Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.440
Filtrar
1.
Behav Pharmacol ; 35(7): 399-407, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39230435

RESUMEN

The l -arginine ( l -Arg)/nitric oxide/cyclic GMP/potassium channel (K ATP ) pathway and opioid receptors are known to play critical roles in pain perception and the antinociceptive effects of various compounds. While there is evidence suggesting that the analgesic effects of rutin may involve nitric oxide modulation, the direct link between rutin and the l -Arg/nitric oxide/cyclic GMP/K ATP pathway in the context of pain modulation requires further investigation. The antinociceptive effect of rutin was studied in male NMRI mice using the formalin test. To investigate the role of the l -Arg/nitric oxide/cyclic GMP/K ATP pathway and opioid receptors, the mice were pretreated intraperitoneally with different substances. These substances included l -Arg (a precursor of nitric oxide), S-nitroso- N -acetylpenicillamine (SNAP, a nitric oxide donor), N(gamma)-nitro- l -arginine methyl ester (L-NAME, an inhibitor of nitric oxide synthase), sildenafil (an inhibitor of phosphodiesterase enzyme), glibenclamide (a K ATP channel blocker), and naloxone (an opioid receptor antagonist). All pretreatments were administered 20 min before the administration of the most effective dose of rutin. Based on our investigation, it was found that rutin exhibited a dose-dependent antinociceptive effect. The administration of SNAP enhanced the analgesic effects of rutin during both the initial and secondary phases. Moreover, L-NAME, naloxone, and glibenclamide reduced the analgesic effects of rutin in both the primary and secondary phases. In conclusion, rutin holds significant value as a flavonoid with analgesic properties, and its analgesic effect is directly mediated through the nitric oxide/cyclic GMP/K ATP channel pathway.


Asunto(s)
Analgésicos , Arginina , GMP Cíclico , Canales KATP , NG-Nitroarginina Metil Éster , Óxido Nítrico , Receptores Opioides , Rutina , Transducción de Señal , Animales , Masculino , Ratones , Arginina/farmacología , Óxido Nítrico/metabolismo , Rutina/farmacología , Analgésicos/farmacología , Transducción de Señal/efectos de los fármacos , Receptores Opioides/metabolismo , Receptores Opioides/efectos de los fármacos , Canales KATP/metabolismo , GMP Cíclico/metabolismo , NG-Nitroarginina Metil Éster/farmacología , Gliburida/farmacología , Citrato de Sildenafil/farmacología , Dimensión del Dolor/efectos de los fármacos , Dimensión del Dolor/métodos , Naloxona/farmacología , Sulfonas/farmacología , Piperazinas/farmacología , Purinas/farmacología , S-Nitroso-N-Acetilpenicilamina/farmacología , Dolor/tratamiento farmacológico , Dolor/metabolismo , Antagonistas de Narcóticos/farmacología , Relación Dosis-Respuesta a Droga , Donantes de Óxido Nítrico/farmacología
2.
ACS Appl Mater Interfaces ; 16(37): 49104-49113, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39234752

RESUMEN

Photothermal therapy (PTT) shows promise in cancer treatments due to its good spatiotemporal selectivity and minimal invasiveness. However, PTT has some problems such as excessive heat damage to normal tissues, tumor thermo-resistance caused by heat shock proteins (HSPs), and limited efficacy of monotherapy. Here, we construct a patch named "partitioned microneedles" (PMN-SNAP/CuS), which separates the "catalyst" bovine serum albumin-based copper sulfide nanoparticles (CuS@BSA NPs) and the "reactant" S-nitroso-N-acetylpenicillamine (SNAP) into different regions of microneedles, for enhancing mild PTT (mPTT) of melanoma. PMN-SNAP/CuS showed an excellent photothermal effect, Fenton-like catalytic activity, and nitric oxide (NO) generation ability. The combination of NO and reactive oxygen species (ROS) produced by PMN-SNAP/CuS effectively blocked the synthesis of HSPs at the source and enhanced the efficacy of mPTT. Both in vitro and in vivo results proved that PMN-SNAP/CuS significantly enhanced the inhibition of melanoma under 808 nm laser irradiation. In conclusion, our partitioned microneedle strategy based on the combination of enhanced mPTT and gas therapy (GT) provides a promising approach to enhance the therapeutic effect on melanoma.


