Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
STAR Protoc ; 5(1): 102790, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38113144

RESUMEN

Here, we present a protocol for single-molecule super-resolution imaging of the nuclear export of pre-ribosomal subunits pre-40S and pre-60S through nuclear pore complexes. We describe steps for plating cells and co-transfecting cells. We then detail steps for using single-point edge-excitation sub-diffraction microscopy, allowing visualization of real-time dynamics of the pre-ribosomal subunits. For complete details on the use and execution of this protocol, please refer to Junod et al. (2023).1.


Asunto(s)
Poro Nuclear , Proteínas de Saccharomyces cerevisiae , Poro Nuclear/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transporte Activo de Núcleo Celular , Subunidades Ribosómicas/metabolismo , Imagen Individual de Molécula/métodos
2.
Eur J Med Chem ; 262: 115882, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37879170

RESUMEN

Multidrug-resistant bacteria, particularly methicillin-resistant Staphylococcus aureus, have become a major global public health concern. Therefore, developing new antibiotics that do not possess cross-resistance for the currently available antibiotics is critical. Herein, we synthesized a novel class of pleuromutilin derivatives containing substituted triazine with improved antibacterial activity. Among these derivatives, 6d, which contains 4-dimethylamino-1,3,5-triazine in the side chain of pleuromutilin, exhibited highly promising antimicrobial activity and mitigated antibiotic resistance. The high antibacterial potency of 6d was further supported by docking model analysis and green fluorescent protein inhibition assay. Additionally, cytotoxicity and acute oral toxicity evaluation and in vivo mouse systemic infection experiments revealed that 6d possessed tolerable toxicity and promising therapeutic efficacy.


Asunto(s)
Diterpenos , Staphylococcus aureus Resistente a Meticilina , Compuestos Policíclicos , Animales , Ratones , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Antibacterianos/química , Diterpenos/farmacología , Diterpenos/química , Compuestos Policíclicos/farmacología , Triazinas/farmacología , Subunidades Ribosómicas/metabolismo , Pleuromutilinas
3.
J Psychiatr Res ; 164: 372-381, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37413782

RESUMEN

One of the new theories accounting for the underlying pathophysiology of schizophrenia is excitation/inhibition imbalance. Interestingly, perturbation in protein synthesis machinery as well as oxidative stress can lead to excitation/inhibition imbalance. We thus performed a systematic meta-analysis of the expression of 79 ribosome subunit genes and two oxidative-stress related genes, HIF1A and NQO1, in brain samples of individuals with schizophrenia vs. healthy controls. We integrated 12 gene expression datasets, following the PRISMA guidelines (overall 511 samples, 253 schizophrenia and 258 controls). Five ribosome subunit genes were significantly upregulated in a subgroup of the patients with schizophrenia, while 24 (30%) showed a tendency for upregulation. HIF1A and NQO1 were also found to be significantly upregulated. Moreover, HIF1A and NQO1 showed positive correlation with the expression of the upregulated ribosome subunit genes. Our results, together with previous findings, suggest a possible role for altered mRNA translation in the pathogenesis of schizophrenia, in association with markers of increased oxidative stress in a subgroup of patients. Further studies should define whether the upregulation of ribosome subunits result in altered mRNA translation, which proteins are modulated and how it characterizes a subgroup of the patients with schizophrenia.


Asunto(s)
Esquizofrenia , Humanos , Encéfalo/metabolismo , Perfilación de la Expresión Génica , Subunidades Ribosómicas/metabolismo , Expresión Génica
4.
Biol Chem ; 404(8-9): 781-789, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37233600

RESUMEN

During their biogenesis, the ribosomal subunits undergo numerous structural and compositional changes to achieve their final architecture. RNA helicases are a key driving force of such remodelling events but deciphering their particular functions has long been challenging due to lack of knowledge of their molecular functions and RNA substrates. Advances in the biochemical characterisation of RNA helicase activities together with new insights into RNA helicase binding sites on pre-ribosomes and structural snapshots of pre-ribosomal complexes containing RNA helicases now open the door to a deeper understanding of precisely how different RNA helicases contribute to ribosomal subunit maturation.


