Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 312
Filtrar
1.
Commun Biol ; 7(1): 1083, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39232119

RESUMEN

Recycling of 40S ribosomal subunits following translation termination, entailing release of deacylated tRNA and dissociation of the empty 40S from mRNA, involves yeast Tma20/Tma22 heterodimer and Tma64, counterparts of mammalian MCTS1/DENR and eIF2D. MCTS1/DENR enhance reinitiation (REI) at short upstream open reading frames (uORFs) harboring penultimate codons that confer heightened dependence on these factors in bulk 40S recycling. Tma factors, by contrast, inhibited REI at particular uORFs in extracts; however, their roles at regulatory uORFs in vivo were unknown. We examined effects of eliminating Tma proteins on REI at regulatory uORFs mediating translational control of GCN4 optimized for either promoting (uORF1) or preventing (uORF4) REI. We found that the Tma proteins generally impede REI at native uORF4 and its variants equipped with various penultimate codons regardless of their Tma-dependence in bulk recycling. The Tma factors have no effect on REI at native uORF1 and equipping it with Tma-hyperdependent penultimate codons generally did not confer Tma-dependent REI; nor did converting the uORFs to AUG-stop elements. Thus, effects of the Tma proteins vary depending on the REI potential of the uORF and penultimate codon, but unlike in mammals, are not principally dictated by the Tma-dependence of the codon in bulk 40S recycling.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Sistemas de Lectura Abierta , ARN Mensajero , Subunidades Ribosómicas Pequeñas de Eucariotas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Iniciación de la Cadena Peptídica Traduccional , Biosíntesis de Proteínas
2.
Nat Commun ; 15(1): 6633, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117603

RESUMEN

Translation is regulated mainly in the initiation step, and its dysregulation is implicated in many human diseases. Several proteins have been found to regulate translational initiation, including Pdcd4 (programmed cell death gene 4). Pdcd4 is a tumor suppressor protein that prevents cell growth, invasion, and metastasis. It is downregulated in most tumor cells, while global translation in the cell is upregulated. To understand the mechanisms underlying translational control by Pdcd4, we used single-particle cryo-electron microscopy to determine the structure of human Pdcd4 bound to 40S small ribosomal subunit, including Pdcd4-40S and Pdcd4-40S-eIF4A-eIF3-eIF1 complexes. The structures reveal the binding site of Pdcd4 at the mRNA entry site in the 40S, where the C-terminal domain (CTD) interacts with eIF4A at the mRNA entry site, while the N-terminal domain (NTD) is inserted into the mRNA channel and decoding site. The structures, together with quantitative binding and in vitro translation assays, shed light on the critical role of the NTD for the recruitment of Pdcd4 to the ribosomal complex and suggest a model whereby Pdcd4 blocks the eIF4F-independent role of eIF4A during recruitment and scanning of the 5' UTR of mRNA.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Microscopía por Crioelectrón , Unión Proteica , ARN Mensajero , Proteínas de Unión al ARN , Subunidades Ribosómicas Pequeñas de Eucariotas , Humanos , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/química , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Sitios de Unión , Biosíntesis de Proteínas , Factor 4A Eucariótico de Iniciación/metabolismo , Factor 4A Eucariótico de Iniciación/genética , Modelos Moleculares
3.
J Phys Chem B ; 128(29): 7033-7042, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39007765

RESUMEN

Experimental evidence has established that SARS-CoV-2 NSP1 acts as a factor that restricts cellular gene expression and impedes mRNA translation within the ribosome's 40S subunit. However, the precise molecular mechanisms underlying this phenomenon have remained elusive. To elucidate this issue, we employed a combination of all-atom steered molecular dynamics and coarse-grained alchemical simulations to explore the binding affinity of mRNA to the 40S ribosome, both in the presence and absence of SARS-CoV-2 NSP1. Our investigations revealed that the binding of SARS-CoV-2 NSP1 to the 40S ribosome leads to a significant enhancement in the binding affinity of mRNA. This observation, which aligns with experimental findings, strongly suggests that SARS-CoV-2 NSP1 has the capability to inhibit mRNA translation. Furthermore, we identified electrostatic interactions between mRNA and the 40S ribosome as the primary driving force behind mRNA translation. Notably, water molecules were found to play a pivotal role in stabilizing the mRNA-40S ribosome complex, underscoring their significance in this process. We successfully pinpointed the specific SARS-CoV-2 NSP1 residues that play a critical role in triggering the translation arrest.


