Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Biomed Pharmacother ; 174: 116602, 2024 May.
Article En | MEDLINE | ID: mdl-38636396

The development of new molecules for the treatment of calmodulin related cardiovascular or neurodegenerative diseases is an interesting goal. In this work, we introduce a novel strategy with four main steps: (1) chemical synthesis of target molecules, (2) Förster Resonance Energy Transfer (FRET) biosensor development and in vitro biological assay of new derivatives, (3) Cheminformatics models development and in vivo activity prediction, and (4) Docking studies. This strategy is illustrated with a case study. Firstly, a series of 4-substituted Riluzole derivatives 1-3 were synthetized through a strategy that involves the construction of the 4-bromoriluzole framework and its further functionalization via palladium catalysis or organolithium chemistry. Next, a FRET biosensor for monitoring Ca2+-dependent CaM-ligands interactions has been developed and used for the in vitro assay of Riluzole derivatives. In particular, the best inhibition (80%) was observed for 4-methoxyphenylriluzole 2b. Besides, we trained and validated a new Networks Invariant, Information Fusion, Perturbation Theory, and Machine Learning (NIFPTML) model for predicting probability profiles of in vivo biological activity parameters in different regions of the brain. Next, we used this model to predict the in vivo activity of the compounds experimentally studied in vitro. Last, docking study conducted on Riluzole and its derivatives has provided valuable insights into their binding conformations with the target protein, involving calmodulin and the SK4 channel. This new combined strategy may be useful to reduce assay costs (animals, materials, time, and human resources) in the drug discovery process of calmodulin inhibitors.


Biosensing Techniques , Calmodulin , Molecular Docking Simulation , Neuroprotective Agents , Riluzole , Calmodulin/antagonists & inhibitors , Calmodulin/metabolism , Biosensing Techniques/methods , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Riluzole/pharmacology , Riluzole/chemical synthesis , Riluzole/chemistry , Fluorescence Resonance Energy Transfer , Animals , Humans , Machine Learning
2.
Bioorg Med Chem ; 20(18): 5642-8, 2012 Sep 15.
Article En | MEDLINE | ID: mdl-22892214

Riluzole (1) is an approved therapeutic for the treatment of ALS and has also demonstrated anti-melanoma activity in metabotropic glutamate GRM1 positive cell lines, a mouse xenograft assay and human clinical trials. Highly variable drug exposure following oral administration among patients, likely due to variable first pass effects from heterogeneous CYP1A2 expression, hinders its clinical use. In an effort to mitigate effects of this clearance pathway and uniformly administer riluzole at efficacious exposure levels, several classes of prodrugs of riluzole were designed, synthesized, and evaluated in multiple in vitro stability assays to predict in vivo drug levels. The optimal prodrug would possess the following profile: stability while transiting the digestive system, stability towards first pass metabolism, and metabolic lability in the plasma releasing riluzole. (S)-O-Benzyl serine derivative 9 was identified as the most promising therapeutically acceptable prodrug.


Amyotrophic Lateral Sclerosis/drug therapy , Drug Design , Melanoma/drug therapy , Prodrugs/chemical synthesis , Prodrugs/pharmacology , Riluzole/metabolism , Riluzole/pharmacology , Amyotrophic Lateral Sclerosis/metabolism , Animals , Cytochrome P-450 CYP1A2/biosynthesis , Cytochrome P-450 CYP1A2/metabolism , Drug Stability , Humans , Melanoma/metabolism , Mice , Microsomes, Liver/metabolism , Molecular Structure , Prodrugs/chemistry , Prodrugs/metabolism , Riluzole/blood , Riluzole/chemical synthesis
3.
J Med Chem ; 54(1): 211-21, 2011 Jan 13.
Article En | MEDLINE | ID: mdl-21126022

Folate analogue inhibitors of Leishmania major pteridine reductase (PTR1) are potential antiparasitic drug candidates for combined therapy with dihydrofolate reductase (DHFR) inhibitors. To identify new molecules with specificity for PTR1, we carried out a virtual screening of the Available Chemicals Directory (ACD) database to select compounds that could interact with L. major PTR1 but not with human DHFR. Through two rounds of drug discovery, we successfully identified eighteen drug-like molecules with low micromolar affinities and high in vitro specificity profiles. Their efficacy against Leishmania species was studied in cultured cells of the promastigote stage, using the compounds both alone and in combination with 1 (pyrimethamine; 5-(4-chlorophenyl)-6-ethylpyrimidine-2,4-diamine). Six compounds showed efficacy only in combination. In toxicity tests against human fibroblasts, several compounds showed low toxicity. One compound, 5c (riluzole; 6-(trifluoromethoxy)-1,3-benzothiazol-2-ylamine), a known drug approved for CNS pathologies, was active in combination and is suitable for early preclinical evaluation of its potential for label extension as a PTR1 inhibitor and antiparasitic drug candidate.


Central Nervous System Agents/chemistry , Models, Molecular , Oxidoreductases/antagonists & inhibitors , Quantitative Structure-Activity Relationship , Trypanocidal Agents/chemistry , Benzothiazoles/chemical synthesis , Benzothiazoles/chemistry , Benzothiazoles/pharmacology , Central Nervous System Agents/chemical synthesis , Central Nervous System Agents/pharmacology , Drug Design , Drug Synergism , Fibroblasts/cytology , Fibroblasts/drug effects , Humans , Leishmania/drug effects , Leishmania/enzymology , Oxidoreductases/chemistry , Parasitic Sensitivity Tests , Pyrimethamine/analogs & derivatives , Pyrimethamine/chemical synthesis , Pyrimethamine/chemistry , Pyrimethamine/pharmacology , Riluzole/analogs & derivatives , Riluzole/chemical synthesis , Riluzole/chemistry , Riluzole/pharmacology , Small Molecule Libraries , Tetrahydrofolate Dehydrogenase/chemistry , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/pharmacology
4.
J Med Chem ; 42(15): 2828-43, 1999 Jul 29.
Article En | MEDLINE | ID: mdl-10425092

Two series of analogues of riluzole, a blocker of excitatory amino acid mediated neurotransmission, have been synthesized: monosubstituted 2-benzothiazolamines and 3-substituted derivatives. Of all the compounds prepared in the first series, only 2-benzothiazolamines bearing alkyl, polyfluoroalkyl, or polyfluoroalkoxy substituents in the 6-position showed potent anticonvulsant activity against administration of glutamic acid in rats. The most active compounds displaying in vivo "antiglutamate" activity were the 6-OCF(3) (riluzole), 6-OCF(2)CF(3), 6-CF(3), and 6-CF(2)CF(3) substituted derivatives with ED(50) values between 2.5 and 3.2 mg/kg i.p. Among the second series of variously substituted benzothiazolines, compounds as active as riluzole or up to 3 times more potent were identified in two series: benzothiazolines bearing a beta-dialkylaminoethyl moiety and compounds with an alkylthioalkyl chain and their corresponding sulfoxides and sulfones. The most potent derivatives were 2-imino-3-(2-methylthio)- and 2-imino-3-(2-methylsulfinyl)-ethyl-6-trifluoromethoxybenzothiazolines (61 and 64, ED(50) = 1.0 and 1.1 mg/kg i.p., respectively). In addition, intraperitoneal administration of some of the best benzothiazolines protected mice from mortality produced by hypobaric hypoxia.


Excitatory Amino Acid Antagonists/chemical synthesis , Imines/chemical synthesis , Neuroprotective Agents/chemical synthesis , Riluzole/analogs & derivatives , Riluzole/chemical synthesis , Sulfoxides/chemical synthesis , Thiazoles/chemical synthesis , Animals , Benzothiazoles , Excitatory Amino Acid Antagonists/chemistry , Excitatory Amino Acid Antagonists/pharmacology , Glutamic Acid , Hypoxia/mortality , Imines/chemistry , Imines/pharmacology , Injections, Intraventricular , Male , Mice , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Rats , Rats, Sprague-Dawley , Riluzole/chemistry , Riluzole/pharmacology , Seizures/chemically induced , Seizures/prevention & control , Structure-Activity Relationship , Sulfoxides/chemistry , Sulfoxides/pharmacology , Thiazoles/chemistry , Thiazoles/pharmacology
...