Asunto(s)
ARN Helicasas , Proteínas de Saccharomyces cerevisiae , ARN Helicasas/química , Ribosomas/metabolismo , Subunidades Ribosómicas/metabolismo , ARN/metabolismo , Sitios de Unión , ARN Ribosómico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Nature ; 613(7945): 775-782, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36442503

RESUMEN

CRISPR-associated transposons (CAST) are programmable mobile genetic elements that insert large DNA cargos using an RNA-guided mechanism1-3. CAST elements contain multiple conserved proteins: a CRISPR effector (Cas12k or Cascade), a AAA+ regulator (TnsC), a transposase (TnsA-TnsB) and a target-site-associated factor (TniQ). These components are thought to cooperatively integrate DNA via formation of a multisubunit transposition integration complex (transpososome). Here we reconstituted the approximately 1 MDa type V-K CAST transpososome from Scytonema hofmannii (ShCAST) and determined its structure using single-particle cryo-electon microscopy. The architecture of this transpososome reveals modular association between the components. Cas12k forms a complex with ribosomal subunit S15 and TniQ, stabilizing formation of a full R-loop. TnsC has dedicated interaction interfaces with TniQ and TnsB. Of note, we observe TnsC-TnsB interactions at the C-terminal face of TnsC, which contribute to the stimulation of ATPase activity. Although the TnsC oligomeric assembly deviates slightly from the helical configuration found in isolation, the TnsC-bound target DNA conformation differs markedly in the transpososome. As a consequence, TnsC makes new protein-DNA interactions throughout the transpososome that are important for transposition activity. Finally, we identify two distinct transpososome populations that differ in their DNA contacts near TniQ. This suggests that associations with the CRISPR effector can be flexible. This ShCAST transpososome structure enhances our understanding of CAST transposition systems and suggests ways to improve CAST transposition for precision genome-editing applications.


Asunto(s)
Sistemas CRISPR-Cas , Elementos Transponibles de ADN , Edición Génica , Holoenzimas , Complejos Multiproteicos , ARN Guía de Sistemas CRISPR-Cas , Transposasas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Elementos Transponibles de ADN/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/ultraestructura , Edición Génica/métodos , Transposasas/química , Transposasas/metabolismo , Transposasas/ultraestructura , ARN Guía de Sistemas CRISPR-Cas/genética , Holoenzimas/química , Holoenzimas/metabolismo , Holoenzimas/ultraestructura , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Microscopía por Crioelectrón , Subunidades Ribosómicas/química , Subunidades Ribosómicas/metabolismo , Subunidades Ribosómicas/ultraestructura , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura
6.
Nature ; 607(7917): 185-190, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35732735

RESUMEN

Translation initiation defines the identity and quantity of a synthesized protein. The process is dysregulated in many human diseases1,2. A key commitment step is when the ribosomal subunits join at a translation start site on a messenger RNA to form a functional ribosome. Here, we combined single-molecule spectroscopy and structural methods using an in vitro reconstituted system to examine how the human ribosomal subunits join. Single-molecule fluorescence revealed when the universally conserved eukaryotic initiation factors eIF1A and eIF5B associate with and depart from initiation complexes. Guided by single-molecule dynamics, we visualized initiation complexes that contained both eIF1A and eIF5B using single-particle cryo-electron microscopy. The resulting structure revealed how eukaryote-specific contacts between the two proteins remodel the initiation complex to orient the initiator aminoacyl-tRNA in a conformation compatible with ribosomal subunit joining. Collectively, our findings provide a quantitative and architectural framework for the molecular choreography orchestrated by eIF1A and eIF5B during translation initiation in humans.