Asunto(s)
Simulación de Dinámica Molecular , Biosíntesis de Proteínas , ARN Mensajero , Subunidades Ribosómicas Pequeñas de Eucariotas , SARS-CoV-2 , Proteínas no Estructurales Virales , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , ARN Mensajero/química , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/química , SARS-CoV-2/metabolismo , SARS-CoV-2/química , SARS-CoV-2/genética , Unión Proteica , Humanos , Electricidad Estática
4.
Annu Rev Biochem ; 93(1): 189-210, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38768392

RESUMEN

During the last ten years, developments in cryo-electron microscopy have transformed our understanding of eukaryotic ribosome assembly. As a result, the field has advanced from a list of the vast array of ribosome assembly factors toward an emerging molecular movie in which individual frames are represented by structures of stable ribosome assembly intermediates with complementary biochemical and genetic data. In this review, we discuss the mechanisms driving the assembly of yeast and human small and large ribosomal subunits. A particular emphasis is placed on the most recent findings that illustrate key concepts of ribosome assembly, such as folding of preribosomal RNA, the enforced chronology of assembly, enzyme-mediated irreversible transitions, and proofreading of preribosomal particles.


Asunto(s)
Microscopía por Crioelectrón , Proteínas Ribosómicas , Ribosomas , Humanos , Ribosomas/metabolismo , Ribosomas/ultraestructura , Ribosomas/química , Ribosomas/genética , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , ARN Ribosómico/metabolismo , ARN Ribosómico/química , ARN Ribosómico/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Modelos Moleculares , Células Eucariotas/metabolismo , Células Eucariotas/ultraestructura , Pliegue del ARN , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/ultraestructura , Animales
5.
J Biol Chem ; 300(5): 107242, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38569933

RESUMEN

Messenger RNA (mRNA) recruitment to the 40S ribosomal subunit is mediated by eukaryotic initiation factor 4F (eIF4F). This complex includes three subunits: eIF4E (m7G cap-binding protein), eIF4A (DEAD-box helicase), and eIF4G. Mammalian eIF4G is a scaffold that coordinates the activities of eIF4E and eIF4A and provides a bridge to connect the mRNA and 40S ribosomal subunit through its interaction with eIF3. While the roles of many eIF4G binding domains are relatively clear, the precise function of RNA binding by eIF4G remains to be elucidated. In this work, we used an eIF4G-dependent translation assay to reveal that the RNA binding domain (eIF4G-RBD; amino acids 682-720) stimulates translation. This stimulating activity is observed when eIF4G is independently tethered to an internal region of the mRNA, suggesting that the eIF4G-RBD promotes translation by a mechanism that is independent of the m7G cap and mRNA tethering. Using a kinetic helicase assay, we show that the eIF4G-RBD has a minimal effect on eIF4A helicase activity, demonstrating that the eIF4G-RBD is not required to coordinate eIF4F-dependent duplex unwinding. Unexpectedly, native gel electrophoresis and fluorescence polarization assays reveal a previously unidentified direct interaction between eIF4G and the 40S subunit. Using binding assays, our data show that this 40S subunit interaction is separate from the previously characterized interaction between eIF4G and eIF3. Thus, our work reveals how eIF4F can bind to the 40S subunit using eIF3-dependent and eIF3-independent binding domains to promote translation initiation.


Asunto(s)
Factor 4E Eucariótico de Iniciación , Biosíntesis de Proteínas , Subunidades Ribosómicas Pequeñas de Eucariotas , Humanos , Factor 3 de Iniciación Eucariótica/química , Factor 3 de Iniciación Eucariótica/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Unión Proteica , Dominios Proteicos , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Factor 4E Eucariótico de Iniciación/metabolismo
6.
Virus Res ; 343: 199340, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38387694

