATG13 have strong probability of making stable interface with the Raptor binding pocket, corroborating our proposition for this element as the plant TOS motif.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Autofagia , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Quinasas/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Arabidopsis/química , Arabidopsis/citología , Proteínas de Arabidopsis/química , Modelos Moleculares , Fosforilación , Mapas de Interacción de Proteínas , Proteínas Quinasas/química , Proteína Reguladora Asociada a mTOR/metabolismo , Proteínas Quinasas S6 Ribosómicas/química , Proteínas Quinasas S6 Ribosómicas/metabolismo
5.
FEBS Lett ; 592(4): 610-620, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29355926

RESUMEN

The ribosomal protein S6 kinases (S6K) are among the major substrates and crucial effectors of the target of rapamycin (TOR) kinase, which is an evolutionarily conserved regulator of cell growth and proliferation. Recent research indicates that yeast Ypk3 is an ortholog of mammalian S6Ks. Here, we find that plant S6Ks restore ribosomal protein S6 phosphorylation in a rapamycin-sensitive manner in yeast cells lacking Ypk3. However, phosphorylation of a hydrophobic motif, which is mediated through TOR signaling and essential for mammalian S6K activity, is not detected in plant S6Ks. Furthermore, deletion of the N-terminal region of rice S6Ks shows phosphorylation of the hydrophobic motif and reduced rapamycin sensitivity. Our findings suggest a mechanism of plant S6K activation distinct from that of mammalian S6Ks.


Asunto(s)
Arabidopsis/enzimología , Oryza/enzimología , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Fosforilación , Dominios Proteicos , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Quinasas S6 Ribosómicas/química , Proteínas Quinasas S6 Ribosómicas/genética , Eliminación de Secuencia
6.
Biochem Biophys Res Commun ; 472(1): 83-7, 2016 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-26920057

RESUMEN

TOR (target of rapamycin) kinase signaling plays central role as a regulator of growth and proliferation in all eukaryotic cells and its key signaling components and effectors are also conserved in plants. Unlike the mammalian and yeast counterparts, however, we found through yeast two-hybrid analysis that multiple regions of the Arabidopsis Raptor (regulatory associated protein of TOR) are required for binding to its substrate. We also identified that a 44-amino acid region at the N-terminal end of Arabidopsis ribosomal S6 kinase 1 (AtS6K1) specifically interacted with AtRaptor1, indicating that this region may contain a functional equivalent of the TOS (TOR-Signaling) motif present in the mammalian TOR substrates. Transient over-expression of this 44-amino acid fragment in Arabidopsis protoplasts resulted in significant decrease in rDNA transcription, demonstrating a feasibility of developing a new plant-specific TOR signaling inhibitor based upon perturbation of the Raptor-substrate interaction.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sitios de Unión , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Plantas Modificadas Genéticamente , Dominios y Motivos de Interacción de Proteínas , Proteínas Quinasas S6 Ribosómicas/química , Proteínas Quinasas S6 Ribosómicas/genética , Transducción de Señal , Técnicas del Sistema de Dos Híbridos
7.
Am J Physiol Endocrinol Metab ; 306(12): E1397-405, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24801387

RESUMEN

The present project was designed to investigate phosphorylation of p70S6K1 in an animal model of skeletal muscle overload. Within 24 h of male Sprague-Dawley rats undergoing unilateral tenotomy to induce functional overloading of the plantaris muscle, phosphorylation of the Thr³89 and Thr4²¹/Ser4²4 sites on p70S6K1 was significantly elevated. Since the Thr4²¹/Ser4²4 sites are purportedly mammalian target of rapamycin complex 1 (mTORC1) independent, we sought to identify the kinase(s) responsible for their phosphorylation. Initially, we used IGF-I treatment of serum-deprived HEK-293E cells as an in vitro model system, because IGF-I promotes phosphorylation of p70S6K1 on both the Thr³89 and Thr4²¹/Ser4²4 sites in skeletal muscle and in cells in culture. We found that, whereas the mTOR inhibitor TORIN2 prevented the IGF-I-induced phosphorylation of the Thr4²¹/Ser4²4 sites, it surprisingly enhanced phosphorylation of these sites during serum deprivation. JNK inhibition with SP600125 attenuated phosphorylation of the Thr4²¹/Ser4²4 sites, and in combination with TORIN2 both the effect of IGF-I and the enhanced Thr4²¹/Ser4²4 phosphorylation during serum deprivation were ablated. In contrast, both JNK activation with anisomycin and knockdown of the mTORC2 subunit rictor specifically stimulated phosphorylation of the Thr4²¹/Ser4²4 sites, suggesting that mTORC2 represses JNK-mediated phosphorylation of these sites. The role of JNK in mediating p70S6K1 phosphorylation was confirmed in the animal model noted above, where rats treated with SP600125 exhibited attenuated Thr4²¹/Ser4²4 phosphorylation. Overall, the results provide evidence that the mTORC1 and JNK signaling pathways coordinate the site-specific phosphorylation of p70S6K1. They also identify a novel role for mTORC1 and mTORC2 in the inhibition of JNK.


Asunto(s)
Trastornos de Traumas Acumulados/metabolismo , Modelos Animales de Enfermedad , Sistema de Señalización de MAP Quinasas , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Complejos Multiproteicos/metabolismo , Músculo Esquelético/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Trastornos de Traumas Acumulados/fisiopatología , Células HEK293 , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Diana Mecanicista del Complejo 2 de la Rapamicina , Proteína Quinasa 8 Activada por Mitógenos/antagonistas & inhibidores , Complejos Multiproteicos/antagonistas & inhibidores , Complejos Multiproteicos/genética , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiopatología , Fosforilación/efectos de los fármacos , Dominios y Motivos de Interacción de Proteínas , Inhibidores de Proteínas Quinasas/farmacología , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteína Asociada al mTOR Insensible a la Rapamicina , Ratas , Ratas Sprague-Dawley , Proteínas Quinasas S6 Ribosómicas/química , Serina/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/genética , Treonina/metabolismo
8.
Cell Signal ; 25(5): 1054-63, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23403125

RESUMEN

S6 kinase is a member of the AGC family of serine/threonine kinases and plays a key role in diverse cellular processes including cell growth and metabolism. Although, the high degree of homology between S6K family members (S6K1 and S6K2) in kinase and kinase-extension domains, the two proteins are highly divergent in the N- and C-terminal regulatory regions, hinting at differential regulation, downstream signalling and cellular function. Deregulated signalling via S6Ks has been linked to various human pathologies, such as diabetes and cancer. Therefore, S6K has emerged as a promising target for drug development. Much of what we know about S6K signalling in health and disease comes from studies of S6K1, as molecular cloning of this isoform was reported a decade earlier than S6K2. In this study, we report for the first time, the identification of the general transcription factor Yin Yang 1 (YY1) as a novel and specific binding partner of S6K2, but not S6K1. The interaction between YY1 and S6K2 was demonstrated by co-immunoprecipitation of transiently overexpressed and endogenous proteins in a number of cell lines, including HEK293, MCF7 and U937. Furthermore, direct association between S6K2 and YY1 was demonstrated by GST pull-down assay using recombinant proteins. A panel of deletion mutants was used to show that the C-terminal regulatory region of S6K2 mediates the interaction with YY1. Interestingly, the complex formation between S6K2 and YY1 can be detected in serum-starved cells, but the interaction is strongly induced in response to mitogenic stimulation. The induction of S6K2/YY1 complex formation in response to serum stimulation is abolished by pre-treatment of cells with the mTOR inhibitor, rapamycin. Furthermore, mTOR is also detected in complex with YY1 and S6K2 in serum-stimulated cells. We utilized size exclusion chromatography along with co-immunoprecipitation analysis to demonstrate the existence of the mTOR/S6K2/YY1 complex in high molecular weight fractions, which might also involve other cellular proteins. The physiological significance of the mTOR/S6K2/YY1 complex, which is induced in response to mitogenic stimulation, remains to be further investigated.


Asunto(s)
Proteínas Quinasas S6 Ribosómicas/metabolismo , Factor de Transcripción YY1/metabolismo , Línea Celular , Células HEK293 , Humanos , Inmunoprecipitación , Células MCF-7 , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Quinasas S6 Ribosómicas/química , Proteínas Quinasas S6 Ribosómicas/genética , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Factor de Transcripción YY1/química , Factor de Transcripción YY1/genética
9.
Biochim Biophys Acta ; 1834(3): 677-87, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23313095

RESUMEN

Ribosomal protein S6 fibrillates readily at slightly elevated temperatures and acidic pH. We find that S6 fibrillation is retarded rather than favored when the protein concentration is increased above a threshold concentration of around 3.5mg/mL. We name this threshold concentration C(FR), the concentration at which fibrillation is retarded. Our data are consistent with a model in which this inhibition is due to the formation of an off-pathway oligomeric species with native-like secondary structure. The oligomeric species dominates at high protein concentrations but exists in dynamic equilibrium with the monomer so that seeding with fibrils can overrule oligomer formation and favors fibrillation under C(FR) conditions. Thus, fibrillation competes with formation of off-pathway oligomers, probably due to a monomeric conversion step that is required to commit the protein to the fibrillation pathway. The S6 oligomer is resistant to pepsin digestion. We also report that S6 forms different types of fibrils dependent on protein concentration. Our observations highlight the multitude of conformational states available to proteins under destabilizing conditions.


Asunto(s)
Conformación Proteica , Multimerización de Proteína , Proteínas Quinasas S6 Ribosómicas/química , Proteínas Quinasas S6 Ribosómicas/metabolismo , Dicroismo Circular , Electroforesis en Gel de Poliacrilamida , Concentración de Iones de Hidrógeno , Cinética , Microscopía de Fuerza Atómica , Modelos Químicos , Modelos Moleculares , Mutación , Proteolisis , Proteínas Quinasas S6 Ribosómicas/genética , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Factores de Tiempo
11.
J Biol Chem ; 285(16): 12255-67, 2010 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-20177060

RESUMEN

Long-term facilitation (LTF) in Aplysia is a leading cellular model for elucidating the biochemical mechanisms of synaptic plasticity underlying learning. In Aplysia, LTF requires translational control downstream of the target of rapamycin (TOR) complex 1 (TORC1). The major known downstream targets of TORC1 are 4E binding protein (4E-BP) and S6 kinase (S6K). By removing the site within these regulators required for their interaction with TORC1, we have generated dominant negative proteins that disrupt specific pathways downstream of TORC1. Expression of dominant negative S6K, but not dominant negative 4E-BP, in Aplysia sensory neurons (SNs) blocked 24-h LTF. TORC1 is directly activated by the small GTP-binding protein, Ras homologue enriched in brain (Rheb). To determine the effects of TORC1 activation on translation in Aplysia neurons, we have examined the effects of expressing a constitutively active form of the Aplysia orthologue of Rheb, ApRheb (ApRheb(Q63L)). Expression of ApRheb(Q63L) increased 4E-BP phosphorylation and the level of general, cap-dependent translation within the SN cell soma in a rapamycin-sensitive manner. This increase in cap-dependent translation was blocked neither by dominant negative 4E-BP nor dominant negative S6K. Thus, we demonstrate that S6K is an important downstream target of TORC1 in Aplysia and that it is necessary for 24-h LTF, but not for TORC1-mediated increases in somatic cap-dependent translation.


Asunto(s)
Aplysia/fisiología , Potenciación a Largo Plazo/fisiología , Proteínas Quinasas S6 Ribosómicas/fisiología , Secuencia de Aminoácidos , Animales , Aplysia/genética , Secuencia de Bases , Cartilla de ADN/genética , Fenómenos Electrofisiológicos , Factores Eucarióticos de Iniciación/metabolismo , Modelos Neurológicos , Datos de Secuencia Molecular , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/fisiología , Mutagénesis , Neuropéptidos/genética , Neuropéptidos/fisiología , Biosíntesis de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Quinasas S6 Ribosómicas/química , Proteínas Quinasas S6 Ribosómicas/genética , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/fisiología , Homología de Secuencia de Aminoácido , Transducción de Señal , Sirolimus/farmacología
12.
Blood ; 114(8): 1585-95, 2009 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-19531656

RESUMEN

Constitutive expression of the chimeric NPM/ALK fusion protein encoded by the t(2;5)(p32;q35) is a key oncogenic event in the pathogenesis of most anaplastic large cell lymphomas (ALCLs). The proteomic network alterations produced by this aberration remain largely uncharacterized. Using a mass spectrometry (MS)-driven approach to identify changes in protein expression caused by the NPM/ALK fusion, we identified diverse NPM/ALK-induced changes affecting cell proliferation, ribosome synthesis, survival, apoptosis evasion, angiogenesis, and cytoarchitectural organization. MS-based findings were confirmed using Western blotting and/or immunostaining of NPM/ALK-transfected cells and ALK-deregulated lymphomas. A subset of the proteins distinguished NPM/ALK-positive ALCLs from NPM/ALK-negative ALCLs and Hodgkin lymphoma. The multiple NPM/ALK-deregulated pathways identified by MS analysis also predicted novel biologic effects of NPM/ALK expression. In this regard, we showed loss of cell adhesion as a consequence of NPM/ALK expression in a kinase-dependent manner, and sensitivity of NPM/ALK-positive ALCLs to inhibition of the RAS, p42/44ERK, and FRAP/mTOR signaling pathways. These findings reveal that the NPM/ALK alteration affects diverse cellular pathways, and provide novel insights into NPM/ALK-positive ALCL pathobiology. Our studies carry important implications for the use of MS-driven approaches for the elucidation of neoplastic pathobiology, the identification of novel diagnostic biomarkers, and pathogenetically relevant therapeutic targets.


Asunto(s)
Linfoma Anaplásico de Células Grandes/metabolismo , Redes y Vías Metabólicas , Proteínas Tirosina Quinasas/metabolismo , Proteoma/análisis , Secuencia de Aminoácidos , Regulación Neoplásica de la Expresión Génica , Humanos , Células Jurkat , Redes y Vías Metabólicas/genética , Redes y Vías Metabólicas/fisiología , Modelos Biológicos , Datos de Secuencia Molecular , Proteínas Tirosina Quinasas/genética , Proteoma/metabolismo , Proteómica , Proteínas Quinasas S6 Ribosómicas/química , Proteínas Quinasas S6 Ribosómicas/metabolismo , Análisis de Matrices Tisulares , Transfección , Células Tumorales Cultivadas
13.
J Biol Chem ; 283(18): 11972-80, 2008 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-18326039

RESUMEN

S6K1 is a member of the AGC subfamily of serine-threonine protein kinases, whereby catalytic activation requires dual phosphorylation of critical residues in the conserved T-loop (Thr-229) and hydrophobic motif (Thr-389). Previously, we described production of the fully activated catalytic kinase domain construct, His(6)-S6K1alphaII(DeltaAID)-T389E. Now, we report its kinetic mechanism for catalyzing phosphorylation of a model peptide substrate (Tide, RRRLSSLRA). First, two-substrate steady-state kinetics and product inhibition patterns indicated a Steady-State Ordered Bi Bi mechanism, whereby initial high affinity binding of ATP (K(d)(ATP)=5-6 microM) was followed by low affinity binding of Tide (K(d)(Tide)=180 microM), and values of K(m)(ATP)=5-6 microM and K(m)(Tide)=4-5 microM were expressed in the active ternary complex. Global curve-fitting analysis of ATP, Tide, and ADP titrations of pre-steady-state burst kinetics yielded microscopic rate constants for substrate binding, rapid chemical phosphorylation, and rate-limiting product release. Catalytic trapping experiments confirmed rate-limiting steps involving release of ADP. Pre-steady-state kinetic and catalytic trapping experiments showed osmotic pressure to increase the rate of ADP release; and direct binding experiments showed osmotic pressure to correspondingly weaken the affinity of the enzyme for both ADP and ATP, indicating a less hydrated conformational form of the free enzyme.


Asunto(s)
Proteínas Quinasas S6 Ribosómicas/metabolismo , Adenosina Difosfato/metabolismo , Activación Enzimática , Cinética , Modelos Biológicos , Proteínas Mutantes/metabolismo , Fosforilación , Conformación Proteica , Proteínas Quinasas S6 Ribosómicas/química , Especificidad por Sustrato
14.
Biochim Biophys Acta ; 1784(2): 400-14, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18083130

RESUMEN

Anionic surfaces promote protein fibrillation in vitro and in vivo. Monomeric SDS has also been shown to stimulate this process. We describe the dynamics of conformational changes and aggregative properties of the model protein S6 at sub-micellar SDS concentrations. S6 exhibits a rich and pH-sensitive diversity in conformational changes around 0.2-2 mM SDS, in which several transitions occur over time scales spanning milliseconds to hours. Monomeric SDS readily precipitates S6 within minutes at pH-values of 5 and below to form states able to bind the fibril-specific dye thioflavin T. At pH 5.5, the process is much slower and shows a mutagenesis-sensitive lag, leading to different forms of organized but not classically fibrillar aggregates with native-like levels of secondary structure, although the tertiary structure is significantly rearranged. The slow aggregation process may be linked to conformational changes that occur at the second-time scale in the same SDS concentration range, leading to an altered structure, possibly with unfolding around the C-terminal helix. The S6 aggregates may be differently trapped states, equivalent to pre-fibrillar structures seen at early stages in the fibrillation process for other proteins. The low quantities of anionic species required suggest that the aggregates may have parallels in vivo.


Asunto(s)
Micelas , Proteínas Quinasas S6 Ribosómicas/química , Dodecil Sulfato de Sodio , Calorimetría , Concentración de Iones de Hidrógeno , Cinética , Microscopía de Fuerza Atómica , Conformación Proteica , Desnaturalización Proteica/efectos de los fármacos , Pliegue de Proteína , Proteínas Quinasas S6 Ribosómicas/metabolismo , Proteínas Quinasas S6 Ribosómicas/ultraestructura , Sensibilidad y Especificidad , Dodecil Sulfato de Sodio/química , Dodecil Sulfato de Sodio/farmacología , Temperatura , Volumetría
15.
Growth Factors ; 25(4): 209-26, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18092230

RESUMEN

Current understanding of the mechanisms by which cell growth is regulated lags significantly behind our knowledge of the complex processes controlling cell cycle progression. Recent studies suggest that the mammalian target of rapamycin (mTOR) pathway is a key regulator of cell growth via the regulation of protein synthesis. The key mTOR effectors of cell growth are eukaryotic initiation factor 4E-binding protein 1 (4EBP-1) and the ribosomal protein S6 kinase (S6K). Here we will review the current models for mTOR dependent regulation of ribosome function and biogenesis as well as its role in coordinating growth factor and nutrient signaling to facilitate homeostasis of cell growth and proliferation. We will place particular emphasis on the role of S6K1 signaling and will highlight the points of cross talk with other key growth control pathways. Finally, we will discuss the impact of S6K signaling and the consequent feedback regulation of the PI3K/Akt pathway on disease processes including cancer.


Asunto(s)
Proteínas Quinasas S6 Ribosómicas/fisiología , Ribosomas/metabolismo , Procesos de Crecimiento Celular , Fosfatidilinositol 3-Quinasas/metabolismo , Biosíntesis de Proteínas , Proteínas Quinasas/metabolismo , ARN Ribosómico/biosíntesis , Proteínas Quinasas S6 Ribosómicas/química , Proteínas Quinasas S6 Ribosómicas/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR
16.
Bioorg Med Chem ; 15(14): 5018-34, 2007 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-17512736

RESUMEN

Inappropriate activity of p90 ribosomal S6 kinase (RSK) has been implicated in various human cancers as well as other pathologies. We previously reported the isolation, characterization, and synthesis of the natural product kaempferol 3-O-(3'',4''-di-O-acetyl-alpha-l-rhamnopyranoside), termed SL0101 [Smith, J. A.; Poteet-Smith, C. E.; Xu, Y.; Errington, T. M.; Hecht, S. M.; Lannigan, D. A. Cancer Res., 2005, 65, 1027-1034: Xu, Y.-M; Smith, J. A.; Lannigan, D. A.; Hecht, S. M. Bioorg. Med. Chem., 2006, 14, 3974-3977: Maloney, D. J.; Hecht, S. M. Org. Lett., 2005, 7, 1097-1099]. SL0101 is a potent and specific inhibitor of RSK; therefore, we performed an analysis of the structural basis for the inhibitory activity of this lead compound. In in vitro kinase assays we found that acylation of the rhamnose moiety and the 4', 5, and 7-hydroxyl groups are responsible for maintaining a high affinity interaction of RSK with SL0101. It is likely that the hydroxyl groups facilitate RSK binding through their ability to form hydrogen bonds. To determine whether the SL0101 derivatives were specific for inhibition of RSK we analyzed their ability to preferentially inhibit the growth of the human breast cancer line, MCF-7, compared to the normal human breast line, MCF-10A. We have previously validated this differential growth assay as a convenient readout for analyzing the specificity of RSK inhibitors [Smith, J. A.; Maloney, D. J.; Clark, D. E.; Xu, Y.-M.; Hecht, S. M.; Lannigan, D. A. Bioorg. Med. Chem., 2006, 14, 6034-6042]. We found that acylation of the rhamnose moiety was essential for maintaining the selectivity for RSK inhibition in intact cells. Further, the efficacy of SL0101 in intact cells is limited by cellular uptake as well as possible hydrolysis of the acetyl groups on the rhamnose moiety by ubiquitous intracellular esterases. These studies should facilitate the development of a RSK inhibitor, based on the SL0101 pharmacophore, as an anti-cancer chemotherapeutic agent.


Asunto(s)
Benzopiranos/química , Benzopiranos/farmacología , Monosacáridos/química , Monosacáridos/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas S6 Ribosómicas/antagonistas & inhibidores , Proteínas Quinasas S6 Ribosómicas/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Alquilación , Benzopiranos/síntesis química , Línea Celular Tumoral , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Hidroxilación , Quempferoles/síntesis química , Quempferoles/química , Quempferoles/farmacología , Modelos Moleculares , Estructura Molecular , Monosacáridos/síntesis química , Inhibidores de Proteínas Quinasas/síntesis química , Ramnosa/síntesis química , Ramnosa/química , Ramnosa/farmacología , Proteínas Quinasas S6 Ribosómicas/química , Relación Estructura-Actividad
17.
Plant Cell ; 18(2): 477-90, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16377759

RESUMEN

TARGET OF RAPAMYCIN (TOR) kinase controls many cellular functions in eukaryotic cells in response to stress and nutrient availability and was shown to be essential for embryonic development in Arabidopsis thaliana. We demonstrated that Arabidopsis RAPTOR1 (a TOR regulatory protein) interacts with the HEAT repeats of TOR and that RAPTOR1 regulates the activity of S6 kinase (S6K) in response to osmotic stress. RAPTOR1 also interacts in vivo with Arabidopsis S6K1, a putative substrate for TOR. S6K1 fused to green fluorescent protein and immunoprecipitated from tobacco (Nicotiana tabacum) leaves after transient expression was active in phosphorylating the Arabidopsis ribosomal S6 protein. The catalytic domain of S6K1 could be phosphorylated by Arabidopsis 3-phosphoinositide-dependent protein kinase-1 (PDK1), indicating the involvement of PDK1 in the regulation of S6K. The S6K1 activity was sensitive to osmotic stress, while PDK1 activity was not affected. However, S6K1 sensitivity to osmotic stress was relieved by co-overexpression of RAPTOR1. Overall, these observations demonstrated the existence of a functional TOR kinase pathway in plants. However, Arabidopsis seedlings do not respond to normal physiological levels of rapamycin, which appears to be due its inability to bind to the Arabidopsis homolog of FKBP12, a protein that is essential for the binding of rapamycin with TOR. Replacement of the Arabidopsis FKBP12 with the human FKBP12 allowed rapamycin-dependent interaction with TOR. Since homozygous mutation in TOR is lethal, it suggests that this pathway is essential for integrating the stress signals into the growth regulation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo , Transducción de Señal , Proteínas Quinasas Dependientes de 3-Fosfoinosítido , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Exones/genética , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Presión Osmótica , Fosfatidilinositol 3-Quinasas , Fosforilación , Plantas Modificadas Genéticamente/anatomía & histología , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas Quinasas S6 Ribosómicas/química , Proteína 1A de Unión a Tacrolimus/metabolismo
18.
J Biol Chem ; 280(20): 19445-8, 2005 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-15809305

RESUMEN

The mTOR protein kinase is the target of the immunosuppressive and anti-cancer drug rapamycin and is increasingly recognized as a key regulator of cell growth in mammals. S6 kinase 1 (S6K1) is the best characterized effector of mTOR, and its regulation serves as a model for mTOR signaling. Nutrients and growth factors activate S6K1 by inducing the phosphorylation of threonine 389 in the hydrophobic motif of S6K1. As phosphorylation of Thr(389) is rapamycin sensitive and mTOR can phosphorylate the same site in vitro, it has been suggested that mTOR is the physiological Thr(389) kinase. This proposal is not supported, however, by the existence of mutants of S6K1 that are phosphorylated in vivo on Thr(389) in a rapamycin-resistant fashion. Here, we demonstrate that the raptor-mTOR complex phosphorylates the rapamycin-sensitive forms of S6K1, while the distinct rictor-mTOR complex phosphorylates the rapamycin-resistant mutants of S6K1. Phosphorylation of Thr(389) by rictor-mTOR is independent of the TOR signaling motif and depends on removal of the carboxyl terminal domain of S6K1. Because many members of the AGC family of kinases lack an analogous domain, rictor-mTOR may phosphorylate the hydrophobic motifs of other kinases.


Asunto(s)
Proteínas Quinasas/metabolismo , Proteínas Quinasas S6 Ribosómicas/química , Proteínas Quinasas S6 Ribosómicas/metabolismo , Secuencias de Aminoácidos , Animales , Dominio Catalítico/genética , Línea Celular , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Técnicas In Vitro , Modelos Biológicos , Mutagénesis Sitio-Dirigida , Fosforilación , Proteínas Quinasas/genética , Estructura Terciaria de Proteína , Interferencia de ARN , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Quinasas S6 Ribosómicas/genética , Serina-Treonina Quinasas TOR , Treonina/química
19.
Mol Cells ; 19(1): 39-45, 2005 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-15750338

RESUMEN

RPK118 is a sphingosine kinase-1-binding protein that has been implicated in sphingosine 1 phosphate-mediated signaling. It contains a PX (phox homology) domain and two pseudo-kinase domains, and co-localizes with sphingosine kinase-1 on early endosomes. In this study we identified a novel RPK118-binding protein, PRDX3 (peroxiredoxin-3), by yeast two-hybrid screening. The interaction between these proteins was confirmed by pull-down assays and co-immunoprecipitation experiments. Deletion studies showed that RPK118 interacted with PRDX3 through its pseudokinase domains, and with early endosomes through its PX domain. Double immunofluorescence experiments demonstrated that PRDX3 co-localized with RPK118 on early endosomes in COS7 cells. PRDX3 is a member of the antioxidant family of proteins synthesized in the cytoplasm and functioning in mitochondria. Our findings indicate that RPK118 is a PRDX3-binding protein that may be involved in transporting PRDX3 from the cytoplasm to its mitochondrial site of function or to other membrane structures via endosome trafficking.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Neoplasias/metabolismo , Fosfotransferasas/genética , Estructura Terciaria de Proteína , Proteínas Quinasas S6 Ribosómicas/metabolismo , Animales , Células COS , Chlorocebus aethiops , Citoplasma/metabolismo , Endosomas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Proteínas de Neoplasias/química , Peroxidasas , Peroxiredoxina III , Peroxirredoxinas , Fosfotransferasas (Aceptor de Grupo Alcohol)/biosíntesis , Transporte de Proteínas , Proteínas Quinasas S6 Ribosómicas/química , Técnicas del Sistema de Dos Híbridos
20.
FEBS Lett ; 578(3): 357-62, 2004 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-15589845

RESUMEN

Ribosomal protein S6 kinase (S6K) is a key regulator of cell size and growth. It is regulated via phosphoinositide 3-kinases (PI3K) and the mammalian target of rapamycin (mTOR) signaling pathways. We demonstrate for the first time that CoA synthase associates specifically with S6K1. The association was observed between native and transiently overexpressed proteins in vivo, as well as by BIAcore analysis in vitro. The sites of interaction were mapped to the C-terminal regions of both CoA synthase and S6K1. In vitro studies indicated that the interaction does not affect their enzymatic activities and that CoA synthase is not a substrate for S6 kinase. This study uncovers a potential link between mTor/S6K signaling pathway and energy metabolism through CoA and its thioester derivatives, but its physiological relevance should be further elucidated.


Asunto(s)
Acetato CoA Ligasa/biosíntesis , Metabolismo Energético , Proteínas Quinasas/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo , Transducción de Señal , Acetato CoA Ligasa/química , Secuencia de Aminoácidos , Neoplasias de la Mama/metabolismo , Línea Celular , Línea Celular Tumoral , Tamaño de la Célula , Femenino , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Quinasas S6 Ribosómicas/química , Resonancia por Plasmón de Superficie , Serina-Treonina Quinasas TOR
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...