Asunto(s)
Factor 1 Eucariótico de Iniciación , Factores Eucarióticos de Iniciación , ARN de Transferencia de Metionina , Subunidades Ribosómicas , Microscopía por Crioelectrón , Factor 1 Eucariótico de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/genética , Humanos , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/metabolismo , Subunidades Ribosómicas/química , Subunidades Ribosómicas/metabolismo , Imagen Individual de Molécula
7.
Mol Cell ; 82(4): 756-769.e8, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35120588

RESUMEN

The superkiller (SKI) complex is the cytoplasmic co-factor and regulator of the RNA-degrading exosome. In human cells, the SKI complex functions mainly in co-translational surveillance-decay pathways, and its malfunction is linked to a severe congenital disorder, the trichohepatoenteric syndrome. To obtain insights into the molecular mechanisms regulating the human SKI (hSKI) complex, we structurally characterized several of its functional states in the context of 80S ribosomes and substrate RNA. In a prehydrolytic ATP form, the hSKI complex exhibits a closed conformation with an inherent gating system that effectively traps the 80S-bound RNA into the hSKI2 helicase subunit. When active, hSKI switches to an open conformation in which the gating is released and the RNA 3' end exits the helicase. The emerging picture is that the gatekeeping mechanism and architectural remodeling of hSKI underpin a regulated RNA channeling system that is mechanistically conserved among the cytoplasmic and nuclear helicase-exosome complexes.


Asunto(s)
Exorribonucleasas/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , ARN Helicasas/metabolismo , Procesamiento Postranscripcional del ARN , Estabilidad del ARN , ARN/metabolismo , Subunidades Ribosómicas/metabolismo , Adenosina Trifosfato/metabolismo , Sitios de Unión , Exorribonucleasas/genética , Exorribonucleasas/ultraestructura , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/ultraestructura , Células HEK293 , Humanos , Modelos Moleculares , Conformación de Ácido Nucleico , Conformación Proteica , ARN/genética , ARN/ultraestructura , ARN Helicasas/genética , ARN Helicasas/ultraestructura , Subunidades Ribosómicas/genética , Subunidades Ribosómicas/ultraestructura , Relación Estructura-Actividad
8.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35042777

RESUMEN

Mitochondrial ribosomes (mitoribosomes) play a central role in synthesizing mitochondrial inner membrane proteins responsible for oxidative phosphorylation. Although mitoribosomes from different organisms exhibit considerable structural variations, recent insights into mitoribosome assembly suggest that mitoribosome maturation follows common principles and involves a number of conserved assembly factors. To investigate the steps involved in the assembly of the mitoribosomal small subunit (mt-SSU) we determined the cryoelectron microscopy structures of middle and late assembly intermediates of the Trypanosoma brucei mitochondrial small subunit (mt-SSU) at 3.6- and 3.7-Å resolution, respectively. We identified five additional assembly factors that together with the mitochondrial initiation factor 2 (mt-IF-2) specifically interact with functionally important regions of the rRNA, including the decoding center, thereby preventing premature mRNA or large subunit binding. Structural comparison of assembly intermediates with mature mt-SSU combined with RNAi experiments suggests a noncanonical role of mt-IF-2 and a stepwise assembly process, where modular exchange of ribosomal proteins and assembly factors together with mt-IF-2 ensure proper 9S rRNA folding and protein maturation during the final steps of assembly.


Asunto(s)
Proteínas Mitocondriales/química , Ribosomas Mitocondriales/química , Fosforilación Oxidativa , ARN Ribosómico/química , Proteínas Ribosómicas/química , Subunidades Ribosómicas/química , Línea Celular , Microscopía por Crioelectrón , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Ribosomas Mitocondriales/metabolismo , Modelos Moleculares , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas/genética , Subunidades Ribosómicas/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
9.
mBio ; 12(6): e0267921, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34749534

RESUMEN

During nutrient limitation, bacteria produce the alarmones (p)ppGpp as effectors of a stress signaling network termed the stringent response. RsgA, RbgA, Era, and HflX are four ribosome-associated GTPases (RA-GTPases) that bind to (p)ppGpp in Staphylococcus aureus. These enzymes are cofactors in ribosome assembly, where they cycle between the ON (GTP-bound) and OFF (GDP-bound) ribosome-associated states. Entry into the OFF state occurs upon hydrolysis of GTP, with GTPase activity increasing substantially upon ribosome association. When bound to (p)ppGpp, GTPase activity is inhibited, reducing 70S ribosome assembly and growth. Here, we determine how (p)ppGpp impacts RA-GTPase-ribosome interactions. We show that RA-GTPases preferentially bind to 5'-diphosphate-containing nucleotides GDP and ppGpp over GTP, which is likely exploited as a regulatory mechanism within the cell to shut down ribosome biogenesis during stress. Stopped-flow fluorescence and association assays reveal that when bound to (p)ppGpp, the association of RA-GTPases to ribosomal subunits is destabilized, both in vitro and within bacterial cells. Consistently, structural analysis of the ppGpp-bound RA-GTPase RsgA reveals an OFF-state conformation similar to the GDP-bound state, with the G2/switch I loop adopting a conformation incompatible with ribosome association. Altogether, we highlight (p)ppGpp-mediated inhibition of RA-GTPases as a major mechanism of stringent response-mediated ribosome assembly and growth control. IMPORTANCE The stringent response is a bacterial signaling network that utilizes the nucleotides pppGpp and ppGpp to reprogram cells in order to survive nutritional stresses. However, much about how these important nucleotides control cellular reprogramming is unknown. Our previous work revealed that (p)ppGpp can bind to and inhibit the enzymatic activity of four ribosome-associated GTPases (RA-GTPases), enzymes that facilitate maturation of the 50S and 30S ribosomal subunits. Here, we examine how this occurs mechanistically and demonstrate that this interaction prevents the accommodation of RA-GTPases on ribosomal subunits both in vitro and within bacterial cells, with the ppGpp-bound state structurally mimicking the inactive GDP-bound conformation of the enzyme. We additionally reveal that these GTPase enzymes have a greater affinity for OFF-state-inducing nucleotides, which is a mechanism likely to control ribosome assembly during growth. With this, we further our understanding of how ribosome function is controlled by (p)ppGpp, enabling bacterial survival during stress.


Asunto(s)
Proteínas Bacterianas/metabolismo , GTP Fosfohidrolasas/metabolismo , Subunidades Ribosómicas/metabolismo , Staphylococcus aureus/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/genética , Guanosina Pentafosfato/química , Guanosina Pentafosfato/metabolismo , Guanosina Tetrafosfato/química , Guanosina Tetrafosfato/metabolismo , Modelos Moleculares , Unión Proteica , Subunidades Ribosómicas/química , Subunidades Ribosómicas/genética , Staphylococcus aureus/química , Staphylococcus aureus/genética
10.
Biochemistry (Mosc) ; 86(9): 1053-1059, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34565311

RESUMEN

"Would it be possible to analyze molecular mechanisms and structural organisation of polyribosome assemblies using cryo electron tomography?" - we asked through a longstanding collaboration between my research group and that of Alexander S. Spirin. Indeed, it was: we found that double-row polyribosomes can have both circular and linear arrangements of their mRNA [Afonina, Z. A., et al. (2013) Biochemistry (Moscow)], we figured out how eukaryotic ribosomes assemble on an mRNA to form supramolecular left-handed helices [Myasnikov, A. G., et al. (2014) Nat. Commun.], that the circularization of polyribosomes is poly-A and cap-independent [Afonina, Z. A., et al. (2014) Nucleic Acids Res.], and that intermediary polyribosomes with open structures exist after a transition from a juvenile phase to strongly translating polysomes of medium size [Afonina, Z. A., et al. (2015) Nucleic Acids Res.] until they form densely packed helical structures with reduced activity. Our joint fruitful exchanges, hence, led to major advances in the field, which are reviewed here from a personal and historical perspective in memory of Alexander S. Spirin.