RESUMEN

Flaviviral RNA genomes are composed of discrete RNA structural units arranged in an ordered fashion and grouped into complex folded domains that regulate essential viral functions, e.g. replication and translation. This is achieved by adjusting the overall structure of the RNA genome via the establishment of inter- and intramolecular interactions. Translation regulation is likely the main process controlling flaviviral gene expression. Although the genomic 3' UTR is a key player in this regulation, little is known about the molecular mechanisms underlying this role. The present work provides evidence for the specific recruitment of the 40S ribosomal subunit by the 3' UTR of the West Nile virus RNA genome, showing that the joint action of both genomic ends contributes the positioning of the 40S subunit at the 5' end. The combination of structural mapping techniques revealed specific conformational requirements at the 3' UTR for 40S binding, involving the highly conserved SL-III, 5'DB, 3'DB and 3'SL elements, all involved in the translation regulation. These results point to the 40S subunit as a bridge to ensure cross-talk between both genomic ends during viral translation and support a link between 40S recruitment by the 3' UTR and translation control.


Asunto(s)
Flavivirus , Virus del Nilo Occidental , Virus del Nilo Occidental/genética , Regiones no Traducidas 3' , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Flavivirus/genética , Genómica , ARN Viral/metabolismo , Replicación Viral
7.
Int J Mol Sci ; 24(24)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38139282

RESUMEN

Ribosome is a major part of the protein synthesis machinery, and analysis of its structure is of paramount importance. However, the structure of ribosomes from only a limited number of organisms has been resolved to date; it especially concerns plant ribosomes and ribosomal subunits. Here, we report a high-resolution cryo-electron microscopy reconstruction of the small subunit of the Triticum aestivum (common wheat) cytoplasmic ribosome. A detailed atomic model was built that includes the majority of the rRNA and some of the protein modifications. The analysis of the obtained data revealed structural peculiarities of the 40S subunit in the monocot plant ribosome. We applied the 3D Flexible Refinement approach to analyze the internal mobility of the 40S subunit and succeeded in decomposing it into four major motions, describing rotations of the head domain and a shift in the massive rRNA expansion segment. It was shown that these motions are almost uncorrelated and that the 40S subunit is flexible enough to spontaneously adopt any conformation it takes as a part of a translating ribosome or ribosomal complex. Here, we introduce the first high-resolution structure of an isolated plant 40S subunit and the first quantitative analysis of the flexibility of small ribosomal subunits, hoping that it will help in studying various aspects of ribosome functioning.


Asunto(s)
Subunidades Ribosómicas Pequeñas de Eucariotas , Ribosomas , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Microscopía por Crioelectrón , Ribosomas/metabolismo , ARN Ribosómico/metabolismo , Biosíntesis de Proteínas , Proteínas Ribosómicas/metabolismo
8.
Cell Rep ; 42(10): 113280, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37851577

RESUMEN

Increased nucleolar size and activity correlate with aberrant ribosome biogenesis and enhanced translation in cancer cells. One of the first and rate-limiting steps in translation is the interaction of the 40S small ribosome subunit with mRNAs. Here, we report the identification of the zinc finger protein 692 (ZNF692), a MYC-induced nucleolar scaffold that coordinates the final steps in the biogenesis of the small ribosome subunit. ZNF692 forms a hub containing the exosome complex and ribosome biogenesis factors specialized in the final steps of 18S rRNA processing and 40S ribosome maturation in the granular component of the nucleolus. Highly proliferative cells are more reliant on ZNF692 than normal cells; thus, we conclude that effective production of small ribosome subunits is critical for translation efficiency in cancer cells.


Asunto(s)
Proteínas de Unión al ADN , Biosíntesis de Proteínas , Proteínas Ribosómicas , Subunidades Ribosómicas Pequeñas de Eucariotas , Factores de Transcripción , Nucléolo Celular/metabolismo , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Ribosomas/metabolismo , ARN Ribosómico 18S/genética , ARN Ribosómico 18S/metabolismo , Humanos , Animales , Ratas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Nucleic Acids Res ; 51(18): 9983-10000, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37602404