Asunto(s)
Cobre , Melanoma , Óxido Nítrico , Terapia Fototérmica , Animales , Óxido Nítrico/metabolismo , Cobre/química , Cobre/farmacología , Ratones , Melanoma/tratamiento farmacológico , Melanoma/patología , Melanoma/metabolismo , Melanoma/terapia , Agujas , Línea Celular Tumoral , Albúmina Sérica Bovina/química , S-Nitroso-N-Acetilpenicilamina/química , S-Nitroso-N-Acetilpenicilamina/farmacología , Humanos , Especies Reactivas de Oxígeno/metabolismo
3.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39000090

RESUMEN

The acidic byproducts of bacteria in plaque around orthodontic brackets contribute to white spot lesion (WSL) formation. Nitric oxide (NO) has antibacterial properties, hindering biofilm formation and inhibiting the growth of oral microbes. Materials that mimic NO release could prevent oral bacteria-related pathologies. This study aims to integrate S-nitroso-acetylpenicillamine (SNAP), a promising NO donor, into orthodontic elastomeric ligatures, apply an additional polymer coating, and evaluate the NO-release kinetics and antimicrobial activity against Streptococus mutans. SNAP was added to clear elastomeric chains (8 loops, 23 mm long) at three concentrations (50, 75, 100 mg/mL, and a control). Chains were then coated, via electrospinning, with additional polymer (Elastollan®) to aid in extending the NO release. NO flux was measured daily for 30 days. Samples with 75 mg/mL SNAP + Elastollan® were tested against S. mutans for inhibition of biofilm formation on and around the chain. SNAP was successfully integrated into ligatures at each concentration. Only the 75 mg/mL SNAP chains maintained their elasticity. After polymer coating, samples exhibited a significant burst of NO on the first day, exceeding the machine's reading capacity, which gradually decreased over 29 days. Ligatures also inhibited S. mutans growth and biofilm formation. Future research will assess their mechanical properties and cytotoxicity. This study presents a novel strategy to address white spot lesion (WSL) formation and bacterial-related pathologies by utilizing nitric oxide-releasing materials. Manufactured chains with antimicrobial properties provide a promising solution for orthodontic challenges, showing significant potential for academic-industrial collaboration and commercial viability.


Asunto(s)
Biopelículas , Elastómeros , Óxido Nítrico , Streptococcus mutans , Streptococcus mutans/efectos de los fármacos , Streptococcus mutans/crecimiento & desarrollo , Elastómeros/química , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Biopelículas/efectos de los fármacos , S-Nitroso-N-Acetilpenicilamina/farmacología , S-Nitroso-N-Acetilpenicilamina/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Soportes Ortodóncicos/microbiología , Pruebas de Sensibilidad Microbiana , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antiinfecciosos/síntesis química , Donantes de Óxido Nítrico/farmacología , Donantes de Óxido Nítrico/química , Donantes de Óxido Nítrico/síntesis química , Humanos
4.
Biomater Sci ; 12(18): 4664-4681, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38980705

RESUMEN

Healthcare associated infections (HCAI) represent a significant burden worldwide contributing to morbidity and mortality and result in substantial economic consequences equating to billions annually. Although the impacts of HCAI have been felt for many years, the coronavirus pandemic has had a profound effect, escalating rates of HCAI, even with extensive preventative measures such as vaccination, personal protective equipment, and deep cleaning regimes. Therefore, there is an urgent need for new solutions to mitigate this serious health emergency. In this paper, the fabrication of nitric oxide (NO) releasing dual action polymer coatings for use in healthcare applications is described. The coatings are doped with the NO donor S-nitroso-N-acetylpenicillamine (SNAP) and release high payloads of NO in a sustained manner for in excess of 50 hours. These coatings are extensively characterized in multiple biologically relevant solutions and the antibacterial/antiviral efficacy is studied. For the first time, we assess antibacterial activity in a time course study (1, 2, 4 and 24 h) in both nutrient rich and nutrient poor conditions. Coatings exhibit excellent activity against Pseudomonas aeruginosa and methicillin resistant Staphylococcus aureus (MRSA), with up to complete reduction observed over 24 hours. Additionally, when tested against SARS-CoV-2, the coatings significantly reduced active virus in as little as 10 minutes. These promising results suggest that these coatings could be a valuable addition to existing preventative measures in the fight against HCAIs.


Asunto(s)
Antibacterianos , Staphylococcus aureus Resistente a Meticilina , Óxido Nítrico , Pseudomonas aeruginosa , SARS-CoV-2 , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , S-Nitroso-N-Acetilpenicilamina/química , S-Nitroso-N-Acetilpenicilamina/farmacología , COVID-19/prevención & control , Antivirales/farmacología , Antivirales/química , Donantes de Óxido Nítrico/farmacología , Donantes de Óxido Nítrico/química , Animales , Infecciones Bacterianas/prevención & control
5.
J Biomed Mater Res A ; 112(11): 1930-1940, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38769626