Asunto(s)
Polirribosomas/química , Microscopía por Crioelectrón , Eucariontes/química , Eucariontes/genética , Eucariontes/metabolismo , Conformación de Ácido Nucleico , Poli A/química , Poli A/metabolismo , Polirribosomas/metabolismo , Caperuzas de ARN/química , Caperuzas de ARN/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , Subunidades Ribosómicas/química , Subunidades Ribosómicas/metabolismo
11.
Mol Cell ; 81(20): 4300-4318.e13, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34437836

RESUMEN

The human genome encodes tens of thousands circular RNAs (circRNAs) with mostly unknown functions. Circular RNAs require internal ribosome entry sites (IRES) if they are to undergo translation without a 5' cap. Here, we develop a high-throughput screen to systematically discover RNA sequences that can direct circRNA translation in human cells. We identify more than 17,000 endogenous and synthetic sequences as candidate circRNA IRES. 18S rRNA complementarity and a structured RNA element positioned on the IRES are important for driving circRNA translation. Ribosome profiling and peptidomic analyses show extensive IRES-ribosome association, hundreds of circRNA-encoded proteins with tissue-specific distribution, and antigen presentation. We find that circFGFR1p, a protein encoded by circFGFR1 that is downregulated in cancer, functions as a negative regulator of FGFR1 oncoprotein to suppress cell growth during stress. Systematic identification of circRNA IRES elements may provide important links among circRNA regulation, biological function, and disease.


Asunto(s)
Sitios Internos de Entrada al Ribosoma , Biosíntesis de Proteínas , ARN Circular/metabolismo , Subunidades Ribosómicas/metabolismo , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Mutación , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Conformación de Ácido Nucleico , ARN Circular/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Subunidades Ribosómicas/genética , Relación Estructura-Actividad
12.
RNA ; 27(9): 981-990, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34117118

RESUMEN

Many antibiotics that bind to the ribosome inhibit translation by blocking the movement of tRNAs and mRNA or interfering with ribosome dynamics, which impairs the formation of essential translocation intermediates. Here we show how translocation inhibitors viomycin (Vio), neomycin (Neo), paromomycin (Par), kanamycin (Kan), spectinomycin (Spc), hygromycin B (HygB), and streptomycin (Str, an antibiotic that does not inhibit tRNA movement), affect principal motions of the small ribosomal subunits (SSU) during EF-G-promoted translocation. Using ensemble kinetics, we studied the SSU body domain rotation and SSU head domain swiveling in real time. We show that although antibiotics binding to the ribosome can favor a particular ribosome conformation in the absence of EF-G, their kinetic effect on the EF-G-induced transition to the rotated/swiveled state of the SSU is moderate. The antibiotics mostly inhibit backward movements of the SSU body and/or the head domains. Vio, Spc, and high concentrations of Neo completely inhibit the backward movements of the SSU body and head domain. Kan, Par, HygB, and low concentrations of Neo slow down both movements, but their sequence and coordination are retained. Finally, Str has very little effect on the backward rotation of the SSU body domain, but retards the SSU head movement. The data underscore the importance of ribosome dynamics for tRNA-mRNA translocation and provide new insights into the mechanism of antibiotic action.


Asunto(s)
Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Subunidades Ribosómicas/efectos de los fármacos , Transporte Biológico , Cinamatos/farmacología , Escherichia coli/genética , Escherichia coli/metabolismo , Higromicina B/análogos & derivados , Higromicina B/farmacología , Kanamicina/farmacología , Cinética , Neomicina/farmacología , Paromomicina/farmacología , Factor G de Elongación Peptídica/genética , Factor G de Elongación Peptídica/metabolismo , ARN Mensajero/química , ARN Mensajero/genética , ARN de Transferencia/antagonistas & inhibidores , ARN de Transferencia/química , ARN de Transferencia/genética , Subunidades Ribosómicas/genética , Subunidades Ribosómicas/metabolismo , Subunidades Ribosómicas/ultraestructura , Espectinomicina/farmacología , Estreptomicina/farmacología , Viomicina/farmacología
13.
Sci Rep ; 11(1): 8681, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33883604

RESUMEN

The eukaryotic ribosome-associated complex (RAC) plays a significant role in de novo protein folding. Its unique interaction with the ribosome, comprising contacts to both ribosomal subunits, suggests a RAC-mediated coordination between translation elongation and co-translational protein folding. Here, we apply electron paramagnetic resonance (EPR) spectroscopy combined with site-directed spin labeling (SDSL) to gain deeper insights into a RAC-ribosome contact affecting translational accuracy. We identified a local contact point of RAC to the ribosome. The data provide the first experimental evidence for the existence of a four-helix bundle as well as a long α-helix in full-length RAC, in solution as well as on the ribosome. Additionally, we complemented the structural picture of the region mediating this functionally important contact on the 40S ribosomal subunit. In sum, this study constitutes the first application of SDSL-EPR spectroscopy to elucidate the molecular details of the interaction between the 3.3 MDa translation machinery and a chaperone complex.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón/métodos , Complejos Multiproteicos/metabolismo , Ribosomas/metabolismo , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Subunidades Ribosómicas/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Marcadores de Spin
14.
EMBO J ; 40(11): e102277, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33876849

RESUMEN

The ongoing outbreak of severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) demonstrates the continuous threat of emerging coronaviruses (CoVs) to public health. SARS-CoV-2 and SARS-CoV share an otherwise non-conserved part of non-structural protein 3 (Nsp3), therefore named as "SARS-unique domain" (SUD). We previously found a yeast-2-hybrid screen interaction of the SARS-CoV SUD with human poly(A)-binding protein (PABP)-interacting protein 1 (Paip1), a stimulator of protein translation. Here, we validate SARS-CoV SUD:Paip1 interaction by size-exclusion chromatography, split-yellow fluorescent protein, and co-immunoprecipitation assays, and confirm such interaction also between the corresponding domain of SARS-CoV-2 and Paip1. The three-dimensional structure of the N-terminal domain of SARS-CoV SUD ("macrodomain II", Mac2) in complex with the middle domain of Paip1, determined by X-ray crystallography and small-angle X-ray scattering, provides insights into the structural determinants of the complex formation. In cellulo, SUD enhances synthesis of viral but not host proteins via binding to Paip1 in pBAC-SARS-CoV replicon-transfected cells. We propose a possible mechanism for stimulation of viral translation by the SUD of SARS-CoV and SARS-CoV-2.


Asunto(s)
Proteasas Similares a la Papaína de Coronavirus/metabolismo , Regulación Viral de la Expresión Génica , Factores de Iniciación de Péptidos/metabolismo , Proteínas de Unión al ARN/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , SARS-CoV-2/fisiología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , Proteínas no Estructurales Virales/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas , Cromatografía en Gel , Proteasas Similares a la Papaína de Coronavirus/química , Cristalografía por Rayos X , Genes Reporteros , Células HEK293 , Humanos , Inmunoprecipitación , Proteínas Luminiscentes , Modelos Moleculares , Factores de Iniciación de Péptidos/química , Unión Proteica , Biosíntesis de Proteínas , Conformación Proteica , Dominios Proteicos , Mapeo de Interacción de Proteínas , ARN Viral/genética , Proteínas de Unión al ARN/química , ARN Polimerasa Dependiente del ARN/química , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Subunidades Ribosómicas/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , SARS-CoV-2/genética , Dispersión del Ángulo Pequeño , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Proteínas no Estructurales Virales/química , Difracción de Rayos X
15.
Cell Rep ; 34(13): 108903, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33789112

RESUMEN

Across the animal kingdom, adult tissue homeostasis is regulated by adult stem cell activity, which is commonly dysregulated in human cancers. However, identifying key regulators of stem cells in the milieu of thousands of genes dysregulated in a given cancer is challenging. Here, using a comparative genomics approach between planarian adult stem cells and patient-derived glioblastoma stem cells (GSCs), we identify and demonstrate the role of DEAD-box helicase DDX56 in regulating aspects of stemness in four stem cell systems: planarians, mouse neural stem cells, human GSCs, and a fly model of glioblastoma. In a human GSC line, DDX56 localizes to the nucleolus, and using planarians, when DDX56 is lost, stem cells dysregulate expression of ribosomal RNAs and lose nucleolar integrity prior to stem cell death. Together, a comparative genomic approach can be used to uncover conserved stemness regulators that are functional in both normal and cancer stem cells.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Adultas/metabolismo , Animales , Línea Celular Tumoral , Linaje de la Célula , Nucléolo Celular/metabolismo , Proliferación Celular , Autorrenovación de las Células , Supervivencia Celular , Corteza Cerebral/citología , ARN Helicasas DEAD-box/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Regulación Neoplásica de la Expresión Génica , Genómica , Glioblastoma/genética , Glioblastoma/patología , Células HEK293 , Humanos , Ratones , Modelos Biológicos , Células Madre Neoplásicas/patología , Células-Madre Neurales/metabolismo , Planarias/citología , Planarias/metabolismo , Interferencia de ARN , Subunidades Ribosómicas/metabolismo , Resultado del Tratamiento , Regulación hacia Arriba/genética
16.
Sci Rep ; 11(1): 2410, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33510206

RESUMEN

Arabidopsis REIL proteins are cytosolic ribosomal 60S-biogenesis factors. After shift to 10 °C, reil mutants deplete and slowly replenish non-translating eukaryotic ribosome complexes of root tissue, while controlling the balance of non-translating 40S- and 60S-subunits. Reil mutations respond by hyper-accumulation of non-translating subunits at steady-state temperature; after cold-shift, a KCl-sensitive 80S sub-fraction remains depleted. We infer that Arabidopsis may buffer fluctuating translation by pre-existing non-translating ribosomes before de novo synthesis meets temperature-induced demands. Reil1 reil2 double mutants accumulate 43S-preinitiation and pre-60S-maturation complexes and alter paralog composition of ribosomal proteins in non-translating complexes. With few exceptions, e.g. RPL3B and RPL24C, these changes are not under transcriptional control. Our study suggests requirement of de novo synthesis of eukaryotic ribosomes for long-term cold acclimation, feedback control of NUC2 and eIF3C2 transcription and links new proteins, AT1G03250, AT5G60530, to plant ribosome biogenesis. We propose that Arabidopsis requires biosynthesis of specialized ribosomes for cold acclimation.


Asunto(s)
Aclimatación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Frío , Regulación de la Expresión Génica de las Plantas , Ribosomas/metabolismo , Citosol/metabolismo , Mutación , Especificidad de Órganos , Desarrollo de la Planta/genética , Biosíntesis de Proteínas , Proteómica/métodos , Subunidades Ribosómicas/metabolismo , Transcripción Genética
17.
Nat Commun ; 11(1): 5552, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33144582

RESUMEN

Ribosomes stalled during translation must be rescued to replenish the pool of translation-competent ribosomal subunits. Bacterial alternative rescue factor B (ArfB) releases nascent peptides from ribosomes stalled on mRNAs truncated at the A site, allowing ribosome recycling. Prior structural work revealed that ArfB recognizes such ribosomes by inserting its C-terminal α-helix into the vacant mRNA tunnel. In this work, we report that ArfB can efficiently recognize a wider range of mRNA substrates, including longer mRNAs that extend beyond the A-site codon. Single-particle cryo-EM unveils that ArfB employs two modes of function depending on the mRNA length. ArfB acts as a monomer to accommodate a shorter mRNA in the ribosomal A site. By contrast, longer mRNAs are displaced from the mRNA tunnel by more than 20 Å and are stabilized in the intersubunit space by dimeric ArfB. Uncovering distinct modes of ArfB function resolves conflicting biochemical and structural studies, and may lead to re-examination of other ribosome rescue pathways, whose functions depend on mRNA lengths.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Biocatálisis , Dimerización , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/ultraestructura , Modelos Biológicos , Conformación Proteica , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/ultraestructura , Subunidades Ribosómicas/metabolismo , Ribosomas/ultraestructura
18.
Structure ; 28(10): 1087-1100.e3, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32857965

RESUMEN

Acinetobacter baumannii is a Gram-negative bacterium primarily associated with hospital-acquired, often multidrug-resistant (MDR) infections. The ribosome-targeting antibiotics amikacin and tigecycline are among the limited arsenal of drugs available for treatment of such infections. We present high-resolution structures of the 70S ribosome from A. baumannii in complex with these antibiotics, as determined by cryoelectron microscopy. Comparison with the ribosomes of other bacteria reveals several unique structural features at functionally important sites, including around the exit of the polypeptide tunnel and the periphery of the subunit interface. The structures also reveal the mode and site of interaction of these drugs with the ribosome. This work paves the way for the design of new inhibitors of translation to address infections caused by MDR A. baumannii.