RESUMEN

eIF2A was the first eukaryotic initiator tRNA carrier discovered but its exact function has remained enigmatic. Uncharacteristic of translation initiation factors, eIF2A is reported to be non-cytosolic in multiple human cancer cell lines. Attempts to study eIF2A mechanistically have been limited by the inability to achieve high yield of soluble recombinant protein. Here, we developed a purification paradigm that yields ∼360-fold and ∼6000-fold more recombinant human eIF2A from Escherichia coli and insect cells, respectively, than previous reports. Using a mammalian in vitro translation system, we found that increased levels of recombinant human eIF2A inhibit translation of multiple reporter mRNAs, including those that are translated by cognate and near-cognate start codons, and does so prior to start codon recognition. eIF2A also inhibited translation directed by all four types of cap-independent viral IRESs, including the CrPV IGR IRES that does not require initiation factors or initiator tRNA, suggesting excess eIF2A sequesters 40S subunits. Supplementation with additional 40S subunits prevented eIF2A-mediated inhibition and pull-down assays demonstrated direct binding between recombinant eIF2A and purified 40S subunits. These data support a model that eIF2A must be kept away from the translation machinery to avoid sequestering 40S ribosomal subunits.


Asunto(s)
Factor 2 Eucariótico de Iniciación , Biosíntesis de Proteínas , Subunidades Ribosómicas Pequeñas de Eucariotas , Animales , Humanos , Codón Iniciador/metabolismo , Sitios Internos de Entrada al Ribosoma , Mamíferos/genética , Factores de Iniciación de Péptidos/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , ARN Mensajero/metabolismo , ARN de Transferencia de Metionina/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo
10.
Cell ; 186(10): 2282-2282.e1, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37172570

RESUMEN

Ribosome production is vital for every cell, and failure causes human diseases. It is driven by ∼200 assembly factors functioning along an ordered pathway from the nucleolus to the cytoplasm. Structural snapshots of biogenesis intermediates from the earliest 90S pre-ribosomes to mature 40S subunits unravel the mechanisms of small ribosome synthesis. To view this SnapShot, open or download the PDF.


Asunto(s)
Células Eucariotas , Ribosomas , Humanos , Nucléolo Celular/metabolismo , Células Eucariotas/metabolismo , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Ribosomas/metabolismo
11.
Nat Commun ; 14(1): 2730, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37169754

RESUMEN

In actively translating 80S ribosomes the ribosomal protein eS7 of the 40S subunit is monoubiquitinated by the E3 ligase Not4 and deubiquitinated by Otu2 upon ribosomal subunit recycling. Despite its importance for translation efficiency the exact role and structural basis for this translational reset is poorly understood. Here, structural analysis by cryo-electron microscopy of native and reconstituted Otu2-bound ribosomal complexes reveals that Otu2 engages 40S subunits mainly between ribosome recycling and initiation stages. Otu2 binds to several sites on the intersubunit surface of the 40S that are not occupied by any other 40S-binding factors. This binding mode explains the discrimination against 80S ribosomes via the largely helical N-terminal domain of Otu2 as well as the specificity for mono-ubiquitinated eS7 on 40S. Collectively, this study reveals mechanistic insights into the Otu2-driven deubiquitination steps for translational reset during ribosome recycling/(re)initiation.


Asunto(s)
Proteínas Ribosómicas , Ribosomas , Microscopía por Crioelectrón , Biosíntesis de Proteínas , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Ribosomas/metabolismo
12.
Nat Struct Mol Biol ; 30(5): 594-599, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37037974

RESUMEN

During transcription of eukaryotic ribosomal DNA in the nucleolus, assembly checkpoints exist that guarantee the formation of stable precursors of small and large ribosomal subunits. While the formation of an early large subunit assembly checkpoint precedes the separation of small and large subunit maturation, its mechanism of action and function remain unknown. Here, we report the cryo-electron microscopy structure of the yeast co-transcriptional large ribosomal subunit assembly intermediate that serves as a checkpoint. The structure provides the mechanistic basis for how quality-control pathways are established through co-transcriptional ribosome assembly factors, that structurally interrogate, remodel and, together with ribosomal proteins, cooperatively stabilize correctly folded pre-ribosomal RNA. Our findings thus provide a molecular explanation for quality control during eukaryotic ribosome assembly in the nucleolus.


Asunto(s)
ARN Ribosómico , Proteínas de Saccharomyces cerevisiae , Microscopía por Crioelectrón , ARN Ribosómico/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo
13.
Nucleic Acids Res ; 51(8): 4043-4054, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36951107

RESUMEN

The chemical modification of ribosomal RNA and proteins is critical for ribosome assembly, for protein synthesis and may drive ribosome specialisation in development and disease. However, the inability to accurately visualise these modifications has limited mechanistic understanding of the role of these modifications in ribosome function. Here we report the 2.15 Å resolution cryo-EM reconstruction of the human 40S ribosomal subunit. We directly visualise post-transcriptional modifications within the 18S rRNA and four post-translational modifications of ribosomal proteins. Additionally, we interpret the solvation shells in the core regions of the 40S ribosomal subunit and reveal how potassium and magnesium ions establish both universally conserved and eukaryote-specific coordination to promote the stabilisation and folding of key ribosomal elements. This work provides unprecedented structural details for the human 40S ribosomal subunit that will serve as an important reference for unravelling the functional role of ribosomal RNA modifications.


Asunto(s)
Proteínas Ribosómicas , Subunidades Ribosómicas Pequeñas de Eucariotas , Humanos , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Microscopía por Crioelectrón , Proteínas Ribosómicas/genética , Ribosomas/metabolismo , ARN Ribosómico/metabolismo , ARN Ribosómico 18S/metabolismo
14.
Nucleic Acids Res ; 50(20): 11924-11937, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36321656

RESUMEN

Biogenesis of the small ribosomal subunit in eukaryotes starts in the nucleolus with the formation of a 90S precursor and ends in the cytoplasm. Here, we elucidate the enigmatic structural transitions of assembly intermediates from human and yeast cells during the nucleoplasmic maturation phase. After dissociation of all 90S factors, the 40S body adopts a close-to-mature conformation, whereas the 3' major domain, later forming the 40S head, remains entirely immature. A first coordination is facilitated by the assembly factors TSR1 and BUD23-TRMT112, followed by re-positioning of RRP12 that is already recruited early to the 90S for further head rearrangements. Eventually, the uS2 cluster, CK1 (Hrr25 in yeast) and the export factor SLX9 associate with the pre-40S to provide export competence. These exemplary findings reveal the evolutionary conserved mechanism of how yeast and humans assemble the 40S ribosomal subunit, but reveal also a few minor differences.


Asunto(s)
Transporte Activo de Núcleo Celular , Proteínas Ribosómicas , Subunidades Ribosómicas Pequeñas de Eucariotas , Proteínas de Saccharomyces cerevisiae , Humanos , Quinasa de la Caseína I/análisis , Quinasa de la Caseína I/metabolismo , Metiltransferasas/metabolismo , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
RNA Biol ; 19(1): 560-574, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35438042

RESUMEN

The small ribosomal subunit protein Rps15/uS19 is involved in early nucleolar ribosome biogenesis and subsequent nuclear export of pre-40S particles to the cytoplasm. In addition, the C-terminal tail of Rps15 was suggested to play a role in mature ribosomes, namely during translation elongation. Here, we show that Rps15 not only functions in nucleolar ribosome assembly but also in cytoplasmic pre-40S maturation, which is indicated by a strong genetic interaction between Rps15 and the 40S assembly factor Ltv1. Specifically, mutations either in the globular or C-terminal domain of Rps15 when combined with the non-essential ltv1 null allele are lethal or display a strong growth defect. However, not only rps15 ltv1 double mutants but also single rps15 C-terminal deletion mutants exhibit an accumulation of the 20S pre-rRNA in the cytoplasm, indicative of a cytoplasmic pre-40S maturation defect. Since in pre-40S particles, the C-terminal tail of Rps15 is positioned between assembly factors Rio2 and Tsr1, we further tested whether Tsr1 is genetically linked to Rps15, which indeed could be demonstrated. Thus, the integrity of the Rps15 C-terminal tail plays an important role during late pre-40S maturation, perhaps in a quality control step to ensure that only 40S ribosomal subunits with functional Rps15 C-terminal tail can efficiently enter translation. As mutations in the C-terminal tail of human RPS15 have been observed in connection with chronic lymphocytic leukaemia, it is possible that apart from defects in translation, an impaired late pre-40S maturation step in the cytoplasm could also be a reason for this disease.


Asunto(s)
Proteínas Ribosómicas , Proteínas de Saccharomyces cerevisiae , Humanos , Biosíntesis de Proteínas , Precursores del ARN/genética , Precursores del ARN/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35105807

RESUMEN

Emerging evidence reveals that ribosomes are not monolithic but dynamic machines with heterogeneous protein compositions that can reshape ribosomal translational abilities and cellular adaptation to environmental changes. Duplications of ribosomal protein (RP) genes are ubiquitous among organisms and are believed to affect cell function through paralog-specific regulation (e.g., by generating heterogeneous ribosomes) and/or gene dose amplification. However, direct evaluations of their impacts on cell function remain elusive due to the highly heterogeneous cellular RP pool. Here, we engineered a yeast with homogeneous 40S RP paralog compositions, designated homo-40S, by deleting the entire set of alternative duplicated genes encoding yeast 40S RP paralogs. Homo-40S displayed mild growth defects along with high sensitivity to the translation inhibitor paromomycin and a significantly increased stop codon readthrough. Moreover, doubling of the remaining RP paralogous genes in homo-40S rescued these phenotypes markedly, although not fully, compared to the wild-type phenotype, indicating that the dose of 40S RP genes together with the heterogeneity of the contents was vital for maintaining normal translational functionalities and growth robustness. Additional experiments revealed that homo-40S improved paromomycin tolerance via acquisition of bypass mutations or evolved to be diploid to generate fast-growing derivatives, highlighting the mutational robustness of engineered yeast to accommodate environmental and genetic changes. In summary, our work demonstrated that duplicated RP paralogs impart robustness and phenotypic plasticity through both gene dose amplification and paralog-specific regulation, paving the way for the direct study of ribosome biology through monotypic ribosomes with a homogeneous composition of specific RP paralogs.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteínas Ribosómicas , Subunidades Ribosómicas Pequeñas de Eucariotas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Ingeniería Genética , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Nucleic Acids Res ; 50(12): 6601-6617, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35137207

RESUMEN

Human ribosomes have long been thought to be uniform factories with little regulatory function. Accumulating evidence emphasizes the heterogeneity of ribosomal protein (RP) expression in specific cellular functions and development. However, a systematic understanding of functional relevance of RPs is lacking. Here, we surveyed translational and transcriptional changes after individual knockdown of 75 RPs, 44 from the large subunit (60S) and 31 from the small subunit (40S), by Ribo-seq and RNA-seq analyses. Deficiency of individual RPs altered specific subsets of genes transcriptionally and translationally. RP genes were under cotranslational regulation upon ribosomal stress, and deficiency of the 60S RPs and the 40S RPs had opposite effects. RP deficiency altered the expression of genes related to eight major functional classes, including the cell cycle, cellular metabolism, signal transduction and development. 60S RP deficiency led to greater inhibitory effects on cell growth than did 40S RP deficiency, through P53 signaling. Particularly, we showed that eS8/RPS8 deficiency stimulated apoptosis while eL13/RPL13 or eL18/RPL18 deficiency promoted senescence. We also validated the phenotypic impacts of uL5/RPL11 and eL15/RPL15 deficiency on retina development and angiogenesis, respectively. Overall, our study provides a valuable resource for and novel insights into ribosome regulation in cellular activities, development and diseases.


Ribosomes are the main effector of the translational machinery to synthesize proteins. In this study, the authors characterized genome-wide transcriptional and translational changes after knocking-down 75 individual human ribosomal proteins (RPs). They revealed that deficiency of individual RPs perturbed expression of specific subsets of genes, enriched in eight major functional classes, such as cell cycle and development. RPs were subjected to co-translational regulation under ribosomal stress where deficiency of the 60S RPs and the 40S RPs had opposite effects on the two subunits. They also showed that RPS8 deficiency stimulated cellular apoptosis while RPL13 and RPL18 deficiency promoted cellular senescence. They further showed functional and regulatory roles of RPL11 and RPL15 in retina development and angiogenesis, respectively.


Asunto(s)
Proteínas Ribosómicas , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Biosíntesis de Proteínas , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Transcripción Genética
18.
RNA ; 28(4): 568-582, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35031584