RESUMEN

Wound infection and excessive blood loss are the two major challenges associated with trauma injuries that account for 10% of annual deaths in the United States. Nitric oxide (NO) is a gasotransmitter cell signaling molecule that plays a crucial role in the natural wound healing process due to its antibacterial, anti-inflammatory, cell proliferation, and tissue remodeling abilities. Tranexamic acid (TXA), a prothrombotic agent, has been used topically and systemically to control blood loss in reported cases of epistaxis and combat-related trauma injuries. Its properties could be incorporated in wound dressings to induce immediate clot formation, which is a key factor in controlling excessive blood loss. This study introduces a novel, instant clot-forming NO-releasing dressing, and fabricated using a strategic bi-layer configuration. The layer adjacent to the wound was designed with TXA suspended on a resinous bed of propolis, which is a natural bioadhesive possessing antibacterial and anti-inflammatory properties. The base layer, located furthest away from the wound, has an NO donor, S-nitroso-N-acetylpenicillamine (SNAP), embedded in a polymeric bed of Carbosil®, a copolymer of polycarbonate urethane and silicone. Propolis was integrated with a uniform layer of TXA in variable concentrations: 2.5, 5.0, and 7.5 vol % of propolis. This design of the TXA-SNAP-propolis (T-SP) wound dressing allows TXA to form a more stable clot by preventing the lysis of fibrin. The lactate dehydrogenase-based platelet adhesion assay showed an increase in fibrin activation with 7.5% T-SP as compared with control within the first 15 min of its application. A scanning electron microscope (SEM) confirmed the presence of a dense fibrin network stabilizing the clot for fabricated dressing. The antibacterial activity of NO and propolis resulted in a 98.9 ± 1% and 99.4 ± 1% reduction in the colony-forming unit of Staphylococcus aureus and multidrug-resistant Acinetobacter baumannii, respectively, which puts forward the fabricated dressing as an emergency first aid for traumatic injuries, preventing excessive blood loss and soil-borne infections.


Asunto(s)
Antibacterianos , Vendajes , S-Nitroso-N-Acetilpenicilamina , Ácido Tranexámico , Antibacterianos/farmacología , Ácido Tranexámico/farmacología , S-Nitroso-N-Acetilpenicilamina/farmacología , S-Nitroso-N-Acetilpenicilamina/química , Animales , Hemostasis/efectos de los fármacos , Humanos , Heridas y Lesiones/complicaciones , Coagulación Sanguínea/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos
6.
ACS Appl Bio Mater ; 7(5): 2993-3004, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38593411

RESUMEN

Bacterial biofilms play a central role in the development and progression of periodontitis, a chronic inflammatory condition that affects the oral cavity. One solution to current treatment constraints is using nitric oxide (NO)─with inherent antimicrobial properties. In this study, an antimicrobial coating is developed from the NO donor S-nitroso-N-acetylpenicillamine (SNAP) embedded within polyethylene glycol (PEG) to prevent periodontitis. The SNAP-PEG coating design enabled a controlled NO release, achieving tunable NO levels for more than 24 h. Testing the SNAP-PEG composite on dental floss showed its effectiveness as a uniform and bioactive coating. The coating exhibited antibacterial properties against Streptococcus mutans and Escherichia coli, with inhibition zones measuring up to 7.50 ± 0.28 and 14.80 ± 0.46 mm2, respectively. Furthermore, SNAP-PEG coating materials were found to be stable when stored at room temperature, with 93.65% of SNAP remaining after 28 d. The coatings were biocompatible against HGF and hFOB 1.19 cells through a 24 h controlled release study. This study presents a facile method to utilize controlled NO release with dental antimicrobial coatings comprising SNAP-PEG. This coating can be easily applied to various substrates, providing a user-friendly approach for targeted self-care in managing gingival infections associated with periodontitis.


Asunto(s)
Antibacterianos , Materiales Biocompatibles Revestidos , Escherichia coli , Ensayo de Materiales , Óxido Nítrico , Streptococcus mutans , Streptococcus mutans/efectos de los fármacos , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Escherichia coli/efectos de los fármacos , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Polietilenglicoles/química , Polietilenglicoles/farmacología , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Biopelículas/efectos de los fármacos , S-Nitroso-N-Acetilpenicilamina/química , S-Nitroso-N-Acetilpenicilamina/farmacología , Propiedades de Superficie , Periodontitis/tratamiento farmacológico , Periodontitis/microbiología , Encía/citología
7.
Acta Biomater ; 180: 372-382, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38614415