Asunto(s)
Acinetobacter baumannii/citología , Amicacina/química , Antibacterianos/química , Ribosomas/química , Tigeciclina/química , Acinetobacter baumannii/química , Sitios de Unión , Microscopía por Crioelectrón , Modelos Moleculares , Subunidades Ribosómicas/química , Subunidades Ribosómicas/metabolismo , Ribosomas/metabolismo
19.
Proc Natl Acad Sci U S A ; 117(32): 19487-19496, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32723820

RESUMEN

Alternative ribosome subunit proteins are prevalent in the genomes of diverse bacterial species, but their functional significance is controversial. Attempts to study microbial ribosomal heterogeneity have mostly relied on comparing wild-type strains with mutants in which subunits have been deleted, but this approach does not allow direct comparison of alternate ribosome isoforms isolated from identical cellular contexts. Here, by simultaneously purifying canonical and alternative RpsR ribosomes from Mycobacterium smegmatis, we show that alternative ribosomes have distinct translational features compared with their canonical counterparts. Both alternative and canonical ribosomes actively take part in protein synthesis, although they translate a subset of genes with differential efficiency as measured by ribosome profiling. We also show that alternative ribosomes have a relative defect in initiation complex formation. Furthermore, a strain of M. smegmatis in which the alternative ribosome protein operon is deleted grows poorly in iron-depleted medium, uncovering a role for alternative ribosomes in iron homeostasis. Our work confirms the distinct and nonredundant contribution of alternative bacterial ribosomes for adaptation to hostile environments.


Asunto(s)
Proteínas Bacterianas/metabolismo , Mycobacterium smegmatis/metabolismo , Ribosomas/metabolismo , Proteínas Bacterianas/genética , Hierro/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/crecimiento & desarrollo , Iniciación de la Cadena Peptídica Traduccional/genética , Biosíntesis de Proteínas , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas/metabolismo
20.
Proc Natl Acad Sci U S A ; 117(32): 19528-19537, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32723821

RESUMEN

Zinc starvation in mycobacteria leads to remodeling of ribosomes, in which multiple ribosomal (r-) proteins containing the zinc-binding CXXC motif are replaced by their motif-free paralogues, collectively called C- r-proteins. We previously reported that the 70S C- ribosome is exclusively targeted for hibernation by mycobacterial-specific protein Y (Mpy), which binds to the decoding center and stabilizes the ribosome in an inactive and drug-resistant state. In this study, we delineate the conditions for ribosome remodeling and hibernation and provide further insight into how zinc depletion induces Mpy recruitment to C- ribosomes. Specifically, we show that ribosome hibernation in a batch culture is induced at an approximately two-fold lower cellular zinc concentration than remodeling. We further identify a growth phase in which the C- ribosome remains active, while its hibernation is inhibited by the caseinolytic protease (Clp) system in a zinc-dependent manner. The Clp protease system destabilizes a zinc-bound form of Mpy recruitment factor (Mrf), which is stabilized upon further depletion of zinc, presumably in a zinc-free form. Stabilized Mrf binds to the 30S subunit and recruits Mpy to the ribosome. Replenishment of zinc to cells harboring hibernating ribosomes restores Mrf instability and dissociates Mpy from the ribosome. Finally, we demonstrate zinc-responsive binding of Mpy to ribosomes in Mycobacterium tuberculosis (Mtb) and show Mpy-dependent antibiotic tolerance of Mtb in mouse lungs. Together, we propose that ribosome hibernation is a specific and conserved response to zinc depletion in both environmental and pathogenic mycobacteria.


Asunto(s)
Mycobacterium tuberculosis/metabolismo , Ribosomas/metabolismo , Zinc/deficiencia , Animales , Antibióticos Antituberculosos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Tolerancia a Medicamentos/genética , Endopeptidasa Clp/genética , Endopeptidasa Clp/metabolismo , Ratones , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crecimiento & desarrollo , Procesamiento Proteico-Postraduccional , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas/metabolismo , Zinc/análisis , Zinc/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...