Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(29): e2202464119, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35858322

RESUMEN

RtcB is involved in transfer RNA (tRNA) splicing in archaeal and eukaryotic organisms. However, most RtcBs are found in bacteria, whose tRNAs have no introns. Because tRNAs are the substrates of archaeal and eukaryotic RtcB, it is assumed that bacterial RtcBs are for repair of damaged tRNAs. Here, we show that a subset of bacterial RtcB, denoted RtcB2 herein, specifically repair ribosomal damage in the decoding center. To access the damage site for repair, however, the damaged 70S ribosome needs to be dismantled first, and this is accomplished by bacterial PrfH. Peptide-release assays revealed that PrfH is only active with the damaged 70S ribosome but not with the intact one. A 2.55-Å cryo-electron microscopy structure of PrfH in complex with the damaged 70S ribosome provides molecular insight into PrfH discriminating between the damaged and the intact ribosomes via specific recognition of the cleaved 3'-terminal nucleotide. RNA repair assays demonstrated that RtcB2 efficiently repairs the damaged 30S ribosomal subunit but not the damaged tRNAs. Cell-based assays showed that the RtcB2-PrfH pair reverse the damage inflicted by ribosome-specific ribotoxins in vivo. Thus, our combined biochemical, structural, and cell-based studies have uncovered a bacterial defense system specifically evolved to reverse the lethal ribosomal damage in the decoding center for cell survival.


Asunto(s)
Aminoacil-ARNt Sintetasas , Proteínas de Escherichia coli , Subunidades Ribosómicas Grandes Bacterianas , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Microscopía por Crioelectrón , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Conformación Proteica , Empalme del ARN , ARN de Transferencia/química , Subunidades Ribosómicas Grandes Bacterianas/efectos de los fármacos , Subunidades Ribosómicas Grandes Bacterianas/metabolismo
2.
Bioorg Med Chem ; 38: 116138, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33857737

RESUMEN

A series of novel pleuromutilin derivatives were designed and synthesized with 1,2,4-triazole as the linker connected to benzoyl chloride analogues under mild conditions. The in vitro antibacterial activities of the synthesized derivatives against four strains of Staphylococcus aureus (MRSA ATCC 43300, ATCC 29213, AD3 and 144) were tested by the broth dilution method. Most of the synthesized derivatives displayed potent activities, and 22-(3-amino-2-(4-methyl-benzoyl)-1,2,4-triazole-5-yl)-thioacetyl)-22-deoxypleuromutilin (compound 12) was found to be the most active antibacterial derivative against MRSA (MIC = 0.125 µg/mL). Furthermore, the time-kill curves showed compound 12 had a certain inhibitory effect against MRSA in vitro. The in vivo antibacterial activity of compound 12 was further evaluated using MRSA infected murine thigh model. Compound 12 exhibited superior antibacterial efficacy than tiamulin. It was also found that compound 12 had no significant inhibitory effect on the proliferation of RAW264.7 cells. Compound 12 was further evaluated in CYP450 inhibition assay and showed moderate inhibitory effect on CYP3A4 (IC50 = 3.95 µM). Moreover, seven candidate compounds showed different affinities with the 50S ribosome by SPR measurement. Subsequently, binding of compound 12 and 20 to the 50S ribosome was further investigated by molecular modeling. Three strong hydrogen bonds were formed through the interaction of compound 12 and 20 with 50S ribosome. The binding free energy of compound 12 and 20 with the ribosome was calculated to be -10.7 kcal/mol and -11.66 kcal/mol, respectively.


Asunto(s)
Antibacterianos/farmacología , Diterpenos/farmacología , Diseño de Fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Compuestos Policíclicos/farmacología , Subunidades Ribosómicas Grandes Bacterianas/efectos de los fármacos , Animales , Antibacterianos/síntesis química , Antibacterianos/química , Supervivencia Celular/efectos de los fármacos , Diterpenos/síntesis química , Diterpenos/química , Relación Dosis-Respuesta a Droga , Femenino , Ratones , Ratones Endogámicos ICR , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Compuestos Policíclicos/síntesis química , Compuestos Policíclicos/química , Células RAW 264.7 , Relación Estructura-Actividad , Pleuromutilinas
3.
Sci Rep ; 9(1): 11460, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31391518

RESUMEN

The clinical use of the antibiotic erythromycin (ery) is hampered owing to the spread of resistance genes that are mostly mutating rRNA around the ery binding site at the entrance to the protein exit tunnel. Additional effective resistance mechanisms include deletion or insertion mutations in ribosomal protein uL22, which lead to alterations of the exit tunnel shape, located 16 Å away from the drug's binding site. We determined the cryo-EM structures of the Staphylococcus aureus 70S ribosome, and its ery bound complex with a two amino acid deletion mutation in its ß hairpin loop, which grants the bacteria resistance to ery. The structures reveal that, although the binding of ery is stable, the movement of the flexible shorter uL22 loop towards the tunnel wall creates a wider path for nascent proteins, thus enabling bypass of the barrier formed by the drug. Moreover, upon drug binding, the tunnel widens further.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/ultraestructura , Farmacorresistencia Bacteriana/genética , Eritromicina/farmacología , Proteínas Ribosómicas/ultraestructura , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/uso terapéutico , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Eritromicina/uso terapéutico , Humanos , Mutación , Unión Proteica/genética , ARN Ribosómico 23S/metabolismo , ARN Ribosómico 23S/ultraestructura , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/efectos de los fármacos , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/ultraestructura , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo , Ribosomas/ultraestructura , Imagen Individual de Molécula , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética , Staphylococcus aureus/ultraestructura
4.
Future Microbiol ; 14: 927-939, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31333062

RESUMEN

Despite the increasing availability of antibiotics with activity against pathogens that cause community-acquired pneumonia (CAP), CAP remains a major cause of morbidity, hospital admissions and re-admissions, and mortality. Lefamulin is a novel pleuromutilin antibiotic with potent in vitro activity against both typical and atypical CAP pathogens. In this review of the medical literature, we summarize the available information, including mounting clinical evidence, about lefamulin and its potential value in CAP.


Asunto(s)
Antibacterianos/uso terapéutico , Bacterias/efectos de los fármacos , Diterpenos/farmacología , Diterpenos/uso terapéutico , Neumonía/tratamiento farmacológico , Compuestos Policíclicos/farmacología , Compuestos Policíclicos/uso terapéutico , Tioglicolatos/farmacología , Tioglicolatos/uso terapéutico , Antibacterianos/efectos adversos , Antibacterianos/química , Antibacterianos/farmacología , Bacterias/aislamiento & purificación , Infecciones Comunitarias Adquiridas/tratamiento farmacológico , Infecciones Comunitarias Adquiridas/microbiología , Diterpenos/efectos adversos , Diterpenos/química , Humanos , Estructura Molecular , Neumonía/microbiología , Compuestos Policíclicos/efectos adversos , Compuestos Policíclicos/química , Subunidades Ribosómicas Grandes Bacterianas/efectos de los fármacos , Tioglicolatos/efectos adversos , Tioglicolatos/química , Resultado del Tratamiento , Pleuromutilinas
5.
Methods ; 156: 110-120, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30391513

RESUMEN

Among different RNA modifications, the helix 69 (H69) region of the bacterial ribosomal RNA (rRNA) contains three pseudouridines (Ψs). H69 is functionally important due to its location in the heart of the ribosome. Several structural and functional studies have shown the importance of Ψ modifications in influencing the H69 conformation as well as maintaining key interactions in the ribosome during protein synthesis. Therefore, a need exists to understand the influence of modified nucleosides on conformational dynamics of the ribosome under solution conditions that mimic the cellular environment. In this review on chemical probing, we provide detailed protocols for the use of dimethyl sulfate (DMS) to examine H69 conformational states and the influence of Ψ modifications under varying solution conditions in the context of both ribosomal subunits and full ribosomes. The use of DMS footprinting to study the binding of aminoglycosides to the H69 region of bacterial rRNA as a potential antibiotic target will also be discussed. As highlighted in this work, DMS probing and footprinting are versatile techniques that can be used to gain important insight into RNA local structure and RNA-ligand interactions, respectively.


Asunto(s)
Escherichia coli/genética , Impresión Molecular/métodos , Seudouridina/química , ARN Ribosómico 16S/química , ARN Ribosómico 23S/química , Compuestos de Anilina/química , Antibacterianos/farmacología , Fraccionamiento Celular/métodos , ADN Complementario/biosíntesis , ADN Complementario/química , ADN Complementario/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Gentamicinas/farmacología , Hidroliasas/genética , Hidroliasas/metabolismo , Ligandos , Cloruro de Magnesio/farmacología , Neomicina/farmacología , Conformación de Ácido Nucleico , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/metabolismo , Seudouridina/genética , Seudouridina/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , ARN Ribosómico 23S/genética , ARN Ribosómico 23S/metabolismo , Transcripción Reversa , Subunidades Ribosómicas Grandes Bacterianas/química , Subunidades Ribosómicas Grandes Bacterianas/efectos de los fármacos , Subunidades Ribosómicas Grandes Bacterianas/genética , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/química , Subunidades Ribosómicas Pequeñas Bacterianas/efectos de los fármacos , Subunidades Ribosómicas Pequeñas Bacterianas/genética , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Ribosomas/química , Ribosomas/efectos de los fármacos , Ribosomas/genética , Ribosomas/metabolismo , Ésteres del Ácido Sulfúrico/química
6.
J Mol Biol ; 430(6): 842-852, 2018 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-29410130

RESUMEN

Antibiotic chloramphenicol (CHL) binds with a moderate affinity at the peptidyl transferase center of the bacterial ribosome and inhibits peptide bond formation. As an approach for modifying and potentially improving properties of this inhibitor, we explored ribosome binding and inhibitory activity of a number of amino acid analogs of CHL. The L-histidyl analog binds to the ribosome with the affinity exceeding that of CHL by 10 fold. Several of the newly synthesized analogs were able to inhibit protein synthesis and exhibited the mode of action that was distinct from the action of CHL. However, the inhibitory properties of the semi-synthetic CHL analogs did not correlate with their affinity and in general, the amino acid analogs of CHL were less active inhibitors of translation in comparison with the original antibiotic. The X-ray crystal structures of the Thermus thermophilus 70S ribosome in complex with three semi-synthetic analogs showed that CHL derivatives bind at the peptidyl transferase center, where the aminoacyl moiety of the tested compounds established idiosyncratic interactions with rRNA. Although still fairly inefficient inhibitors of translation, the synthesized compounds represent promising chemical scaffolds that target the peptidyl transferase center of the ribosome and potentially are suitable for further exploration.


Asunto(s)
Aminoácidos/farmacología , Antibacterianos/farmacología , Cloranfenicol/farmacología , Unión Proteica/efectos de los fármacos , Subunidades Ribosómicas Grandes Bacterianas/efectos de los fármacos , Sitios de Unión , Cloranfenicol/metabolismo , Cristalografía por Rayos X , Escherichia coli/metabolismo , Modelos Moleculares , Peptidil Transferasas/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Conformación Proteica , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Thermus thermophilus/metabolismo
7.
Nucleic Acids Res ; 45(17): 10284-10292, 2017 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-28973455

RESUMEN

Antimicrobial resistance within a wide range of pathogenic bacteria is an increasingly serious threat to global public health. Among these pathogenic bacteria are the highly resistant, versatile and possibly aggressive bacteria, Staphylococcus aureus. Lincosamide antibiotics were proved to be effective against this pathogen. This small, albeit important group of antibiotics is mostly active against Gram-positive bacteria, but also used against selected Gram-negative anaerobes and protozoa. S. aureus resistance to lincosamides can be acquired by modifications and/or mutations in the rRNA and rProteins. Here, we present the crystal structures of the large ribosomal subunit of S. aureus in complex with the lincosamides lincomycin and RB02, a novel semisynthetic derivative and discuss the biochemical aspects of the in vitro potency of various lincosamides. These results allow better understanding of the drugs selectivity as well as the importance of the various chemical moieties of the drug for binding and inhibition.


Asunto(s)
Lincosamidas/farmacología , Subunidades Ribosómicas Grandes Bacterianas/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Benzamidas/química , Benzamidas/farmacología , Sitios de Unión , Clindamicina/química , Clindamicina/farmacología , Cristalización , Cristalografía por Rayos X , Farmacorresistencia Microbiana , Galactósidos/química , Galactósidos/farmacología , Enlace de Hidrógeno , Lincomicina/química , Lincomicina/farmacología , Lincosamidas/química , Estructura Molecular , Subunidades Ribosómicas Grandes Bacterianas/ultraestructura , Staphylococcus aureus/ultraestructura , Electricidad Estática , Relación Estructura-Actividad
8.
J Pept Sci ; 22(9): 592-9, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27406684

RESUMEN

Recent surveillance data on antimicrobial resistance predict the beginning of the post-antibiotic era with pan-resistant bacteria even overcoming polymyxin as the last available treatment option. Thus, new substances using novel modes of antimicrobial action are urgently needed to reduce this health threat. Antimicrobial peptides are part of the innate immune system of most vertebrates and invertebrates and accepted as valid substances for antibiotic drug development efforts. Especially, short proline-rich antimicrobial peptides (PrAMP) of insect origin have been optimized for activity against Gram-negative strains. They inhibit protein expression in bacteria by blocking the 70S ribosome exit tunnel (oncocin-type) or the assembly of the 50S subunit (apidaecin-type binding). Thus, apidaecin analog Api137 and oncocin analog Onc112 supposedly bind to different nearby or possibly partially overlapping binding sites. Here, we synthesized Api137/Onc112-conjugates bridged by ethylene glycol spacers of different length to probe synergistic activities and binding modes. Indeed, the antimicrobial activities against Escherichia coli and Pseudomonas aeruginosa improved for some constructs, although the conjugates did not bind better to the 70S ribosome of E. coli than Api137 and Onc112 using 5(6)-carboxyfluorescein-labelled Api137 and Onc112 in a competitive fluorescence polarization assay. In conclusion, Api137/Onc112-conjugates showed increased antimicrobial activities against P. aeruginosa and PrAMP-susceptible and -resistant E. coli most likely because of improved membrane interactions, whereas the interaction to the 70S ribosome was most likely not improved relying still on the independent apidaecin- and oncocin-type binding modes. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.


Asunto(s)
Antibacterianos/metabolismo , Péptidos Catiónicos Antimicrobianos/metabolismo , Glicol de Etileno/química , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Antibacterianos/química , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Sitios de Unión , Unión Competitiva , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Fluoresceínas , Colorantes Fluorescentes , Cinética , Pruebas de Sensibilidad Microbiana , Unión Proteica , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crecimiento & desarrollo , Subunidades Ribosómicas Grandes Bacterianas/efectos de los fármacos , Subunidades Ribosómicas Pequeñas Bacterianas/efectos de los fármacos , Espectrometría de Fluorescencia
9.
Proc Natl Acad Sci U S A ; 113(27): 7527-32, 2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-27330110

RESUMEN

The ribosome is one of the major targets for therapeutic antibiotics; however, the rise in multidrug resistance is a growing threat to the utility of our current arsenal. The orthosomycin antibiotics evernimicin (EVN) and avilamycin (AVI) target the ribosome and do not display cross-resistance with any other classes of antibiotics, suggesting that they bind to a unique site on the ribosome and may therefore represent an avenue for development of new antimicrobial agents. Here we present cryo-EM structures of EVN and AVI in complex with the Escherichia coli ribosome at 3.6- to 3.9-Å resolution. The structures reveal that EVN and AVI bind to a single site on the large subunit that is distinct from other known antibiotic binding sites on the ribosome. Both antibiotics adopt an extended conformation spanning the minor grooves of helices 89 and 91 of the 23S rRNA and interacting with arginine residues of ribosomal protein L16. This binding site overlaps with the elbow region of A-site bound tRNA. Consistent with this finding, single-molecule FRET (smFRET) experiments show that both antibiotics interfere with late steps in the accommodation process, wherein aminoacyl-tRNA enters the peptidyltransferase center of the large ribosomal subunit. These data provide a structural and mechanistic rationale for how these antibiotics inhibit the elongation phase of protein synthesis.


Asunto(s)
Aminoglicósidos/farmacología , Antibacterianos/farmacología , Oligosacáridos/farmacología , Extensión de la Cadena Peptídica de Translación/efectos de los fármacos , Subunidades Ribosómicas Grandes Bacterianas/efectos de los fármacos , Secuencia de Aminoácidos , Sitios de Unión , Microscopía por Crioelectrón , Escherichia coli , Datos de Secuencia Molecular , Estructura Molecular , Subunidades Ribosómicas Grandes Bacterianas/ultraestructura , Imagen Individual de Molécula
10.
Nucleic Acids Res ; 43(20): 10015-25, 2015 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26464437

RESUMEN

Hygromycin A (HygA) binds to the large ribosomal subunit and inhibits its peptidyl transferase (PT) activity. The presented structural and biochemical data indicate that HygA does not interfere with the initial binding of aminoacyl-tRNA to the A site, but prevents its subsequent adjustment such that it fails to act as a substrate in the PT reaction. Structurally we demonstrate that HygA binds within the peptidyl transferase center (PTC) and induces a unique conformation. Specifically in its ribosomal binding site HygA would overlap and clash with aminoacyl-A76 ribose moiety and, therefore, its primary mode of action involves sterically restricting access of the incoming aminoacyl-tRNA to the PTC.


Asunto(s)
Cinamatos/química , Cinamatos/farmacología , Higromicina B/análogos & derivados , Inhibidores de la Síntesis de la Proteína/química , Inhibidores de la Síntesis de la Proteína/farmacología , Subunidades Ribosómicas Grandes Bacterianas/química , Subunidades Ribosómicas Grandes Bacterianas/efectos de los fármacos , Sitios de Unión , Cinamatos/metabolismo , Cristalografía por Rayos X , Higromicina B/química , Higromicina B/metabolismo , Higromicina B/farmacología , Modelos Moleculares , Peptidil Transferasas/química , Peptidil Transferasas/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/enzimología , Subunidades Ribosómicas Grandes Bacterianas/metabolismo
11.
Nat Commun ; 6: 7896, 2015 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-26224058

RESUMEN

Dynamic remodelling of intersubunit bridge B2, a conserved RNA domain of the bacterial ribosome connecting helices 44 (h44) and 69 (H69) of the small and large subunit, respectively, impacts translation by controlling intersubunit rotation. Here we show that aminoglycosides chemically related to neomycin-paromomycin, ribostamycin and neamine-each bind to sites within h44 and H69 to perturb bridge B2 and affect subunit rotation. Neomycin and paromomycin, which only differ by their ring-I 6'-polar group, drive subunit rotation in opposite directions. This suggests that their distinct actions hinge on the 6'-substituent and the drug's net positive charge. By solving the crystal structure of the paromomycin-ribosome complex, we observe specific contacts between the apical tip of H69 and the 6'-hydroxyl on paromomycin from within the drug's canonical h44-binding site. These results indicate that aminoglycoside actions must be framed in the context of bridge B2 and their regulation of subunit rotation.


Asunto(s)
Aminoglicósidos/farmacología , Antibacterianos/farmacología , ARN Bacteriano/efectos de los fármacos , Subunidades Ribosómicas Grandes Bacterianas/efectos de los fármacos , Subunidades Ribosómicas Pequeñas Bacterianas/efectos de los fármacos , Aminoglicósidos/metabolismo , Antibacterianos/metabolismo , Sitios de Unión , Escherichia coli , Proteínas de Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli/metabolismo , Framicetina/metabolismo , Framicetina/farmacología , Neomicina/metabolismo , Neomicina/farmacología , Paromomicina/metabolismo , Paromomicina/farmacología , ARN Bacteriano/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo , Ribostamicina/metabolismo , Ribostamicina/farmacología , Rotación
12.
Int J Antimicrob Agents ; 44(1): 38-46, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24837410

RESUMEN

Acinetobacter baumannii has been associated with several severe hospital-acquired infections such as ventilator-associated pneumonia and meningitis. Sulbactam, a ß-lactamase inhibitor, is usually combined with ß-lactam antibiotics to treat infections. It has been found that sulbactam alone may be used to treat infections caused by A. baumannii, although the mechanism of the bactericidal effect remains unknown. In this study, proteomics was used to analyse protein intensity changes and to identify the proteins of A. baumannii following sulbactam treatment. In total, 54 proteins were found to exhibit significant changes in intensity. Proteins with reduced intensity included ATP-binding cassette (ABC) transporters as well as 30S and 50S ribosomal subunit proteins. These proteins are essential for nutrient import and protein synthesis and are vital for bacterial survival. The amplified proteins included glutamine synthetase, malic enzyme, RNA polymerase subunit α, and the molecular chaperones DnaK and GroEL, which function in metabolism, DNA and protein synthesis, and repair machinery. These amplified proteins were increased to rescue bacteria, however they could not overcome the effects of the reduced proteins and the bacteria were killed. This is the first report that the reduction of ABC transporters and 30S and 50S ribosomal subunit proteins plays an important role in the bactericidal effect of sulbactam against A. baumannii.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Proteoma/genética , Sulbactam/farmacología , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Proteínas Bacterianas/metabolismo , Espectrometría de Masas , Redes y Vías Metabólicas/efectos de los fármacos , Redes y Vías Metabólicas/genética , Anotación de Secuencia Molecular , Proteoma/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/efectos de los fármacos , Subunidades Ribosómicas Grandes Bacterianas/genética , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/efectos de los fármacos , Subunidades Ribosómicas Pequeñas Bacterianas/genética , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Electroforesis Bidimensional Diferencial en Gel
13.
Biol Chem ; 394(11): 1529-41, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24006327

RESUMEN

Oxazolidinone antibiotics bind to the highly conserved peptidyl transferase center in the ribosome. For developing selective antibiotics, a profound understanding of the selectivity determinants is required. We have performed for the first time technically challenging molecular dynamics simulations in combination with molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) free energy calculations of the oxazolidinones linezolid and radezolid bound to the large ribosomal subunits of the eubacterium Deinococcus radiodurans and the archaeon Haloarcula marismortui. A remarkably good agreement of the computed relative binding free energy with selectivity data available from experiment for linezolid is found. On an atomic level, the analyses reveal an intricate interplay of structural, energetic, and dynamic determinants of the species selectivity of oxazolidinone antibiotics: A structural decomposition of free energy components identifies influences that originate from first and second shell nucleotides of the binding sites and lead to (opposing) contributions from interaction energies, solvation, and entropic factors. These findings add another layer of complexity to the current knowledge on structure-activity relationships of oxazolidinones binding to the ribosome and suggest that selectivity analyses solely based on structural information and qualitative arguments on interactions may not reach far enough. The computational analyses presented here should be of sufficient accuracy to fill this gap.


Asunto(s)
Antiinfecciosos/farmacología , Deinococcus/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Oxazolidinonas/farmacología , Subunidades Ribosómicas Grandes Bacterianas/efectos de los fármacos , Acetamidas/química , Acetamidas/farmacología , Antiinfecciosos/química , Sitios de Unión , Haloarcula marismortui/efectos de los fármacos , Linezolid , Simulación de Dinámica Molecular , Oxazolidinonas/química , Especificidad de la Especie
14.
RNA ; 19(2): 158-66, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23249745

RESUMEN

In the absence of elongation factor EF-G, ribosomes undergo spontaneous, thermally driven fluctuation between the pre-translocation (classical) and intermediate (hybrid) states of translocation. These fluctuations do not result in productive mRNA translocation. Extending previous findings that the antibiotic sparsomycin induces translocation, we identify additional peptidyl transferase inhibitors that trigger productive mRNA translocation. We find that antibiotics that bind the peptidyl transferase A site induce mRNA translocation, whereas those that do not occupy the A site fail to induce translocation. Using single-molecule FRET, we show that translocation-inducing antibiotics do not accelerate intersubunit rotation, but act solely by converting the intrinsic, thermally driven dynamics of the ribosome into translocation. Our results support the idea that the ribosome is a Brownian ratchet machine, whose intrinsic dynamics can be rectified into unidirectional translocation by ligand binding.


Asunto(s)
Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Transporte de ARN/efectos de los fármacos , ARN Mensajero/efectos de los fármacos , Subunidades Ribosómicas Grandes Bacterianas/efectos de los fármacos , Antibacterianos/metabolismo , Cloranfenicol/metabolismo , Cloranfenicol/farmacología , Clindamicina/metabolismo , Clindamicina/farmacología , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Lincomicina/metabolismo , Lincomicina/farmacología , Factor G de Elongación Peptídica/efectos de los fármacos , Factor G de Elongación Peptídica/metabolismo , Peptidil Transferasas/efectos de los fármacos , Peptidil Transferasas/metabolismo , ARN Bacteriano/efectos de los fármacos , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , ARN de Transferencia/efectos de los fármacos , ARN de Transferencia/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Esparsomicina/metabolismo , Esparsomicina/farmacología
15.
Rev Sci Tech ; 31(1): 57-64, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22849268

RESUMEN

The ribosome is a major bacterial target for antibiotics. Drugs inhibit ribosome function either by interfering in messenger RNA translation or by blocking the formation of peptide bonds at the peptidyl transferase centre. These effects are the consequence of the binding of drugs to the ribosomal subunits. Various mechanisms, including enzymatic detoxification, target alteration (ribosomal [r]RNAs and ribosomal proteins) and reduced accumulation (impermeability and efflux) are involved in bacterial resistance to protein synthesis inhibitors. The fact that some positions in rRNA participate in the binding of antibiotics belonging to distinct families explains why bacteria have developed mechanisms that can lead to cross-resistance.


Asunto(s)
Antibacterianos/farmacología , Inhibidores de la Síntesis de la Proteína/farmacología , Ribosomas/efectos de los fármacos , Aminoglicósidos/metabolismo , Aminoglicósidos/farmacología , Animales , Cloranfenicol/análogos & derivados , Cloranfenicol/farmacología , Diterpenos/farmacología , Farmacorresistencia Bacteriana/genética , Farmacorresistencia Bacteriana/fisiología , Ácido Fusídico/farmacología , Humanos , Macrólidos/química , Macrólidos/farmacología , Metiltransferasas/química , Metiltransferasas/metabolismo , Oxazolidinonas/farmacología , Compuestos Policíclicos , ARN Ribosómico 16S/genética , Proteínas Ribosómicas/genética , Subunidades Ribosómicas Grandes Bacterianas/efectos de los fármacos , Tetraciclinas/química , Tetraciclinas/farmacología , Pleuromutilinas
16.
Nat Struct Mol Biol ; 19(9): 957-63, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22902368

RESUMEN

Protein synthesis is targeted by numerous, chemically distinct antibiotics that bind and inhibit key functional centers of the ribosome. Using single-molecule imaging and X-ray crystallography, we show that the aminoglycoside neomycin blocks aminoacyl-transfer RNA (aa-tRNA) selection and translocation as well as ribosome recycling by binding to helix 69 (H69) of 23S ribosomal RNA within the large subunit of the Escherichia coli ribosome. There, neomycin prevents the remodeling of intersubunit bridges that normally accompanies the process of subunit rotation to stabilize a partially rotated ribosome configuration in which peptidyl (P)-site tRNA is constrained in a previously unidentified hybrid position. Direct measurements show that this neomycin-stabilized intermediate is incompatible with the translation factor binding that is required for distinct protein synthesis reactions. These findings reveal the functional importance of reversible intersubunit rotation to the translation mechanism and shed new light on the allosteric control of ribosome functions by small-molecule antibiotics.


Asunto(s)
Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Neomicina/farmacología , ARN Bacteriano/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/efectos de los fármacos , Antibacterianos/química , Cristalografía por Rayos X , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Neomicina/química , Biosíntesis de Proteínas/efectos de los fármacos , ARN Bacteriano/química , ARN Ribosómico/química , ARN Ribosómico/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/química , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/química , Subunidades Ribosómicas Pequeñas Bacterianas/efectos de los fármacos , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo
17.
Ann N Y Acad Sci ; 1241: 1-16, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22191523

RESUMEN

The peptidyltransferase center of the large ribosomal subunit is responsible for catalyzing peptide bonds. This active site is the target of a variety of diverse antibiotics, many of which are used clinically. The past decade has seen a plethora of structures of antibiotics in complex with the large ribosomal subunit, providing unprecedented insight into the mechanism of action of these inhibitors. Ten distinct antibiotics (chloramphenicol, clindamycin, linezolid, tiamulin, sparsomycin, and five macrolides) have been crystallized in complex with four distinct ribosomal species, three bacterial, and one archaeal. This review aims to compare these structures in order to provide insight into the conserved and species-specific modes of interaction for particular members of each class of antibiotics. Coupled with the wealth of biochemical data, a picture is emerging defining the specific functional states of the ribosome that antibiotics preferentially target. Such mechanistic insight into antibiotic inhibition will be important for the development of the next generation of antimicrobial agents.


Asunto(s)
Antibacterianos/farmacología , Subunidades Ribosómicas Grandes de Archaea/efectos de los fármacos , Subunidades Ribosómicas Grandes Bacterianas/efectos de los fármacos , Antibacterianos/química , Antibacterianos/clasificación , Sitios de Unión , Cristalografía por Rayos X , Deinococcus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Haloarcula marismortui/efectos de los fármacos , Modelos Moleculares , Subunidades Ribosómicas Grandes de Archaea/química , Subunidades Ribosómicas Grandes Bacterianas/química , Especificidad de la Especie , Thermus thermophilus/efectos de los fármacos
18.
Ann N Y Acad Sci ; 1241: 33-47, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22191525

RESUMEN

Macrolide antibiotics bind in the nascent peptide exit tunnel of the ribosome and inhibit protein synthesis. The majority of information on the principles of binding and action of these antibiotics comes from studies that employed model organisms. However, there is a growing understanding that the binding of macrolides to their target, as well as the mode of inhibition of translation, can be strongly influenced by variations in ribosome structure between bacterial species. Awareness of the existence of species-specific differences in drug action and appreciation of the extent of these differences can stimulate future work on developing better macrolide drugs. In this review, representative cases illustrating the organism-specific binding and action of macrolide antibiotics, as well as species-specific mechanisms of resistance are analyzed.


Asunto(s)
Antibacterianos/metabolismo , Antibacterianos/farmacología , Macrólidos/metabolismo , Macrólidos/farmacología , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo , Antibacterianos/química , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Sitios de Unión , Deinococcus/efectos de los fármacos , Deinococcus/metabolismo , Farmacorresistencia Bacteriana/genética , Humanos , Macrólidos/química , Modelos Moleculares , Subunidades Ribosómicas Grandes Bacterianas/química , Subunidades Ribosómicas Grandes Bacterianas/efectos de los fármacos , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Ribosomas/química , Especificidad de la Especie
19.
Nat Struct Mol Biol ; 17(7): 793-800, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20562856

RESUMEN

We report the direct observation of conformational rearrangements of the ribosome during multiple rounds of elongation. Using single-molecule fluorescence resonance energy transfer, we monitored the intersubunit conformation of the ribosome in real time as it proceeds from codon to codon. During each elongation cycle, the ribosome unlocks upon peptide bond formation, then reverts to the locked state upon translocation onto the next codon. Our data reveal both the specific and cumulative effects of antibiotics on individual steps of translation and uncover the processivity of the ribosome as it elongates. Our approach interrogates the precise molecular events occurring at each codon of the mRNA within the full context of ongoing translation.


Asunto(s)
Escherichia coli/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Antibacterianos/farmacología , Secuencia de Bases , Codón/química , Codón/metabolismo , Eritromicina/farmacología , Escherichia coli/química , Datos de Secuencia Molecular , Biosíntesis de Proteínas , Subunidades Ribosómicas Grandes Bacterianas/química , Subunidades Ribosómicas Grandes Bacterianas/efectos de los fármacos , Subunidades Ribosómicas Pequeñas Bacterianas/química , Subunidades Ribosómicas Pequeñas Bacterianas/efectos de los fármacos
20.
J Am Chem Soc ; 132(20): 6973-81, 2010 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-20441189

RESUMEN

Ribosomally produced thiopeptide antibiotics are highly promising lead compounds targeting the GTPase-associated region (GAR) of the bacterial ribosome. A representative panel of GAR mutants suspected to confer resistance against thiopeptide antibiotics was reconstituted in vitro and quantitatively studied with fluorescent probes. It was found that single-site mutations of the ribosomal 23S rRNA binding site region directly affect thiopeptide affinity. Quantitative equilibrium binding data clearly identified A1067 as the base contributing most strongly to the binding environment. The P25 residue on the ribosomal protein L11 was essential for binding of the monocyclic thiopeptides micrococcin and promothiocin B, confirming that the mutation of this residue in the producer organism confers self-resistance. For the bicyclic thiopeptides thiostrepton and nosiheptide, all studied single-site resistance mutations on the L11 protein were still fully capable of ligand binding in the upper pM range, both in the RNA-protein complex and in isolated 70S ribosomes. These single-site mutants were then specifically reconstituted in Bacillus subtilis, confirming their efficacy as resistance-conferring. It is thus reasoned that, in contrast to modifications of the 23S rRNA in the GAR, mutations of the L11 protein do not counteract binding of bicyclic thiopeptides, but allow the ribosome to bypass the protein biosynthesis blockade enforced by these antibiotics in the wild type.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Farmacorresistencia Bacteriana , Péptidos/farmacología , Secuencia de Aminoácidos , Antibacterianos/química , Antibacterianos/metabolismo , Bacterias/citología , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Supervivencia Celular/efectos de los fármacos , Cristalografía por Rayos X , Modelos Moleculares , Mutación , Péptidos/química , Péptidos/metabolismo , Conformación Proteica , ARN Bacteriano/antagonistas & inhibidores , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Ribosómico/antagonistas & inhibidores , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/efectos de los fármacos , Subunidades Ribosómicas Grandes Bacterianas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...