RESUMEN

Catheter-induced thrombosis is a major contributor to infectious and mechanical complications of biomaterials that lead to device failure. Herein, a dualfunction submicron textured nitric oxide (NO)-releasing catheter was developed. The hemocompatibility and antithrombotic activity of vascular catheters were evaluated in both 20 h in vitro blood loop and 7 d in vivo rabbit model. Surface characterization assessments via atomic force microscopy show the durability of the submicron pattern after incorporation of NO donor S-nitroso-N-acetylpenicillamine (SNAP). The SNAP-doped catheters exhibited prolonged and controlled NO release mimicking the levels released by endothelium. Fabricated catheters showed cytocompatibility when evaluated against BJ human fibroblast cell lines. After 20h in vitro evaluation of catheters in a blood loop, textured-NO catheters exhibited a 13-times reduction in surface thrombus formation compared to the control catheters, which had 83% of the total area covered by clots. After the 7 d in vivo rabbit model, analysis on the catheter surface was examined via scanning electron microscopy, where significant reduction of platelet adhesion, fibrin mesh, and thrombi can be observed on the NO-releasing textured surfaces. Moreover, compared to relative controls, a 63% reduction in the degree of thrombus formation within the jugular vein was observed. Decreased levels of fibrotic tissue decomposition on the jugular vein and reduced platelet adhesion and thrombus formation on the texture of the NO-releasing catheter surface are indications of mitigated foreign body response. This study demonstrated a biocompatible and robust dual-functioning textured NO PU catheter in limiting fouling-induced complications for longer-term blood-contacting device applications. STATEMENT OF SIGNIFICANCE: Catheter-induced thrombosis is a major contributor to infectious and mechanical complications of biomaterials that lead to device failure. This study demonstrated a robust, biocompatible, dual-functioning textured nitric oxide (NO) polyurethane catheter in limiting fouling-induced complications for longer-term blood-contacting device applications. The fabricated catheters exhibited prolonged and controlled NO release that mimics endothelium levels. After the 7 d in vivo model, a significant reduction in platelet adhesion, fibrin mesh, and thrombi was observed on the NO-releasing textured catheters, along with decreased levels of fibrotic tissue decomposition on the jugular vein. Results illustrate that NO-textured catheter surface mitigates foreign body response.


Asunto(s)
Catéteres , Óxido Nítrico , S-Nitroso-N-Acetilpenicilamina , Animales , Conejos , Óxido Nítrico/metabolismo , Humanos , S-Nitroso-N-Acetilpenicilamina/farmacología , S-Nitroso-N-Acetilpenicilamina/química , Trombosis/patología , Ensayo de Materiales , Línea Celular , Adhesividad Plaquetaria/efectos de los fármacos , Modelos Animales de Enfermedad
8.
J Colloid Interface Sci ; 664: 928-937, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38503078

RESUMEN

Bacteria-associated infections and thrombus formation are the two major complications plaguing the application of blood-contacting medical devices. Therefore, functionalized surfaces and drug delivery for passive and active antifouling strategies have been employed. Herein, we report the novel integration of bio-inspired superhydrophobicity with nitric oxide release to obtain a functional polymeric material with anti-thrombogenic and antimicrobial characteristics. The nitric oxide release acts as an antimicrobial agent and platelet inhibitor, while the superhydrophobic components prevent non-specific biofouling. Widely used medical-grade silicone rubber (SR) substrates that are known to be susceptible to biofilm and thrombus formation were dip-coated with fluorinated silicon dioxide (SiO2) and silver (Ag) nanoparticles (NPs) using an adhesive polymer as a binder. Thereafter, the resulting superhydrophobic (SH) SR substrates were impregnated with S-nitroso-N-acetylpenicillamine (SNAP, an NO donor) to obtain a superhydrophobic, Ag-bound, NO-releasing (SH-SiAgNO) surface. The SH-SiAgNO surfaces had the lowest amount of viable adhered E. coli (> 99.9 % reduction), S. aureus (> 99.8 % reduction), and platelets (> 96.1 % reduction) as compared to controls while demonstrating no cytotoxic effects on fibroblast cells. Thus, this innovative approach is the first to combine SNAP with an antifouling SH polymer surface that possesses the immense potential to minimize medical device-associated complications without using conventional systemic anticoagulation and antibiotic treatments.


Asunto(s)
Antiinfecciosos , Trombosis , Humanos , Óxido Nítrico/química , Plata/farmacología , S-Nitroso-N-Acetilpenicilamina/química , S-Nitroso-N-Acetilpenicilamina/farmacología , Staphylococcus aureus , Escherichia coli , Dióxido de Silicio/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Antiinfecciosos/farmacología , Interacciones Hidrofóbicas e Hidrofílicas , Trombosis/prevención & control , Polímeros/química
9.
J Biomed Mater Res B Appl Biomater ; 112(2): e35371, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38359176

RESUMEN

Urinary tract infections (UTIs) are some of the most common infections seen in humans, affecting over half of the female population. Though easily and quickly treatable, if gone untreated for too long, UTIs can lead to narrowing of the urethra as well as bladder and kidney infections. Due to the disease potential, it is crucial to mitigate the development of UTIs throughout healthcare. Unfortunately, sexual activity and the use of condoms have been identified as common risk factors for the development of sexually acquired UTIs. Therefore, this study outlines a potential alteration to existing condom technology to decrease the risk of developing sexually acquired UTIs using S-nitroso-N-acetylpenicillamine (SNAP), a nitric oxide (NO) donor. Herein, varying concentrations of SNAP are integrated into commercialized condoms through a facile solvent swelling method. Physical characterization studies showed that 72%-100% of the ultimate tensile strength was maintained with lower SNAP concentrations, validating the modified condom's mechanical integrity. Additionally, the evaluation of room-temperature storage stability via NO release analysis outlined a lack of special storage conditions needed compared to commercial products. Moreover, these samples exhibited >90% relative cell viability and >96% bacterial killing, proving biocompatibility and antimicrobial properties. SNAP-Latex maintains the desired condom durability while demonstrating excellent potential as an effective new contraceptive technology to mitigate the occurrence of sexually acquired UTIs.


Asunto(s)
Látex , Infecciones Urinarias , Humanos , Femenino , S-Nitroso-N-Acetilpenicilamina/farmacología , Anticoncepción de Barrera , Condones , Donantes de Óxido Nítrico , Infecciones Urinarias/prevención & control
10.
Nitric Oxide ; 142: 38-46, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37979933

RESUMEN

S-Nitroso-N-acetylpenicillamine (SNAP) is among the most common nitric oxide (NO)-donor molecules and its solid-state photolytic decomposition has potential for inhaled nitric oxide (iNO) therapy. The photochemical NO release kinetics and mechanism were investigated by exposing solid-state SNAP to a narrow-band LED as a function of nominal wavelength and intensity of incident light. The photolytic efficiency, decomposition products, and the photolytic pathways of the SNAP were examined. The maximum light penetration depth through the solid layer of SNAP was determined by an optical microscope and found to be within 100-200 µm, depending on the wavelength of light. The photolysis of solid-state SNAP to generate NO along with the stable thiyl (RS·) radical was confirmed using Electron Spin Resonance (ESR) spectroscopy. The fate of the RS· radical in the solid phase was studied both in the presence and absence of O2 using NMR, IR, ESR, and UPLC-MS. The changes in the morphology of SNAP due to its photolysis were examined using PXRD and SEM. The stable thiyl radical formed from the photolysis of solid SNAP was found to be reactive with another adjacent thiyl radical to form a disulfide (RSSR) or with oxygen to form various sulfonyl and sulfonyl peroxyl radicals {RS(O)xO·, x = 0 to 7}. However, the thiyl radical did not recombine with NO to reform the SNAP. From the PXRD data, it was found that the SNAP loses its crystallinity by generating the NO after photolysis. The initial release of NO during photolysis was increased with increased intensity of light, whereas the maximum light penetration depth was unaffected by light intensity. The knowledge gained about the photochemical reactions of SNAP may provide important insight in designing portable photoinduced NO-releasing devices for iNO therapy.


Asunto(s)
Óxido Nítrico , Espectrometría de Masas en Tándem , S-Nitroso-N-Acetilpenicilamina/farmacología , Óxido Nítrico/metabolismo , Fotólisis , Cromatografía Liquida , Donantes de Óxido Nítrico/química , Oxígeno
11.
Int J Biol Macromol ; 252: 126371, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37595726

RESUMEN

Currently, the controlled release of nitric oxide (NO) plays a crucial role in various biomedical applications. However, injectable NO-releasing materials remain an underexplored research field to date. In this study, via the incorporation of S-nitroso-N-acetyl-penicillamine (SNAP) as an NO donor, a family of NO-releasing injectable hydrogels was synthesized through the in situ cross-linking between sodium alginate and calcium ion induced by D-(+)-gluconate δ-lactone as an initiator. Initially, the organic functional groups and the corresponding morphologies of the resulting injectable hydrogels were characterized by IR and SEM spectroscopies, respectively. The NO release times of hydrogels with different SNAP loading amounts could reach up to 36-47 h. Due to the release of NO, the highest antibacterial rates of these injectable hydrogels against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were up to 95 %, respectively. Furthermore, the matrix of these hydrogels demonstrated great water absorption ability, swelling behavior, and degradation performance. Finally, we expect that these NO-releasing injectable hydrogels could have great potential applications various biomedical material fields.


Asunto(s)
Hidrogeles , Óxido Nítrico , Óxido Nítrico/metabolismo , Hidrogeles/farmacología , Alginatos , Staphylococcus aureus/metabolismo , Escherichia coli/metabolismo , Antibacterianos/farmacología , S-Nitroso-N-Acetilpenicilamina/farmacología
12.
Drug Discov Today ; 28(7): 103601, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37119964

RESUMEN

This report discusses potential therapies for treating human coronaviruses (HCoVs) and their economic impact. Specifically, we explore therapeutics that can support the body's immune response, including immunoglobulin (Ig)A, IgG and T-cell responses, to inhibit the viral replication cycle and improve respiratory function. We hypothesize that carbon quantum dots conjugated with S-nitroso-N-acetylpenicillamine (SNAP) could be a synergistic alternative cure for treating respiratory injuries caused by HCoV infections. To achieve this, we propose developing aerosol sprays containing SNAP moieties that release nitric oxide and are conjugated onto promising nanostructured materials. These sprays could combat HCoVs by inhibiting viral replication and improving respiratory function. Furthermore, they could potentially provide other benefits, such as providing novel possibilities for nasal vaccines in the future.


Asunto(s)
Óxido Nítrico , Replicación Viral , Humanos , S-Nitroso-N-Acetilpenicilamina/farmacología
13.
Int J Biol Macromol ; 241: 124564, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37094648

RESUMEN

Conductive hydrogels have promising applications in flexible electronic devices and artificial intelligence, which have attracted much attention in recent years. However, most conductive hydrogels have no antimicrobial activity, inevitably leading to microbial infections during utilization. In this work, a series of antibacterial and conductive polyvinyl alcohol and sodium alginate (PVA-SA) hydrogels were successfully developed with the incorporation of S-nitroso-N-acetyl-penicillamine (SNAP) and MXene through a freeze-thaw approach. Due to the reversibility of hydrogen bonding and electrostatic interactions, the resulting hydrogels had excellent mechanical properties. Specifically, the presence of MXene readily interrupted the crosslinked hydrogel network, but the best stretching can reach up to >300 %. Moreover, the impregnation of SNAP achieved the release of nitric oxide (NO) over several days under physiological conditions. Due to the release of NO, these composited hydrogels demonstrated high antibacterial activities (> 99 %) against both Gram-positive and negative S. aureus and E. coli bacteria. Notably, the excellent conductivity of MXene endowed the hydrogel with a sensitive, fast, and stable strain-sensing ability, to accurately monitor and distinguish subtle physiological activities of the human body including finger bending and pulse beating. These novel composited hydrogels are likely to have potential as strain-sensing materials in the field of biomedical flexible electronics.


Asunto(s)
Inteligencia Artificial , Escherichia coli , Humanos , Óxido Nítrico , Alcohol Polivinílico , Staphylococcus aureus , Alginatos , Antibacterianos/farmacología , Conductividad Eléctrica , Hidrogeles , S-Nitroso-N-Acetilpenicilamina
14.
PLoS One ; 18(4): e0284707, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37083928

RESUMEN

We have previously reported that L-arginine, a nitric oxide synthase substrate, inhibits the basolateral 10-pS Cl- channel through the cGMP/PKG signaling pathway in the thick ascending limb (TAL). As a NO releasing agent, the effect of S-nitroso-N-acetyl-penicillamine (SNAP) on the channel activity was examined in thick ascending limb of C57BL/6 mice in the present study. SNAP inhibited the basolateral 10-pS Cl- channel in a dose-dependent manner with an IC50 value of 6.6 µM. The inhibitory effect of SNAP was abolished not only by NO scavenger (carboxy-PTIO) but also by blockers of soluble guanylate cyclase (ODQ or LY-83583), indicating that the cGMP-dependent signaling pathway is involved. Moreover, the inhibitory effect of SNAP on the channel was strongly attenuated by a protein kinase G (PKG)-specific inhibitor, KT-5823, but not by the PDE2 inhibitor, BAY-60-7550. We concluded that SNAP inhibited the basolateral 10-pS Cl- channels in the TAL through a cGMP/PKG signaling pathway. As the 10-pS Cl- channel is important for regulation of NaCl absorption along the nephron, these data suggest that SNAP might be served as a regulator to prevent high-salt absorption related diseases, such as hypertension.


Asunto(s)
Donantes de Óxido Nítrico , Óxido Nítrico , Ratones , Animales , S-Nitroso-N-Acetilpenicilamina/farmacología , Donantes de Óxido Nítrico/farmacología , Óxido Nítrico/metabolismo , Ratones Endogámicos C57BL , Transducción de Señal , GMP Cíclico/metabolismo , Guanilato Ciclasa/metabolismo
15.
Sci Rep ; 13(1): 4662, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36949216

RESUMEN

Small diameter vascular grafts (SDVGs) are associated with a high failure rate due to poor endothelialization. The incorporation of a nitric oxide (NO) releasing system improves biocompatibility by using the NO effect to promote endothelial cell (EC) migration and proliferation while preventing bacterial infection. To circumvent the instability of NO donors and to prolong NO releasing, S-nitroso-N-acetyl-D-penicillamine (SNAP) as a NO donor was loaded in multi-walled carbon nanotubes (MWCNTs). Successful loading was confirmed with a maximum SNAP amount of ~ 5% (w/w) by TEM, CHNS analysis and FTIR spectra. SDVGs were 3D printed from polycaprolactone (PCL) and coated with a 1:1 ratio of polyethylene glycol and PCL dopped with different concentrations of SNAP-loaded matrix and combinations of MWCNTs-OH. Coating with 10% (w/w) SNAP-matrix-10% (w/w) SNAP-MWCNT-OH showed a diminished burst release and 18 days of NO release in the range of 0.5-4 × 10-10 mol cm-2 min-1 similar to the NO release from healthy endothelium. NO-releasing SDVGs were cytocompatible, significantly enhanced EC proliferation and migration and diminished bacterial viability. The newly developed SNAP-loaded MWCNT-OH has a great potential to develop NO releasing biomaterials with a prolonged, controlled NO release promoting in-situ endothelialization and tissue integration in vivo, even as an approach towards personalized medicine.


Asunto(s)
Nanotubos de Carbono , Óxido Nítrico , Óxido Nítrico/metabolismo , S-Nitroso-N-Acetilpenicilamina/farmacología , Preparaciones de Acción Retardada , Donantes de Óxido Nítrico/farmacología , Impresión Tridimensional
16.
ACS Appl Mater Interfaces ; 15(12): 15185-15194, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36926823

RESUMEN

Biofilm formation on biomaterial interfaces and the development of antibiotic-resistant bacteria have decreased the effectiveness of traditional antibiotic treatment of infections. In this project, ampicillin, a commonly used antibiotic, was conjugated with S-nitroso-N-acetylpenicillamine (SNAP), an S-nitrosothiol compound (RSNO) used for controlled nitric oxide (NO) release. This novel multifunctional molecule is the first of its kind to provide combined antibiotic and NO treatment of infectious pathogens. Characterization of the molecule included NMR, FTIR, and mass spectrometry. NO release behavior was also measured and compared to pure, unmodified SNAP. When evaluating the antimicrobial efficacy, the synthesized SNAPicillin molecule showed the lowest MIC value against Gram-negative Pseudomonas aeruginosa and Gram-positive methicillin-resistant Staphylococcus aureus compared to ampicillin and SNAP alone. SNAPicillin also displayed enhanced biofilm dispersal and killing of both bacterial strains when treating a 48 h biofilm preformed on a polymer surface. The antibacterial results combined with the biocompatibility of the molecule show great promise for infection prevention and treatment of polymeric interfaces to reduce medical device-related infections.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Óxido Nítrico , Óxido Nítrico/química , S-Nitroso-N-Acetilpenicilamina/farmacología , S-Nitroso-N-Acetilpenicilamina/química , Antibacterianos/farmacología , Ampicilina/farmacología , Bacterias , Biopelículas
17.
Biomater Sci ; 11(4): 1437-1450, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36602012

RESUMEN

Nitric oxide (NO) plays a pivotal role in the wound healing process and promotes the generation of healthy endothelium. In this work, a simple method has been developed for fabricating a diselenide grafted gelatin gel, which reduces NO donors such as S-nitroso-N-acetylpenicillamine (SNAP) by glutathione peroxidase-like mechanism to produce NO. Briefly, the process involved covalently conjugating 3,3'-diselenodipropionic acid (DSePA) with gelatin via carbodiimide coupling. The resulting gelatin-DSePA conjugate (G-Se-Se-G) demonstrated NO production upon incubation with SNAP and glutathione (GSH) with the flux of 4.8 ± 0.6 nmol cm-2 min-1 and 1.6 ± 0.1 nmol cm-2 min-1 at 10 min and 40 min, respectively. The G-Se-Se-G recovered even after 5 days of incubation with the reaction mixture retaining catalytic activity up to 74%. Subsequently, G-Se-Se-G was suspended (5% w/v) in water with lecithin (6% w/w of gelatin) and F127 (3% w/w of gelatin) to prepare gel through temperature dependant gelation method. The fabricated G-Se-Se-G gel exhibited desirable rheological characteristics and excellent mechanical stability under storage conditions and did not cause any significant toxicity in normal human keratinocytes (HaCaT) and fibroblast cells (WI38) up to 50 µg ml-1 of selenium equivalent. Finally, mice studies confirmed that topically applied G-Se-Se-G gel and SNAP promoted faster epithelization and collagen deposition at the wound site. In conclusion, the development of a biomimetic NO generating gel with sustained activity and biocompatibility was achieved.


Asunto(s)
Gelatina , Óxido Nítrico , Ratones , Humanos , Animales , Cicatrización de Heridas , Donantes de Óxido Nítrico , S-Nitroso-N-Acetilpenicilamina
18.
Int J Biol Macromol ; 224: 1244-1251, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36306916

RESUMEN

The controlled release of nitric oxide (NO) is significantly crucial in the NO-related biomedical field. In the current work, the controlled release of NO from alginate microspheres was achieved through the direct impregnation of S-nitroso-N-acetyl-penicillamine (SNAP) in the gelation of sodium alginate with calcium ions. The loading rate of SNAP in alginate microspheres was obtained in a range of 0.69 %­27.5 %. Specifically, the longest NO release time reached up to ∼93 h. Furthermore, the structure, thermal properties, and morphology were fully characterized. During the antibacterial studies, the NO-releasing spheres can produce a great bactericidal effect on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The alginate microspheres impregnated with 315 mg SNAP (sphere size: 2.88 mm) can effectively reduce the number of bacteria by 7 orders of magnitude with an inhibition rate up to 100 %. Therefore, we anticipated that these NO-releasing alginate microspheres would have great potential for biomedical-related applications.


Asunto(s)
Alginatos , Óxido Nítrico , Óxido Nítrico/química , Preparaciones de Acción Retardada/química , Alginatos/química , Microesferas , Staphylococcus aureus , Escherichia coli , S-Nitroso-N-Acetilpenicilamina/química , S-Nitroso-N-Acetilpenicilamina/farmacología , Antibacterianos/farmacología
19.
Talanta ; 250: 123736, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-35858531

RESUMEN

The identification and quantitation of S-nitrosothiols (RSNO) has aroused enormous levels of attention, due to RSNO have many roles in vivo. Here, we synthesized the nanocomposites of ultrafine Cu2O/layered double hydroxide (u-Cu2O/LDH) by the in situ topotactic reduction of a Cu2+-containing LDH with ascorbic acid under gentle conditions and applied these u-Cu2O/LDH to detect and monitor RSNO. Electrochemical signals of u-Cu2O/LDH exhibited a wide N-acetyl-S-nitrosopenicillamine detection range from 5.0 nM-4.0 µM and 4.0 µM-400 µM, with a low detection limit of 1.58 nM. The sensor also exhibited good performance for other RSNO, such as S-nitrosoglutathione, S-nitrosocysteine, and S-nitrosohomocysteine with corresponding limits of detection at 1.94 nM, 1.23 nM and 1.62 nM, respectively. The high levels of selectivity and sensitivity to RSNO in complex biological environments can be attributed to the abundance of exposed active sites, and the underlying support structure. In addition, u-Cu2O/LDH also exhibited dynamic nitric oxide (NO) monitoring ability from living cells. Collectively, these results reveal that u-Cu2O/LDH exhibit a remarkable ability to quantify RSNO levels in complex samples, and could therefore provide new tools for exploring ultrafine nanomaterials as a potential biosensor to investigate biological events.


Asunto(s)
Nanocompuestos , Óxido Nítrico , Ácido Ascórbico , Hidróxidos/química , Óxido Nítrico/química , S-Nitroso-N-Acetilpenicilamina , S-Nitrosoglutatión
20.
ACS Appl Mater Interfaces ; 14(27): 30595-30606, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35759508

RESUMEN

Physical incorporation of nitric oxide (NO) releasing materials in biomedical grade polymer matrices to fabricate antimicrobial coatings and devices is an economically viable process. However, achieving long-term NO release with a minimum or no leaching of the NO donor from the polymer matrix is still a challenging task. Herein, (N-acetyl-S-nitrosopenicillaminyl)-S-nitrosopenicillamine (SNAP-SNAP), a penicillamine dipeptide NO-releasing molecule, is incorporated into a commercially available biomedical grade silicone rubber (SR) to fabricate a NO-releasing coating (SNAP-SNAP/SR). The storage stabilities of the SNAP-SNAP powder and SNAP-SNAP/SR coating were analyzed at different temperatures. The SNAP-SNAP/SR coatings with varying wt % of SNAP-SNAP showed a tunable and sustained NO release for up to 6 weeks. Further, S-nitroso-N-acetylpenicillamine (SNAP), a well-explored NO-releasing molecule, was incorporated into a biomedical grade silicone polymer to fabricate a NO-releasing coating (SNAP/SR) and a comparative analysis of the NO release and S-nitrosothiol (RSNO) leaching behavior of 10 wt % SNAP-SNAP/SR and 10 wt % SNAP/SR was studied. Interestingly, the 10 wt % SNAP-SNAP/SR coatings exhibited ∼36% higher NO release and 4 times less leaching of NO donors than the 10 wt % SNAP/SR coatings. Further, the 10 wt % SNAP-SNAP/SR coatings exhibited promising antibacterial properties against Staphylococcus aureus and Escherichia coli due to the persistent release of NO. The 10 wt % SNAP-SNAP/SR coatings were also found to be biocompatible against NIH 3T3 mouse fibroblast cells. These results corroborate the sustained stability and NO-releasing properties of the SNAP-SNAP in a silicone polymer matrix and demonstrate the potential for the SNAP-SNAP/SR polymer in the fabrication of long-term indwelling biomedical devices and implants to enhance biocompatibility and resist device-related infections.


Asunto(s)
Óxido Nítrico , Elastómeros de Silicona , Animales , Antibacterianos/química , Antibacterianos/farmacología , Escherichia coli/metabolismo , Ratones , Óxido Nítrico/química , Donantes de Óxido Nítrico/química , Compuestos Nitrosos , Polímeros/química , S-Nitroso-N-Acetilpenicilamina/química , S-Nitroso-N-Acetilpenicilamina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA