Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 9.568
1.
Vet Ital ; 60(1)2024 Mar 31.
Article En | MEDLINE | ID: mdl-38722261

Obtaining the complete or near-complete genome sequence of pathogens is becoming increasingly crucial for epidemiology, virology, clinical science and practice. This study aimed to detect viruses and conduct genetic characterization of genomes using metagenomics in order to identify the viral agents responsible for a calf's diarrhoea. The findings showed that bovine coronavirus (BCoV) and bovine rotavirus (BRV) are the primary viral agents responsible for the calf's diarrhoea. The current study successfully obtained the first-ever near-complete genome sequence of a bovine coronavirus (BCoV) from Türkiye. The G+C content was 36.31% and the genetic analysis revealed that the Turkish BCoV strain is closely related to respiratory BCoV strains from France and Ireland, with high nucleotide sequence and amino acid identity and similarity. In the present study, analysis of the S protein of the Turkish BCoV strain revealed the presence of 13 amino acid insertions, one of which was found to be shared with the French respiratory BCoV. The study also identified a BRV strain through metagenomic analysis and detected multiple mutations within the structural and non-structural proteins of the BRV strain, suggesting that the BRV Kirikkale strain may serve as an ancestor for reassortants with interspecies transmission, especially involving rotaviruses that infect rabbits and giraffes.


Coronavirus, Bovine , Genome, Viral , Metagenomics , Rotavirus , Animals , Metagenomics/methods , Coronavirus, Bovine/genetics , Coronavirus, Bovine/isolation & purification , Cattle , Rotavirus/genetics , Rotavirus/isolation & purification , Rotavirus/classification , Turkey , Cattle Diseases/virology , Rotavirus Infections/veterinary , Rotavirus Infections/virology
2.
Funct Integr Genomics ; 24(3): 92, 2024 May 11.
Article En | MEDLINE | ID: mdl-38733534

In the early 2000s, the global emergence of rotavirus (RVA) G12P[8] genotype was noted, while G12P[6] and G12P[9] combinations remained rare in humans. This study aimed to characterize and phylogenetically analyze three Brazilian G12P[9] and four G12P[6] RVA strains from 2011 to 2020, through RT-PCR and sequencing, in order to enhance our understanding of the genetic relationship between human and animal-origin RVA strains. G12P[6] strains displayed a DS-1-like backbone, showing a distinct genetic clustering. G12P[6] IAL-R52/2020, IAL-R95/2020 and IAL-R465/2019 strains clustered with 2019 Northeastern G12P[6] Brazilian strains and a 2018 Benin strain, whereas IAL-R86/2011 strain grouped with 2010 Northern G12P[6] Brazilian strains and G2P[4] strains from the United States and Belgium. These findings suggest an African genetic ancestry and reassortments with co-circulating American strains sharing the same DS-1-like constellation. No recent zoonotic reassortment was observed, and the DS-1-like constellation detected in Brazilian G12P[6] strains does not seem to be genetically linked to globally reported intergenogroup G1/G3/G9/G8P[8] DS-1-like human strains. G12P[9] strains exhibited an AU-1-like backbone with two different genotype-lineage constellations: IAL-R566/2011 and IAL-R1151/2012 belonged to a VP3/M3.V Lineage, and IAL-R870/2013 to a VP3/M3.II Lineage, suggesting two co-circulating strains in Brazil. This genetic diversity is not observed elsewhere, and the VP3/M3.II Lineage in G12P[9] strains seems to be exclusive to Brazil, indicating its evolution within the country. All three G12P[9] AU-1-like strains were closely relate to G12P[9] strains from Paraguay (2006-2007) and Brazil (2010). Phylogenetic analysis also highlighted that all South American G12P[9] AU-1-like strains had a common origin and supports the hypothesis of their importation from Asia, with no recent introduction from globally circulating G12P[9] strains or reassortments with local G12 strains P[8] or P[6]. Notably, certain genes in the Brazilian G12P[9] AU-1-like strains share ancestry with feline/canine RVAs (VP3/M3.II, NSP4/E3.IV and NSP2/N3.II), whereas NSP1/A3.VI likely originated from artiodactyls, suggesting a history of zoonotic transmission with human strains. This genomic data adds understanding to the molecular epidemiology of G12P[6] and G12P[9] RVA strains in Brazil, offering insights into their genetic diversity and evolution.


Evolution, Molecular , Genetic Variation , Phylogeny , Rotavirus Infections , Rotavirus , Rotavirus/genetics , Rotavirus/classification , Brazil , Humans , Rotavirus Infections/virology , Genotype , Animals
3.
J Med Virol ; 96(5): e29650, 2024 May.
Article En | MEDLINE | ID: mdl-38727133

To analyze the epidemiological characteristics of group A rotavirus (RVA) diarrhea in Beijing between 2019 and 2022 and evaluate the effectiveness of the RV5 vaccine. Stool specimens were collected from patients with acute diarrhea, and RVA was detected and genotyped. The whole genome of RVA was sequenced by fragment amplification and Sanger sequencing. Phylogenetic trees were constructed using Bayesian and maximum likelihood methods. Descriptive epidemiological methods were used to analyze the characteristics of RVA diarrhea. Test-negative design was used to evaluate the vaccine effectiveness (VE) of the RV5. Compared with 2011-2018, RVA-positive rates in patients with acute diarrhea under 5 years of age and adults decreased significantly between 2019 and 2022, to 9.45% (249/634) and 3.66% (220/6016), respectively. The predominant genotype of RVA had changed from G9-VIP[8]-III between 2019 and 2021 to G8-VP[8]-III in 2022, and P[8] sequences from G8-VP[8]-III strains formed a new branch called P[8]-IIIb. The complete genotype of G8-VP[8]-III was G8-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2. The VE of 3 doses of RV5 was 90.4% (95% CI: 28.8%-98.7%) against RVA diarrhea. The prevalence of RVA decreased in Beijing between 2019 and 2022, and the predominant genotype changed to G8P[8], which may be related to RV5 vaccination. Continuous surveillance is necessary to evaluate vaccine effectiveness and improve vaccine design.


Diarrhea , Feces , Genotype , Phylogeny , Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Humans , Rotavirus/genetics , Rotavirus/classification , Rotavirus/immunology , Rotavirus/isolation & purification , Rotavirus Infections/epidemiology , Rotavirus Infections/virology , Rotavirus Infections/prevention & control , Diarrhea/virology , Diarrhea/epidemiology , Rotavirus Vaccines/administration & dosage , Rotavirus Vaccines/immunology , Child, Preschool , Prevalence , Beijing/epidemiology , Male , Infant , Female , Adult , Feces/virology , Middle Aged , Child , Young Adult , Adolescent , Vaccine Efficacy , Aged , Genome, Viral , Infant, Newborn
4.
J Med Virol ; 96(5): e29681, 2024 May.
Article En | MEDLINE | ID: mdl-38773815

Rotavirus gastroenteritis is accountable for an estimated 128 500 deaths among children younger than 5 years worldwide, and the majority occur in low-income countries. Although the clinical trials of rotavirus vaccines in Bangladesh revealed a significant reduction of severe rotavirus disease by around 50%, the vaccines are not yet included in the routine immunization program. The present study was designed to provide data on rotavirus diarrhea with clinical profiles and genotypes before (2017-2019) and during the COVID-19 pandemic period (2020-2021). Fecal samples were collected from 2% of the diarrheal patients at icddr,b Dhaka hospital of all ages between January 2017 and December 2021 and were tested for VP6 rotavirus antigen using ELISA. The clinical manifestations such as fever, duration of diarrhea and hospitalization, number of stools, and dehydration and so on were collected from the surveillance database (n = 3127). Of the positive samples, 10% were randomly selected for genotyping using Sanger sequencing method. A total of 12 705 fecal samples were screened for rotavirus A antigen by enzyme immunoassay. Overall, 3369 (27%) were rotavirus antigen-positive, of whom children <2 years had the highest prevalence (88.6%). The risk of rotavirus A infection was 4.2 times higher in winter than in summer. Overall, G3P[8] was the most prominent genotype (45.3%), followed by G1P[8] (32.1%), G9P[8] (6.8%), and G2P[4] (6.1%). The other unusual combinations, such as G1P[4], G1P[6], G2P[6], G3P[4], G3P[6], and G9P[6], were also present. Genetic analysis on Bangladeshi strains revealed that the selection pressure (dN/dS) was estimated as <1. The number of hospital visits showed a 37% drop during the COVID-19 pandemic relative to the years before the pandemic. Conversely, there was a notable increase in the rate of rotavirus positivity during the pandemic (34%, p < 0.00) compared to the period before COVID-19 (23%). Among the various clinical symptoms, only the occurrence of watery stool significantly increased during the pandemic. The G2P[4] strain showed a sudden rise (19%) in 2020, which then declined in 2021. In the same year, G1P[8] was more prevalent than G3P[8] (40% vs. 38%, respectively). The remaining genotypes were negligible and did not exhibit much fluctuation. This study reveals that the rotavirus burden remained high during the COVID-19 prepandemic and pandemic in Bangladesh. Considering the lack of antigenic variations between the circulating and vaccine-targeted strains, integrating the vaccine into the national immunization program could reduce the prevalence of the disease, the number of hospitalizations, and the severity of cases.


COVID-19 , Feces , Genotype , Rotavirus Infections , Rotavirus , Humans , Bangladesh/epidemiology , Rotavirus/genetics , Rotavirus/isolation & purification , Rotavirus/classification , Rotavirus Infections/epidemiology , Rotavirus Infections/virology , Child, Preschool , Infant , COVID-19/epidemiology , COVID-19/virology , COVID-19/prevention & control , Feces/virology , Female , Male , Child , Diarrhea/virology , Diarrhea/epidemiology , Adolescent , Adult , Antigens, Viral/genetics , Infant, Newborn , Gastroenteritis/epidemiology , Gastroenteritis/virology , Young Adult , Prevalence , SARS-CoV-2/genetics , SARS-CoV-2/classification , Middle Aged , Seasons
5.
Hum Vaccin Immunother ; 20(1): 2353480, 2024 Dec 31.
Article En | MEDLINE | ID: mdl-38757507

Following the introduction of rotavirus vaccination into the Moroccan National Immunization Program, the prevalence of the disease has decreased by nearly 50%. However, evidence on the economic value of rotavirus vaccinations in Morocco is limited. This health economic analysis evaluated, from both country payer and societal perspectives, the costs and the cost-effectiveness of three rotavirus vaccines using a static, deterministic, population model in children aged < 5 years in Morocco. Included vaccines were HRV (2-dose schedule), HBRV (3-dose schedule) and BRV-PV 1-dose vial (3-dose schedule). One-way and probabilistic sensitivity analyses were conducted to assess the impact of uncertainty in model inputs. The model predicted that vaccination with HRV was estimated to result in fewer rotavirus gastroenteritis events (-194 homecare events, -57 medical visits, -8 hospitalizations) versus the 3-dose vaccines, translating into 7 discounted quality-adjusted life years gained over the model time horizon. HRV was associated with lower costs versus HBRV from both the country payer (-$1.8 M) and societal (-$4.1 M) perspectives, and versus BRV-PV 1-dose vial from the societal perspective (-$187,000), dominating those options in the cost-effectiveness analysis. However, costs of BRV-PV 1-dose vial were lower than HRV from the payer perspective, resulting in an ICER of approximately $328,376 per QALY, above the assumed cost effectiveness threshold of $3,500. Vaccination with a 2-dose schedule of HRV may be a cost-saving option and could lead to better health outcomes for children in Morocco versus 3-dose schedule rotavirus vaccines.


Cost-Benefit Analysis , Rotavirus Infections , Rotavirus Vaccines , Humans , Rotavirus Vaccines/economics , Rotavirus Vaccines/administration & dosage , Rotavirus Vaccines/immunology , Child, Preschool , Rotavirus Infections/prevention & control , Rotavirus Infections/economics , Infant , Morocco , Female , Male , Infant, Newborn , Vaccination/economics , Gastroenteritis/prevention & control , Gastroenteritis/economics , Gastroenteritis/virology
6.
J Infect ; 88(6): 106169, 2024 Jun.
Article En | MEDLINE | ID: mdl-38697269

Gastroenteritis viruses are the leading etiologic agents of diarrhea in children worldwide. We present data from thirty-three (33) eligible studies published between 2003 and 2023 from African countries bearing the brunt of the virus-associated diarrheal mortality. Random effects meta-analysis with proportion, subgroups, and meta-regression analyses were employed. Overall, rotavirus with estimated pooled prevalence of 31.0 % (95 % CI 24.0-39.0) predominated in all primary care visits and hospitalizations, followed by norovirus, adenovirus, sapovirus, astrovirus, and aichivirus with pooled prevalence estimated at 15.0 % (95 % CI 12.0-20.0), 10 % (95 % CI 6-15), 4.0 % (95 % CI 2.0-6.0), 4 % (95 % CI 3-6), and 2.3 % (95 % CI 1-3), respectively. Predominant rotavirus genotype was G1P[8] (39 %), followed by G3P[8] (11.7 %), G9P[8] (8.7 %), and G2P[4] (7.1 %); although, unusual genotypes were also observed, including G3P[6] (2.7 %), G8P[6] (1.7 %), G1P[6] (1.5 %), G10P[8] (0.9 %), G8P[4] (0.5 %), and G4P[8] (0.4 %). The genogroup II norovirus predominated over the genogroup I-associated infections (84.6 %, 613/725 vs 14.9 %, 108/725), with the GII.4 (79.3 %) being the most prevalent circulating genotype. In conclusion, this review showed that rotavirus remains the leading driver of viral diarrhea requiring health care visits and hospitalization among under-five years children in Africa. Thus, improved rotavirus vaccination in the region and surveillance to determine the residual burden of rotavirus and the evolving trend of other enteric viruses are needed for effective control and management of cases.


Gastroenteritis , Humans , Gastroenteritis/virology , Gastroenteritis/epidemiology , Child, Preschool , Infant , Africa/epidemiology , Prevalence , Diarrhea/virology , Diarrhea/epidemiology , Rotavirus/genetics , Rotavirus/isolation & purification , Rotavirus/classification , Infant, Newborn , Genotype , Virus Diseases/epidemiology , Virus Diseases/virology , Rotavirus Infections/epidemiology , Rotavirus Infections/virology , Viruses/classification , Viruses/genetics , Viruses/isolation & purification
7.
BMC Pediatr ; 24(1): 303, 2024 May 04.
Article En | MEDLINE | ID: mdl-38704530

BACKGROUND: Acute gastroenteritis (AGE) causes significant morbidity in children worldwide; however, the disease burden of children hospitalized with viral gastroenteritis in China has been rarely described. Through this study, we analyzed the data of hospitalized children with viral gastroenteritis to explore the changes in the epidemiology and clinical characteristics of viral gastroenteritis in the mainland of China. METHODS: Data were extracted from Futang Children's Medical Development Research Center (FRCPD), between 2016 and 2020, across 27 hospitals in 7 regions. The demographics, geographic distribution, pathogenic examination results, complications, hospital admission date, length of hospital stays, hospitalization charges and outcomes were collected and analyzed. RESULTS: Viral etiological agents included rotavirus (RV), adenovirus (ADV), norovirus (NV) and coxsackievirus (CV) that were detected in 25,274 (89.6%), 1,047 (3.7%), 441 (1.5%) and 83 (0.3%) cases. There was a higher prevalence of RV and NV infection among children younger than 3 years of age. RV and NV had the highest detection rates in winter, while ADV in summer. Children with viral gastroenteritis were often accompanied by other diseases, such as myocardial diseases (10.98-31.04%), upper respiratory tract diseases (1.20-20.15%), and seizures (2.41-14.51%). Among those cases, the co-infection rate with other pathogens was 6.28%, with Mycoplasma pneumoniae (M. pneumoniae), Epstein-Barr virus (EBV), and influenza virus (FLU) being the most common pathogens. The median length of stay was 5 days, and the median cost of hospitalization corresponded to587 US dollars. CONCLUSIONS: This finding suggests that viral gastroenteritis, especially those caused by RV, is a prevalent illness among younger children. Co-infections and the presence of other diseases are common. The seasonality and regional variation of viral etiological agents highlight the need for targeted prevention and control measures. Although viral gastroenteritis rarely leads to death, it also results in a significant economic burden on healthcare systems.


Gastroenteritis , Hospitalization , Humans , Gastroenteritis/epidemiology , Gastroenteritis/virology , China/epidemiology , Child, Preschool , Retrospective Studies , Infant , Male , Female , Child , Hospitalization/statistics & numerical data , Length of Stay/statistics & numerical data , Adolescent , Prevalence , Seasons , Infant, Newborn , Child, Hospitalized/statistics & numerical data , Acute Disease , Rotavirus Infections/epidemiology
8.
Rev Assoc Med Bras (1992) ; 70(4): e20230972, 2024.
Article En | MEDLINE | ID: mdl-38716934

OBJECTIVE: Our objective was to determine the frequency of rotavirus, adenovirus, and rota-adenovirus co-infections and investigate the fecal leukocyte rate associated with these infections in patients with gastroenteritis. METHODS: This is a retrospective study. We identified patients who were admitted to the pediatric emergency department with acute gastroenteritis and had their stool samples tested for rotavirus and/or adenovirus antigens. Among them, we determined the individuals who underwent stool microscopy tests on the same day and recorded their results. RESULTS: A total of 1,577 patients who underwent testing for rotavirus and/or adenovirus antigens in their stool samples were identified. Among these patients, 583 individuals had concurrent fecal microscopy results. The prevalence of solely rotavirus antigen positivity was 16.4%, solely adenovirus antigen positivity was 2.9%, and rota-adenovirus co-infections were detected in 1.8% of the children. The fecal leukocyte rates in children infected with rotavirus, adenovirus, and rota-adenovirus co-infections were 4.8, 13.3, and 88.9%, respectively. CONCLUSION: The presence of fecal leukocytes was detected at a high rate in cases of viral gastroenteritis, especially in rota-adenovirus co-infections. Therefore, clinicians should not consider only bacterial pathogens in the presence of fecal leukocytes.


Coinfection , Feces , Gastroenteritis , Rotavirus Infections , Humans , Gastroenteritis/virology , Gastroenteritis/epidemiology , Retrospective Studies , Feces/virology , Female , Male , Child, Preschool , Infant , Rotavirus Infections/epidemiology , Acute Disease , Coinfection/epidemiology , Child , Leukocyte Count , Adenovirus Infections, Human/epidemiology , Adenoviridae Infections/epidemiology , Leukocytes , Rotavirus/isolation & purification , Rotavirus/immunology , Adenoviridae/isolation & purification
9.
Front Immunol ; 15: 1364429, 2024.
Article En | MEDLINE | ID: mdl-38690265

Background: This meta-analysis was performed to assess the prevalence and circulating strains of rotavirus (RV) among Chinese children under 5 years of age after the implantation of the RV vaccine. Material and methods: Studies published between 2019 and 2023, focused on RV-based diarrhea among children less than 5 years were systematically reviewed using PubMed, Embase, Web of Science, CNKI, Wanfang and SinoMed Data. We synthesized their findings to examine prevalence and genetic diversity of RV after the RV vaccine implementation using a fixed-effects or random-effects model. Results: Seventeen studies met the inclusion criteria for this meta-analysis. The overall prevalence of RV was found to be 19.00%. The highest infection rate was noted in children aged 12-23months (25.79%), followed by those aged 24-35 months (23.91%), and 6-11 months (22.08%). The serotype G9 emerged as the most predominant RV genotype, accounting for 85.48% of infections, followed by G2 (7.70%), G8 (5.74%), G1 (4.86%), and G3 (3.21%). The most common P type was P[8], representing 64.02% of RV cases. Among G-P combinations, G9P[8] was the most frequent, responsible for 78.46% of RV infections, succeeded by G8P[8] (31.22%) and G3P[8] (8.11%). Conclusion: Despite the variation of serotypes observed in China, the G1, G2, G3, G8 and G9 serotypes accounted for most RV strains. The genetic diversity analysis highlights the dynamic nature of RV genotypes, necessitating ongoing surveillance to monitor changes in strain distribution and inform future vaccine strategies.


Genetic Variation , Rotavirus Infections , Rotavirus , Humans , Rotavirus Infections/epidemiology , Rotavirus Infections/virology , Rotavirus/genetics , China/epidemiology , Prevalence , Infant , Child, Preschool , Genotype , Rotavirus Vaccines/immunology , Male
10.
J Med Virol ; 96(4): e29565, 2024 Apr.
Article En | MEDLINE | ID: mdl-38558056

Group A rotaviruses (RVAs) are generally highly species-specific; however, some strains infect across species. Feline RVAs sporadically infect humans, causing gastroenteritis. In 2012 and 2013, rectal swab samples were collected from 61 asymptomatic shelter cats at a public health center in Mie Prefecture, Japan, to investigate the presence of RVA and any association with human infections. The analysis identified G6P[9] strains in three cats and G3P[9] strains in two cats, although no feline RVA sequence data were available for the former. A whole-genome analysis of these G6P[9] strains identified the genotype constellation G6-P[9]-I2-R2-C2-M2-A3-N2-T3-E3-H3. The nucleotide identity among these G6P[9] strains exceeded 99.5% across all 11 gene segments, indicating the circulation of this G6P[9] strain among cats. Notably, strain RVA/Human-wt/JPN/KF17/2010/G6P[9], previously detected in a 3-year-old child with gastroenteritis, shares high nucleotide identity (>98%) with Mie20120017f, the representative G6P[9] strain in this study, across all 11 gene segments, confirming feline RVA infection and symptomatic presentation in this child. The VP7 gene of strain Mie20120017f also shares high nucleotide identity with other sporadically reported G6 RVA strains in humans. This suggests that feline-origin G6 strains as the probable source of these sporadic G6 RVA strains causing gastroenteritis in humans globally. Moreover, a feline-like human G6P[8] strain circulating in Brazil in 2022 was identified, emphasizing the importance of ongoing surveillance to monitor potential global human outbreaks of RVA.


Gastroenteritis , Rotavirus Infections , Rotavirus , Cats , Humans , Animals , Child, Preschool , Rotavirus/genetics , Rotavirus Infections/epidemiology , Rotavirus Infections/veterinary , Rotavirus Infections/genetics , Genome, Viral , Phylogeny , Gastroenteritis/epidemiology , Gastroenteritis/veterinary , Gastroenteritis/genetics , Genotype , Disease Outbreaks , Nucleotides
11.
J Virol ; 98(5): e0021224, 2024 May 14.
Article En | MEDLINE | ID: mdl-38591886

Porcine rotaviruses (PoRVs) cause severe economic losses in the swine industry. P[7] and P[23] are the predominant genotypes circulating on farms, but no vaccine is yet available. Here, we developed a bivalent subunit PoRV vaccine using truncated versions (VP4*) of the VP4 proteins from P[7] and P[23]. The vaccination of mice with the bivalent subunit vaccine elicited more robust neutralizing antibodies (NAbs) and cellular immune responses than its components, even at high doses. The bivalent subunit vaccine and inactivated bivalent vaccine prepared from strains PoRVs G9P[7] and G9P[23] were used to examine their protective efficacy in sows and suckling piglets after passive immunization. The immunized sows showed significantly elevated NAbs in the serum and colostrum, and the suckling piglets acquired high levels of sIgA antibodies from the colostrum. Challenging subunit-vaccinated or inactivated-vaccinated piglets with homologous virulent strains did not induce diarrhea, except in one or two piglets, which had mild diarrhea. Immunization with the bivalent subunit vaccine and inactivated vaccine also alleviated the microscopic lesions in the intestinal tissues caused by the challenge with the corresponding homologous virulent strain. However, all the piglets in the challenged group displayed mild to watery diarrhea and high levels of viral shedding, whereas the feces and intestines of the piglets in the bivalent subunit vaccine and inactivated vaccine groups had lower viral loads. In summary, our data show for the first time that a bivalent subunit vaccine combining VP4*P[7] and VP4*P[23] effectively protects piglets against the diarrhea caused by homologous virulent strains.IMPORTANCEPoRVs are the main causes of diarrhea in piglets worldwide. The multisegmented genome of PoRVs allows the reassortment of VP4 and VP7 genes from different RV species and strains. The P[7] and P[23] are the predominant genotypes circulating in pig farms, but no vaccine is available at present in China. Subunit vaccines, as nonreplicating vaccines, are an option to cope with variable genotypes. Here, we have developed a bivalent subunit candidate vaccine based on a truncated VP4 protein, which induced robust humoral and cellular immune responses and protected piglets against challenge with homologous PoRV. It also appears to be safe. These data show that the truncated VP4-protein-based subunit vaccine is a promising candidate for the prevention of PoRV diarrhea.


Antibodies, Neutralizing , Antibodies, Viral , Capsid Proteins , Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Swine Diseases , Vaccines, Subunit , Animals , Swine , Rotavirus/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Swine Diseases/prevention & control , Swine Diseases/virology , Swine Diseases/immunology , Capsid Proteins/immunology , Capsid Proteins/genetics , Antibodies, Viral/blood , Antibodies, Viral/immunology , Vaccines, Subunit/immunology , Vaccines, Subunit/administration & dosage , Rotavirus Infections/prevention & control , Rotavirus Infections/veterinary , Rotavirus Infections/immunology , Rotavirus Infections/virology , Rotavirus Vaccines/immunology , Rotavirus Vaccines/administration & dosage , Mice , Female , Mice, Inbred BALB C , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Diarrhea/prevention & control , Diarrhea/virology , Diarrhea/veterinary , Diarrhea/immunology , Genotype , Immunity, Cellular , Vaccination
12.
Virol J ; 21(1): 94, 2024 04 24.
Article En | MEDLINE | ID: mdl-38659036

BACKGROUND: The causative agents of diarrhea, rotavirus B (RVB) and rotavirus C (RVC) are common in adults and patients of all age groups, respectively. Due to the Rotavirus A (RVA) vaccination program, a significant decrease in the number of gastroenteritis cases has been observed globally. The replacement of RVA infections with RVB, RVC, or other related serogroups is suspected due to the possibility of reducing natural selective constraints due to RVA infections. The data available on RVB and RVC incidence are scant due to the lack of cheap and rapid commercial diagnostic assays and the focus on RVA infections. The present study aimed to develop real-time RT‒PCR assays using the data from all genomic RNA segments of human RVB and RVC strains available in the Gene Bank. RESULTS: Among the 11 gene segments, NSP3 and NSP5 of RVB and the VP6 gene of RVC were found to be suitable for real-time RT‒PCR (qRT‒PCR) assays. Fecal specimens collected from diarrheal patients were tested simultaneously for the presence of RVB (n = 192) and RVC (n = 188) using the respective conventional RT‒PCR and newly developed qRT‒PCR assays. All RVB- and RVC-positive specimens were reactive in their respective qRT‒PCR assays and had Ct values ranging between 23.69 and 41.97 and 11.49 and 36.05, respectively. All known positive and negative specimens for other viral agents were nonreactive, and comparative analysis showed 100% concordance with conventional RT‒PCR assays. CONCLUSIONS: The suitability of the NSP5 gene of RVB and the VP6 gene of RVC was verified via qRT‒PCR assays, which showed 100% sensitivity and specificity. The rapid qRT‒PCR assays developed will be useful diagnostic tools, especially during diarrheal outbreaks for testing non-RVA rotaviral agents and reducing the unnecessary use of antibiotics.


Diarrhea , Feces , Real-Time Polymerase Chain Reaction , Rotavirus Infections , Rotavirus , Rotavirus/genetics , Rotavirus/isolation & purification , Humans , Rotavirus Infections/virology , Rotavirus Infections/diagnosis , Real-Time Polymerase Chain Reaction/methods , Feces/virology , Diarrhea/virology , Diarrhea/diagnosis , Sensitivity and Specificity , Reverse Transcriptase Polymerase Chain Reaction/methods , Viral Nonstructural Proteins/genetics , Antigens, Viral/genetics , RNA, Viral/genetics , Capsid Proteins/genetics , Genome, Viral/genetics , Gastroenteritis/virology , Gastroenteritis/diagnosis
13.
Viruses ; 16(4)2024 04 05.
Article En | MEDLINE | ID: mdl-38675907

Rotavirus A (RVA) is the leading cause of diarrhea requiring hospitalization in children and causes over 100,000 annual deaths in Sub-Saharan Africa. In order to generate next-generation vaccines against African RVA genotypes, a reverse genetics system based on a simian rotavirus strain was utilized here to exchange the antigenic capsid proteins VP4, VP7 and VP6 with those of African human rotavirus field strains. One VP4/VP7/VP6 (genotypes G9-P[6]-I2) triple-reassortant was successfully rescued, but it replicated poorly in the first cell culture passages. However, the viral titer was enhanced upon further passaging. Whole genome sequencing of the passaged virus revealed a single point mutation (A797G), resulting in an amino acid exchange (E263G) in VP4. After introducing this mutation into the VP4-encoding plasmid, a VP4 mono-reassortant as well as the VP4/VP7/VP6 triple-reassortant replicated to high titers already in the first cell culture passage. However, the introduction of the same mutation into the VP4 of other human RVA strains did not improve the rescue of those reassortants, indicating strain specificity. The results show that specific point mutations in VP4 can substantially improve the rescue and replication of recombinant RVA reassortants in cell culture, which may be useful for the development of novel vaccine strains.


Capsid Proteins , Reassortant Viruses , Rotavirus , Virus Replication , Rotavirus/genetics , Capsid Proteins/genetics , Humans , Reassortant Viruses/genetics , Animals , Mutation , Cell Line , Reverse Genetics/methods , Genotype , Point Mutation , Rotavirus Infections/virology , Genome, Viral , Antigens, Viral/genetics , Antigens, Viral/immunology
14.
Int Immunopharmacol ; 133: 112079, 2024 May 30.
Article En | MEDLINE | ID: mdl-38615376

Porcine rotavirus (PoRV) poses a threat to the development of animal husbandry and human health, leading to substantial economic losses. VP6 protein is the most abundant component in virus particles and also the core structural protein of the virus. Firstly, this study developed an antibiotic-resistance-free, environmentally friendly expression vector, named asd-araC-PBAD-alr (AAPA). Then Recombinant Lactiplantibacillus plantarum (L. plantarum) strains induced by arabinose to express VP6 and VP6-pFc fusion proteins was constructed. Subsequently, This paper discovered that NC8/Δalr-pCXa-VP6-S and NC8/Δalr-pCXa-VP6-pFc-S could enhance host immunity and prevent rotavirus infection in neonatal mice and piglets. The novel recombinant L. plantarum strains constructed in this study can serve as oral vaccines to boost host immunity, offering a new strategy to prevent PoRV infection.


Capsid Proteins , Lactobacillus plantarum , Swine Diseases , Animals , Swine , Lactobacillus plantarum/immunology , Capsid Proteins/immunology , Capsid Proteins/genetics , Mice , Swine Diseases/prevention & control , Swine Diseases/virology , Swine Diseases/microbiology , Swine Diseases/immunology , Rotavirus Infections/prevention & control , Rotavirus Infections/immunology , Rotavirus Infections/virology , Antigens, Viral/immunology , Rotavirus/immunology , Mice, Inbred BALB C , Animals, Newborn
15.
Vaccine ; 42(15): 3514-3521, 2024 May 31.
Article En | MEDLINE | ID: mdl-38670845

Group A rotavirus (RVA) is the primary etiological agent of acute gastroenteritis (AGE) in children under 5 years of age. Despite the global implementation of vaccines, rotavirus infections continue to cause over 120,000 deaths annually, with a majority occurring in developing nations. Among infants, the P[8] rotavirus strain is the most prevalent and can be categorized into four distinct lineages. In this investigation, we expressed five VP4(aa26-476) proteins from different P[8] lineages of human rotavirus in E. coli and assessed their immunogenicity in rabbits. Among the different P[8] strains, the Wa-VP4 protein, derived from the MT025868.1 strain of the P[8]-1 lineage, exhibited successful purification in a highly homogeneous form and significantly elicited higher levels of neutralizing antibodies (nAbs) against both homologous and heterologous rotaviruses compared to other VP4 proteins derived from different P[8] lineages in rabbits. Furthermore, we assessed the immunogenicity of the Wa-VP4 protein in mice, pigs, and cynomolgus monkeys, observing that it induced robust production of nAbs in all animals. Interestingly, there was no significant difference between in nAb titers against homologous and heterologous rotaviruses in pigs and mankeys. Collectively, these findings suggest that the Wa-VP4* protein may serve as a potential candidate for a rotavirus vaccine.


Antibodies, Neutralizing , Antibodies, Viral , Capsid Proteins , Macaca fascicularis , Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Animals , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Rotavirus Vaccines/immunology , Rotavirus Vaccines/administration & dosage , Antibodies, Viral/immunology , Antibodies, Viral/blood , Swine , Rabbits , Mice , Rotavirus/immunology , Rotavirus/genetics , Capsid Proteins/immunology , Capsid Proteins/genetics , Rotavirus Infections/prevention & control , Rotavirus Infections/immunology , Female , Mice, Inbred BALB C , Humans , Immunogenicity, Vaccine , Viral Nonstructural Proteins/immunology , Viral Nonstructural Proteins/genetics
16.
BMC Microbiol ; 24(1): 114, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38575861

BACKGROUND: Diarrhea poses a major threat to bovine calves leading to mortality and economic losses. Among the causes of calf diarrhea, bovine rotavirus is a major etiological agent and may result in dysbiosis of gut microbiota. The current study was designed to investigate the effect of probiotic Limosilactobacillus fermentum (Accession No.OR504458) on the microbial composition of rotavirus-infected calves using 16S metagenomic analysis technique. Screening of rotavirus infection in calves below one month of age was done through clinical signs and Reverse Transcriptase PCR. The healthy calves (n = 10) were taken as control while the infected calves (n = 10) before treatment was designated as diarrheal group were treated with Probiotic for 5 days. All the calves were screened for the presence of rotavirus infection on each day and fecal scoring was done to assess the fecal consistency. Infected calves after treatment were designated as recovered group. Fecal samples from healthy, recovered and diarrheal (infected calves before sampling) were processed for DNA extraction while four samples from each group were processed for 16S metagenomic analysis using Illumina sequencing technique and analyzed via QIIME 2. RESULTS: The results show that Firmicutes were more abundant in the healthy and recovered group than in the diarrheal group. At the same time Proteobacteria was higher in abundance in the diarrheal group. Order Oscillospirales dominated healthy and recovered calves and Enterobacterials dominated the diarrheal group. Alpha diversity indices show that diversity indices based on richness were higher in the healthy group and lower in the diarrheal group while a mixed pattern of clustering between diarrheal and recovered groups samples in PCA plots based on beta diversity indices was observed. CONCLUSION: It is concluded that probiotic Limosilactobacillus Fermentum N-30 ameliorate the dysbiosis caused by rotavirus diarrhea and may be used to prevent diarrhea in pre-weaned calves after further exploration.


Cattle Diseases , Gastrointestinal Microbiome , Limosilactobacillus fermentum , Probiotics , Rotavirus Infections , Rotavirus , Animals , Cattle , Rotavirus/genetics , Rotavirus Infections/drug therapy , Rotavirus Infections/veterinary , Gastrointestinal Microbiome/genetics , Dysbiosis , Diarrhea/drug therapy , Diarrhea/veterinary , Feces/microbiology , Probiotics/therapeutic use , Cattle Diseases/drug therapy , Cattle Diseases/microbiology
17.
Biomed Environ Sci ; 37(3): 278-293, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38582992

Objective: This study aimed to understand the epidemic status and phylogenetic relationships of rotavirus group A (RVA) in the Pearl River Delta region of Guangdong Province, China. Methods: This study included individuals aged 28 days-85 years. A total of 706 stool samples from patients with acute gastroenteritis collected between January 2019 and January 2020 were analyzed for 17 causative pathogens, including RVA, using a Gastrointestinal Pathogen Panel, followed by genotyping, virus isolation, and complete sequencing to assess the genetic diversity of RVA. Results: The overall RVA infection rate was 14.59% (103/706), with an irregular epidemiological pattern. The proportion of co-infection with RVA and other pathogens was 39.81% (41/103). Acute gastroenteritis is highly prevalent in young children aged 0-1 year, and RVA is the key pathogen circulating in patients 6-10 months of age with diarrhea. G9P[8] (58.25%, 60/103) was found to be the predominant genotype in the RVA strains, and the 41 RVA-positive strains that were successfully sequenced belonged to three different RVA genotypes in the phylogenetic analysis. Recombination analysis showed that gene reassortment events, selection pressure, codon usage bias, gene polymorphism, and post-translational modifications (PTMs) occurred in the G9P[8] and G3P[8] strains. Conclusion: This study provides molecular evidence of RVA prevalence in the Pearl River Delta region of China, further enriching the existing information on its genetics and evolutionary characteristics and suggesting the emergence of genetic diversity. Strengthening the surveillance of genotypic changes and gene reassortment in RVA strains is essential for further research and a better understanding of strain variations for further vaccine development.


Gastroenteritis , Rotavirus Infections , Rotavirus , Child , Humans , Infant , Child, Preschool , Rotavirus/genetics , Rotavirus Infections/epidemiology , Phylogeny , Feces , Gastroenteritis/epidemiology , Genotype , China/epidemiology , Polymorphism, Genetic
18.
Zhonghua Liu Xing Bing Xue Za Zhi ; 45(4): 506-512, 2024 Apr 10.
Article Zh | MEDLINE | ID: mdl-38678345

Objective: To investigate the epidemiological characteristics and genotype trends of rotavirus infection among the population with diarrhea in China, from 2009 to 2020 and provide evidence for strategic surveillance and prevention. Methods: Surveillance data on diarrhea syndrome from 252 sentinel hospitals across 28 provinces (municipalities, autonomous regions) were obtained from the information management system of the Infectious Disease Surveillance Technology Platform of the National Science and Technology Major Project. Descriptive epidemiological methods were employed to analyze the distribution of rotavirus diarrhea cases in different climatic zones, populations, and times from 2009 to 2020, as well as the genotyping characteristics and changing trends of group A rotavirus diarrhea cases. Results: From 2009 to 2020, a total of 114 606 diarrhea cases were tested for rotavirus, and the positive rate was 19.1% (21 872/114 606); group A rotavirus was dominant (98.2%, 21 471/21 872). The positive rate of rotavirus was the highest in 2009 (36.9%, 2 436/6 604) and 2010 (30.6%, 5 130/16 790), fluctuated between 14.0% to 18.0% from 2011 to 2017, raised slightly in 2018 (20.3%, 2 211/10 900), and declined continuously in the following two years (15.5%, 2 262/14 611 and 9.5%, 470/4 963). The positive rate of males (20.2%, 13 660/67 471) was significantly higher than that of females (17.4%, 8 212/47 135). Children under five had the highest positive rate (28.4%, 18 261/64 300), more than four times that of adults. The positive rate peaked from December to February in the mediate temperate zone, warm temperate zone, and subtropical zone, while there were two peaks from November to January and May to June in the frigid zone of the plateau. The dominant genotype of group A rotavirus gradually changed from G3P[8] and G1P[8] to G9P[8] during 2009-2020. Conclusions: The overall rotavirus infection rate in China was on a downward trend. Meanwhile, significant variations of positive rates were observed in seasonal epidemics and different age groups from 2009 to 2020. Rotavirus diarrhea in children was still a prominent concern. Vaccination of rotavirus vaccine should be promoted, and the epidemiological characteristics and genotypes of rotavirus diarrhea should be continuously monitored.


Diarrhea , Genotype , Rotavirus Infections , Rotavirus , Humans , Rotavirus Infections/epidemiology , Rotavirus Infections/virology , China/epidemiology , Rotavirus/genetics , Diarrhea/epidemiology , Diarrhea/virology , Female , Male , Infant , Child, Preschool , Child
19.
Viruses ; 16(4)2024 04 17.
Article En | MEDLINE | ID: mdl-38675964

Rotavirus (RV) is the main pathogen that causes severe diarrhea in infants and children under 5 years of age. No specific antiviral therapies or licensed anti-rotavirus drugs are available. It is crucial to develop effective and low-toxicity anti-rotavirus small-molecule drugs that act on novel host targets. In this study, a new anti-rotavirus compound was selected by ELISA, and cell activity was detected from 453 small-molecule compounds. The anti-RV effects and underlying mechanisms of the screened compounds were explored. In vitro experimental results showed that the small-molecule compound ML241 has a good effect on inhibiting rotavirus proliferation and has low cytotoxicity during the virus adsorption, cell entry, and replication stages. In addition to its in vitro effects, ML241 also exerted anti-RV effects in a suckling mouse model. Transcriptome sequencing was performed after adding ML241 to cells infected with RV. The results showed that ML241 inhibited the phosphorylation of ERK1/2 in the MAPK signaling pathway, thereby inhibiting IκBα, activating the NF-κB signaling pathway, and playing an anti-RV role. These results provide an experimental basis for specific anti-RV small-molecule compounds or compound combinations, which is beneficial for the development of anti-RV drugs.


Antiviral Agents , Rotavirus Infections , Rotavirus , Virus Replication , Rotavirus/drug effects , Rotavirus/physiology , Animals , Mice , Rotavirus Infections/drug therapy , Rotavirus Infections/virology , Virus Replication/drug effects , Humans , Antiviral Agents/pharmacology , Mitogen-Activated Protein Kinase 3/metabolism , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , NF-kappa B/metabolism , Phosphorylation , Mice, Inbred BALB C , Cell Line , MAP Kinase Signaling System/drug effects , Signal Transduction/drug effects
20.
Vet Microbiol ; 292: 110036, 2024 May.
Article En | MEDLINE | ID: mdl-38458048

Group A Rotavirus (RVA) is a major cause of diarrhea in infants and piglets. ß2-microglobulin (ß2 M), encoded by the B2M gene, serves as a crucial subunit of the major histocompatibility complex class I (MHC-I) molecules. ß2 M is indispensable for the transport of MHC-I to the cell membrane. MHC-I, also known as swine leukocyte antigen class I (SLA-I) in pigs, presents viral antigens to the cell surface. In this study, RVA infection down-regulated ß2 M expression in both porcine intestinal epithelial cells-J2 (IPEC-J2) and MA-104 cells. RVA infection did not down-regulate the mRNA level of the B2M gene, indicating that the down-regulation of ß2 M occurred on the protein level. Mechanismly, RVA infection triggered ß2 M aggregation in the endoplasmic reticulum (ER) and enhanced the Lys48 (K48)-linked ubiquitination of ß2 M, leading to the degradation of ß2 M through ERAD-proteasome pathway. Furthermore, we found that RVA infection significantly impeded the level of SLA-I on the surface, and the overexpression of ß2 M could recover its expression. In this study, our study demonstrated that RVA infection degrades ß2 M via ERAD-proteasome pathway, consequently hampering SLA-I expression on the cell surface. This study would enhance the understanding of the mechanism of how RVA infection induces immune escape.


Rotavirus Infections , Swine Diseases , Animals , beta 2-Microglobulin/genetics , beta 2-Microglobulin/metabolism , Cell Membrane , Endoplasmic Reticulum-Associated Degradation , Histocompatibility Antigens Class I/genetics , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Rotavirus Infections/veterinary , Swine , Swine Diseases/metabolism
...