RESUMEN

Ribosome assembly is an intricate process, which in eukaryotes is promoted by a large machinery comprised of over 200 assembly factors (AFs) that enable the modification, folding, and processing of the ribosomal RNA (rRNA) and the binding of the 79 ribosomal proteins. While some early assembly steps occur via parallel pathways, the process overall is highly hierarchical, which allows for the integration of maturation steps with quality control processes that ensure only fully and correctly assembled subunits are released into the translating pool. How exactly this hierarchy is established, in particular given that there are many instances of RNA substrate "handover" from one highly related AF to another, remains to be determined. Here we have investigated the role of Tsr3, which installs a universally conserved modification in the P-site of the small ribosomal subunit late in assembly. Our data demonstrate that Tsr3 separates the binding of the Rio kinases, Rio2 and Rio1, with whom it shares a binding site. By binding after Rio2 dissociation, Tsr3 prevents rebinding of Rio2, promoting forward assembly. After rRNA modification is complete, Tsr3 dissociates, thereby allowing for recruitment of Rio1 into its functional site. Inactive Tsr3 blocks Rio1 function, which can be rescued using mutants that bypass the requirement for Rio1 activity. Finally, yeast strains lacking Tsr3 randomize the binding of the two kinases, leading to the release of immature ribosomes into the translating pool. These data demonstrate a role for Tsr3 and its modification activity in establishing a hierarchy for the function of the Rio kinases.


Asunto(s)
Transferasas Alquil y Aril , Proteínas de Saccharomyces cerevisiae , Transferasas Alquil y Aril/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Proteínas Serina-Treonina Quinasas , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
J Phys Chem Lett ; 12(48): 11745-11750, 2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34851631

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic represents the most severe global health crisis in modern human history. One of the major SARS-CoV-2 virulence factors is nonstructural protein 1 (Nsp1), which, outcompeting with the binding of host mRNA to the human ribosome, triggers a translation shutdown of the host immune system. Here, microsecond-long all-atom simulations of the C-terminal portion of the SARS-CoV-2/SARS-CoV Nsp1 in complex with the 40S ribosome disclose that SARS-CoV-2 Nsp1 has evolved from its SARS-CoV ortholog to more effectively hijack the ribosome by undergoing a critical switch of Q/E158 and E/Q159 residues that perfects Nsp1's interactions with the ribosome. Our outcomes offer a basis for understanding the sophisticated mechanisms underlying SARS-CoV-2 diversion and exploitation of human cell components to its deadly purposes.


Asunto(s)
Simulación de Dinámica Molecular , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , SARS-CoV-2/metabolismo , Proteínas no Estructurales Virales/metabolismo , COVID-19/inmunología , COVID-19/patología , COVID-19/virología , Humanos , Enlace de Hidrógeno , Unión Proteica , Subunidades Ribosómicas Pequeñas de Eucariotas/química , SARS-CoV-2/aislamiento & purificación , Proteínas no Estructurales Virales/química
20.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34769086

RESUMEN

A comparison of overlapping proximity captures at the head region of the ribosomal 40S subunit (hr40S) in Saccharomyces cerevisiae from four adjacent perspectives, namely Asc1/RACK1, Rps2/uS5, Rps3/uS3, and Rps20/uS10, corroborates dynamic co-localization of proteins that control activity and fate of both ribosomes and mRNA. Co-locating factors that associate with the hr40S are involved in (i) (de)ubiquitination of ribosomal proteins (Hel2, Bre5-Ubp3), (ii) clamping of inactive ribosomal subunits (Stm1), (iii) mRNA surveillance and vesicular transport (Smy2, Syh1), (iv) degradation of mRNA (endo- and exonucleases Ypl199c and Xrn1, respectively), (v) autophagy (Psp2, Vps30, Ykt6), and (vi) kinase signaling (Ste20). Additionally, they must be harmonized with translation initiation factors (eIF3, cap-binding protein Cdc33, eIF2A) and mRNA-binding/ribosome-charging proteins (Scp160, Sro9). The Rps/uS-BioID perspectives revealed substantial Asc1/RACK1-dependent hr40S configuration indicating a function of the ß-propeller in context-specific spatial organization of this microenvironment. Toward resolving context-specific constellations, a Split-TurboID analysis emphasized the ubiquitin-associated factors Def1 and Lsm12 as neighbors of Bre5 at hr40S. These shuttling proteins indicate a common regulatory axis for the fate of polymerizing machineries for the biosynthesis of proteins in the cytoplasm and RNA/DNA in the nucleus.


Asunto(s)
Subunidades Ribosómicas Pequeñas de Eucariotas/química , Proteínas de Saccharomyces cerevisiae/análisis , Saccharomyces cerevisiae/química , Modelos Moleculares , Proteínas Ribosómicas/análisis , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA