Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 333
1.
Free Radic Biol Med ; 218: 1-15, 2024 Jun.
Article En | MEDLINE | ID: mdl-38574973

Sjogren's syndrome (SS) is an autoimmune disease characterized by dysfunction of exocrine glands, such as salivary glands. However, the molecular mechanism of salivary secretion dysfunction in SS is still unclear. Given the significance of glutathione peroxidase 4 (GPX4) in cellular redox homeostasis, we hypothesized that dysregulation of GPX4 may play a pivotal role in the pathogenesis of salivary secretion dysfunction observed in SS. The salivary gland of SS patients and the SS mouse model exhibited reduced expression of the ferroptosis inhibitor GPX4 and the important protein aquaporin 5 (AQP5), which is involved in salivary secretion. GPX4 overexpression upregulated and GPX4 knockdown downregulated AQP5 expression in salivary gland epithelial cells (SGECs) and salivary secretion. Bioinformatics analysis of GSE databases from SS patients' salivary glands revealed STAT4 as a key intermediary regulator between GPX4 and AQP5. A higher level of nuclear pSTAT4 was observed in the salivary gland of the SS mouse model. GPX4 overexpression inhibited and GPX4 knockdown promoted STAT4 phosphorylation and nuclear translocation in SGECs. CHIP assay confirmed the binding of pSTAT4 within the promoter of AQP5 inhibiting AQP5 transcription. GPX4 downregulation accumulates intracellular lipid ROS in SGECs. Lipid ROS inhibitor ferrostatin-1 treatment during in vitro and in vivo studies confirmed that lipid ROS activates STAT4 phosphorylation and nuclear translocation in SGECs. In summary, the downregulated GPX4 in SGECs contributes to salivary secretion dysfunction in SS via the lipid ROS/pSTAT4/AQP5 axis. This study unraveled novel targets to revitalize the salivary secretion function in SS patients.


Aquaporin 5 , Epithelial Cells , Phospholipid Hydroperoxide Glutathione Peroxidase , Reactive Oxygen Species , STAT4 Transcription Factor , Salivary Glands , Sjogren's Syndrome , Sjogren's Syndrome/metabolism , Sjogren's Syndrome/genetics , Sjogren's Syndrome/pathology , Animals , Humans , Mice , Salivary Glands/metabolism , Salivary Glands/pathology , Aquaporin 5/metabolism , Aquaporin 5/genetics , Epithelial Cells/metabolism , Epithelial Cells/pathology , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Reactive Oxygen Species/metabolism , STAT4 Transcription Factor/metabolism , STAT4 Transcription Factor/genetics , Disease Models, Animal , Female , Down-Regulation , Male , Signal Transduction , Gene Expression Regulation , Ferroptosis/genetics , Saliva/metabolism , Middle Aged
2.
Biomed Pharmacother ; 174: 116537, 2024 May.
Article En | MEDLINE | ID: mdl-38579402

Chronic Lymphocytic Leukemia (CLL) patients have a defective expression of the proapoptotic protein p66Shc and of its transcriptional factor STAT4, which evoke molecular abnormalities, impairing apoptosis and worsening disease prognosis and severity. p66Shc expression is epigenetically controlled and transcriptionally modulated by STAT4; epigenetic modifiers are deregulated in CLL cells and specific histone deacetylases (HDACs) like HDAC1, are overexpressed. Reactivation of STAT4/p66Shc expression may represent an attractive and challenging strategy to reverse CLL apoptosis defects. New selective class I HDAC inhibitors (HDACis, 6a-g) were developed with increased potency over existing agents and preferentially interfering with the CLL-relevant isoform HDAC1, to unveil the role of class I HDACs in the upregulation of STAT4 expression, which upregulates p66Shc expression and hence normalizes CLL cell apoptosis. 6c (chlopynostat) was identified as a potent HDAC1i with a superior profile over entinostat. 6c induces marked apoptosis of CLL cells compared with SAHA, which was associated with an upregulation of STAT4/p66Shc protein expression. The role of HDAC1, but not HDAC3, in the epigenetic upregulation of STAT4/p66Shc was demonstrated for the first time in CLL cells and was validated in siRNA-induced HDAC1/HDAC3 knock-down EBV-B cells. To sum up, HDAC1 inhibition is necessary to reactivate STAT4/p66Shc expression in patients with CLL. 6c is one of the most potent HDAC1is known to date and represents a novel pharmacological tool for reversing the impairment of the STAT4/p66Shc apoptotic machinery.


Apoptosis , B-Lymphocytes , Histone Deacetylase Inhibitors , Leukemia, Lymphocytic, Chronic, B-Cell , STAT4 Transcription Factor , Src Homology 2 Domain-Containing, Transforming Protein 1 , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Apoptosis/drug effects , Histone Deacetylase Inhibitors/pharmacology , Src Homology 2 Domain-Containing, Transforming Protein 1/metabolism , Src Homology 2 Domain-Containing, Transforming Protein 1/genetics , STAT4 Transcription Factor/metabolism , B-Lymphocytes/drug effects , B-Lymphocytes/metabolism , Histone Deacetylase 1/metabolism , Histone Deacetylase 1/antagonists & inhibitors , Benzamides/pharmacology , Male , Aged , Female , Middle Aged
3.
Tissue Eng Regen Med ; 21(4): 595-608, 2024 Jun.
Article En | MEDLINE | ID: mdl-38466361

BACKGROUND: The purpose of this study was to investigate the specific effects of signal transducer and activator of transcription 4 (STAT4)-induced long intergenic nonprotein coding RNA 1278 (LINC01278) on the growth of non-small cell lung cancer (NSCLC) cells involved in the microRNA (miR)-877-5p/activated transcription factor 4 (ATF4) axis. METHODS: NSCLC tumor tissue and adjacent normal tissue were collected. Human normal lung epithelial cell BEAS-2B and human NSCLC cell lines (H1299, H1975, A549, H2228) were collected. The expression levels of STAT4, LINC01278, miR-877-5p, and ATF4 were detected. A549 cells were screened for subsequent experiments. The proliferation ability of cells was detected by colony formation experiment. Cell apoptosis was tested by flow cytometry. Scratch test and transwell assay were used to detect the migration and invasion ability of cells. Biological function of LINC01278 in NSCLC was confirmed by xenograft experiments. RESULTS: Low expression miR-877-5p and high expression of STAT4, LINC01278 and ATF4 were detected in NSCLC. Silenced LINC01278 in A549 cell depressed cell proliferation, migration and invasion, but facilitated cell apoptosis. LINC01278 was positively correlated with STAT4 and could directly bind to miR-877-5p. Upregulating miR-877-5p suppressed NSCLC cell progression, while downregulating miR-877-5p had the opposite effect. Upregulating miR-877-5p abrogated the effects of silenced LINC01278 on NSCLC cell progression. MiR-877-5p targeted ATF4. ATF4 upregulation could partly restore the carcinogenic effect of LINC01278 in vitro and in vivo. CONCLUSION: Our data supports that STAT4-induced upregulation of LINC01278 promotes NSCLC progression by modulating the miR-877-5p/ATF4 axis, suggesting a novel direction for NSCLC treatment.


Activating Transcription Factor 4 , Carcinoma, Non-Small-Cell Lung , Cell Proliferation , Gene Expression Regulation, Neoplastic , Lung Neoplasms , MicroRNAs , RNA, Long Noncoding , STAT4 Transcription Factor , Up-Regulation , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 4/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Animals , STAT4 Transcription Factor/metabolism , STAT4 Transcription Factor/genetics , Neoplasm Invasiveness , Cell Line, Tumor , A549 Cells , Mice, Nude , Mice , Apoptosis , Female , Male , Cell Movement , Mice, Inbred BALB C
4.
Int J Mol Sci ; 25(6)2024 Mar 09.
Article En | MEDLINE | ID: mdl-38542139

Our goal was to investigate the effects of epidermal growth factor (EGF) and interferons (IFNs) on signal transducer and activator of transcription STAT1 and STAT4 mRNA and active phosphorylated protein expression in Sjögren's syndrome cell culture models. iSGECs (immortalized salivary gland epithelial cells) and A253 cells were treated with EGF, IFN-alpha, -beta, -gamma, or mitogen-activated protein kinase p38 alpha (p38-MAPK) inhibitor for 0-24-48-72 h. STAT1 and STAT4 mRNA expression was quantified by qRT-PCR. Untreated and treated cells were compared using the delta-delta-CT method based on glyceraldehyde-3-phosphate dehydrogenase (GAPDH) normalized relative fold changes. phospho-tyrosine-701-STAT1 and phospho-serine-721-STAT4 were detected by Western blot analysis. STAT4 mRNA expression decreased 48 h after EGF treatment in A253 cells, immortalized salivary gland epithelial cells iSGECs nSS2 (sicca patient origin), and iSGECs pSS1 (anti-SSA negative Sjögren's Syndrome patient origin). EGF and p38-MAPK inhibitor decreased A253 STAT4 mRNA levels. EGF combined with IFN-gamma increased phospho-STAT4 and phospho-STAT1 after 72 h in all cell lines, suggesting additive effects for phospho-STAT4 and a major effect from IFN-gamma for phospho-STAT1. pSS1 and nSS2 cells responded differently to type I and type II interferons, confirming unique functional characteristics between iSGEC cell lines. EGF/Interferon related pathways might be targeted to regulate STAT1 and STAT4 expression in salivary gland epithelial cells. Further investigation is required learn how to better target the Janus kinases/signal transducer and activator of transcription proteins (JAK/STAT) pathway-mediated inflammatory response in Sjögren's syndrome.


Epidermal Growth Factor , Sjogren's Syndrome , Humans , Epidermal Growth Factor/pharmacology , Epidermal Growth Factor/metabolism , Sjogren's Syndrome/drug therapy , Sjogren's Syndrome/genetics , Interferon-alpha/pharmacology , Immunologic Factors , Cell Culture Techniques , RNA, Messenger/metabolism , Dietary Supplements , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , Phosphorylation , STAT4 Transcription Factor/genetics , STAT4 Transcription Factor/metabolism
5.
J Exp Clin Cancer Res ; 43(1): 67, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38429845

BACKGROUND: Docetaxel resistance represents a significant obstacle in the treatment of prostate cancer. The intricate interplay between cytokine signalling pathways and transcriptional control mechanisms in cancer cells contributes to chemotherapeutic resistance, yet the underlying molecular determinants remain only partially understood. This study elucidated a novel resistance mechanism mediated by the autocrine interaction of interleukin-11 (IL-11) and its receptor interleukin-11 receptor subunit alpha(IL-11RA), culminating in activation of the JAK1/STAT4 signalling axis and subsequent transcriptional upregulation of the oncogene c-MYC. METHODS: Single-cell secretion profiling of prostate cancer organoid was analyzed to determine cytokine production profiles associated with docetaxel resistance.Analysis of the expression pattern of downstream receptor IL-11RA and enrichment of signal pathway to clarify the potential autocrine mechanism of IL-11.Next, chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) was performed to detect the nuclear localization and DNA-binding patterns of phosphorylated STAT4 (pSTAT4). Coimmunoprecipitation and reporter assays were utilized to assess interaction between pSTAT4 and the cotranscription factor CREB-binding protein (CBP) as well as their role in c-MYC transcriptional activity. RESULTS: Autocrine secretion of IL-11 was markedly increased in docetaxel-resistant prostate cancer cells. IL-11 stimulation resulted in robust activation of JAK1/STAT4 signalling. Upon activation, pSTAT4 translocated to the nucleus and associated with CBP at the c-MYC promoter region, amplifying its transcriptional activity. Inhibition of the IL-11/IL-11RA interaction or disruption of the JAK1/STAT4 pathway significantly reduced pSTAT4 nuclear entry and its binding to CBP, leading to downregulation of c-MYC expression and restoration of docetaxel sensitivity. CONCLUSION: Our findings identify an autocrine loop of IL-11/IL-11RA that confers docetaxel resistance through the JAK1/STAT4 pathway. The pSTAT4-CBP interaction serves as a critical enhancer of c-MYC transcriptional activity in prostate cancer cells. Targeting this signalling axis presents a potential therapeutic strategy to overcome docetaxel resistance in advanced prostate cancer.


Drug Resistance, Neoplasm , Interleukin-11 , Prostatic Neoplasms , Humans , Male , Docetaxel/pharmacology , Gene Expression Regulation , Interleukin-11/genetics , Interleukin-11/metabolism , Janus Kinase 1/genetics , Janus Kinase 1/metabolism , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Signal Transduction , STAT4 Transcription Factor/metabolism , Drug Resistance, Neoplasm/genetics
6.
Phytomedicine ; 128: 155558, 2024 Jun.
Article En | MEDLINE | ID: mdl-38547614

BACKGROUND: The experimental autoimmune myocarditis (EAM) model is valuable for investigating myocarditis pathogenesis. M1-type macrophages and CD4+T cells exert key pathogenic effects on EAM initiation and progression. Baicalein (5,6,7-trihydroxyflavone, C15H10O5, BAI), which is derived from the Scutellaria baicalensis root, is a primary bioactive compound with potent anti-inflammatory and antioxidant properties. BAI exerts good therapeutic effects against various autoimmune diseases; however, its effect in EAM has not been thoroughly researched. PURPOSE: This study aimed to explore the possible inhibitory effect of BAI on M1 macrophage polarisation and CD4+T cell differentiation into Th1 cells via modulation of the JAK-STAT1/4 signalling pathway, which reduces the secretion of pro-inflammatory factors, namely, TNF-α and IFN-γ, and consequently inhibits TNF-α- and IFN-γ-triggered apoptosis in cardiomyocytes of the EAM model mice. STUDY DESIGN AND METHODS: Flow cytometry, immunofluorescence, real-time quantitative polymerase chain reaction (q-PCR), and western blotting were performed to determine whether BAI alleviated M1/Th1-secreted TNF-α- and IFN-γ-induced myocyte death in the EAM model mice through the inhibition of the JAK-STAT1/4 signalling pathway. RESULTS: These results indicate that BAI intervention in mice resulted in mild inflammatory infiltrates. BAI inhibited JAK-STAT1 signalling in macrophages both in vivo and in vitro, which attenuated macrophage polarisation to the M1 type and reduced TNF-α secretion. Additionally, BAI significantly inhibited the differentiation of CD4+T cells to Th1 cells and IFN-γ secretion both in vivo and in vitro by modulating the JAK-STAT1/4 signalling pathway. This ultimately led to decreased TNF-α and IFN-γ levels in cardiac tissues and reduced myocardial cell apoptosis. CONCLUSION: This study demonstrates that BAI alleviates M1/Th1-secreted TNF-α- and IFN-γ-induced cardiomyocyte death in EAM mice by inhibiting the JAK-STAT1/4 signalling pathway.


Apoptosis , Disease Models, Animal , Flavanones , Interferon-gamma , Janus Kinases , Myocarditis , Myocytes, Cardiac , STAT1 Transcription Factor , Signal Transduction , Tumor Necrosis Factor-alpha , Animals , STAT1 Transcription Factor/metabolism , Signal Transduction/drug effects , Myocytes, Cardiac/drug effects , Janus Kinases/metabolism , Mice , Flavanones/pharmacology , Male , Interferon-gamma/metabolism , Apoptosis/drug effects , Tumor Necrosis Factor-alpha/metabolism , Myocarditis/drug therapy , STAT4 Transcription Factor/metabolism , Autoimmune Diseases/drug therapy , Mice, Inbred BALB C , Macrophages/drug effects , Macrophages/metabolism , Scutellaria baicalensis/chemistry , Th1 Cells/drug effects , Cell Differentiation/drug effects
7.
Neurochem Int ; 175: 105683, 2024 May.
Article En | MEDLINE | ID: mdl-38341034

BACKGROUND: Oxidative stress and neuroinflammation are proven to play critical roles in the pathogenesis of Parkinson's disease (PD). As reported, patients with PD have lower level of STAT4 compared with healthy subjects. However, the biological functions and mechanisms of STAT4 in PD pathogenesis remain uncertain. This study aimed to investigate the roles and related mechanisms of STAT4 in PD development. METHODS: The intraperitoneal injection of MPTP (20 mg/kg) dissolved in physiological saline was performed to mimic PD-like conditions in vivo. MPP + solution was prepared for cell model of PD. Cell viability was measured by CCK-8. Griess reaction was conducted to measure NO concentrations. The mRNA and protein levels were evaluated by RT-qPCR and western blotting. ROS generation was assessed by DCFH-DA. The levels of inflammatory cytokines were measured by ELISA. Cell apoptosis was examined by flow cytometry and western blotting. Moreover, the SH-SY5Y cells were treated with conditioned medium from LPS-stimulated microglia and subjected to CCK-8 assays and ELISA. Mechanistically, CHIP assays and luciferase reporter assays were performed to verify the binding relationship between KISS1 and STAT4. For in vivo analysis, the histological changes of midbrain tissues of mice were determined by hematoxylin and eosin staining. The expression of tyrosine hydroxylase (TH) was detected by immunohistochemistry staining. Iba-1 positive microglial cells in the striatum were assessed by immunofluorescence staining. RESULTS: For in vitro analysis, STAT4 level was downregulated after MPP+ treatment, and STAT4 upregulation inhibited the oxidative damage, inflammation and apoptosis in SH-SY5Y cells. STAT4 bound at +215-228 region of KISS1, and KISS1 upregulation counteracted the protection of STAT4 upregulation against cell damage. Moreover, STAT4 upregulation inhibited cell viability loss and inflammation induced by conditioned medium from LPS-treated microglia, whereas KISS1 upregulation had the opposite effect. For in vivo analysis, the protective effects of STAT4 upregulation against inflammatory response, oxidative stress, dopaminergic neuronal loss and microglia activation were attenuated by KISS1 upregulation. Moreover, the inactivation of MAPK pathway caused by STAT4 upregulation was reversed by KISS1 upregulation, and MAPK inhibition attenuated the MPP+-induced inflammation, oxidative stress and apoptosis in SH-SY5Y cells. CONCLUSION: STAT4 inhibits KISS1 to attenuate the oxidative damage, inflammation and neuronal apoptosis in PD by inactivating the MAPK pathway.


Neuroblastoma , Parkinson Disease , Animals , Humans , Mice , Apoptosis , Cell Line, Tumor , Culture Media, Conditioned/pharmacology , Inflammation/chemically induced , Inflammation/metabolism , Kisspeptins , Lipopolysaccharides/pharmacology , Mice, Inbred C57BL , Oxidative Stress , Parkinson Disease/metabolism , Sincalide/adverse effects , Sincalide/metabolism , STAT4 Transcription Factor/metabolism
8.
Am J Physiol Cell Physiol ; 326(5): C1494-C1504, 2024 May 01.
Article En | MEDLINE | ID: mdl-38406824

Primary Sjögren's syndrome (pSS) is characterized by its autoimmune nature. This study investigates the role of the IFNγ SNP rs2069705 in modulating the susceptibility to pSS. Differential expression of IFNγ and BAFF was analyzed using the GEO database's mRNA microarray GSE84844. Genotyping of the IFNγ SNP rs2069705 was conducted via the dbSNP website. The JASPAR tool was used for predicting transcription factor bindings. Techniques such as dual-luciferase reporter assays, Chromatin immunoprecipitation, and analysis of a pSS mouse model were applied to study gene and protein interactions. A notable increase in the mutation frequency of IFNγ SNP rs2069705 was observed in MNCs from the exocrine glands of pSS mouse models. Bioinformatics analysis revealed elevated levels of IFNγ and BAFF in pSS samples. The model exhibited an increase in both CD20+ B cells and cells expressing IFNγ and BAFF. Knocking down IFNγ resulted in lowered BAFF expression and less lymphocyte infiltration, with BAFF overexpression reversing this suppression. Activation of the Janus kinase (JAK)/STAT1 pathway was found to enhance transcription in the BAFF promoter region, highlighting IFNγ's involvement in pSS. In addition, rs2069705 was shown to boost IFNγ transcription by promoting interaction between its promoter and STAT4. SNP rs2069705 in the IFNγ gene emerges as a pivotal element in pSS susceptibility, primarily by augmenting IFNγ transcription, activating the JAK/STAT1 pathway, and leading to B-lymphocyte infiltration in the exocrine glands.NEW & NOTEWORTHY The research employed a combination of bioinformatics analysis, genotyping, and experimental models, providing a multifaceted approach to understanding the complex interactions in pSS. We have uncovered that the rs2069705 SNP significantly affects the transcription of IFNγ, leading to altered immune responses and B-lymphocyte activity in pSS.


B-Cell Activating Factor , B-Lymphocytes , Interferon-gamma , Polymorphism, Single Nucleotide , Sjogren's Syndrome , Transcriptional Activation , Sjogren's Syndrome/genetics , Sjogren's Syndrome/immunology , Sjogren's Syndrome/metabolism , Sjogren's Syndrome/pathology , Interferon-gamma/genetics , Interferon-gamma/metabolism , Polymorphism, Single Nucleotide/genetics , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , B-Cell Activating Factor/genetics , B-Cell Activating Factor/metabolism , Mice , Humans , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , STAT4 Transcription Factor/genetics , STAT4 Transcription Factor/metabolism , Female , Disease Models, Animal , Genetic Predisposition to Disease , Janus Kinases/metabolism , Janus Kinases/genetics , Signal Transduction/genetics
9.
J Physiol Biochem ; 80(1): 219-233, 2024 Feb.
Article En | MEDLINE | ID: mdl-38091230

This study aimed to investigate the role of ERG in the HLX/STAT4/Perforin signaling axis, impacting natural killer (NK) cell cytotoxicity and myocardial infarction (MI) progression. NK cell cytotoxicity was assessed via co-culture and 51Cr release assays. Datasets GSE34198 and GSE97320 identified common differentially expressed genes in MI. NK cell gene expression was analyzed in MI patients and healthy individuals using qRT-PCR and Western blotting. ERG's regulation of HLX and STAT4's regulation of perforin were studied through computational tools (MEM) and ChIP experiments. HLX's influence on STAT4 was explored with the MG132 proteasome inhibitor. Findings were validated in a mouse MI model.ERG, a commonly upregulated gene, was identified in NK cells from MI patients and mice. ERG upregulated HLX, leading to STAT4 proteasomal degradation and reduced Perforin expression. Consequently, NK cell cytotoxicity decreased, promoting MI progression. ERG mediates the HLX/STAT4/Perforin axis to inhibit NK cell cytotoxicity, fostering MI progression. These results provide vital insights into MI's molecular mechanisms.


Cytotoxicity, Immunologic , Killer Cells, Natural , Animals , Humans , Mice , Homeodomain Proteins , Killer Cells, Natural/metabolism , Perforin/genetics , Perforin/metabolism , Signal Transduction , STAT4 Transcription Factor/genetics , STAT4 Transcription Factor/metabolism , Transcription Factors/metabolism , Transcriptional Regulator ERG/metabolism
10.
Mol Neurobiol ; 61(4): 2336-2356, 2024 Apr.
Article En | MEDLINE | ID: mdl-37875707

Our previous study has proved that the Klotho up-regulation participated in cerebral ischemic preconditioning (CIP)-induced brain ischemic tolerance. However, the exact neuroprotective mechanism of Klotho in CIP remains unclear. We explored the hypothesis that STAT4-mediated Klotho up-regulation contributes to the CIP-induced brain ischemic tolerance via inhibiting neuronal pyroptosis. Firstly, the expressions of pyroptosis-associated proteins (i.e., NLRP3, GSDMD, pro-caspase-1, and cleaved caspase-1) in hippocampal CA1 region were determined during the process of brain ischemic tolerance. We found the expression of pyroptosis-associated proteins was significantly up-regulated in the ischemic insult (II) group, and showed no significant changes in the CIP group. The expression level of each pyroptosis-associated proteins was lower in the CIP + II group than that in the II group. Inhibition of Klotho expression increased the expression of pyroptosis-associated proteins in the CIP + II group and blocked the CIP-induced brain ischemic tolerance. Injection of Klotho protein decreased the expression of pyroptosis-associated proteins in the II group, and protected neurons from ischemic injury. Secondly, the transcription factor STAT4 of Klotho was identified by bioinformatic analysis. Double luciferase reporter gene assay and chromatin immunoprecipitation assay showed STAT4 can bind to the site between nt - 881 and - 868 on the Klotho promoter region and positively regulates Klotho expression. Moreover, we found CIP significantly enhanced the expression of STAT4. Knockdown STAT4 suppressed Klotho up-regulation after CIP and blocked the CIP-induced brain ischemic tolerance. Collectively, it can be concluded that STAT4-mediated the up-regulation of Klotho contributed to the brain ischemic tolerance induced by CIP via inhibiting pyroptosis.


Brain Ischemia , Ischemic Preconditioning , Rats , Animals , Rats, Wistar , Up-Regulation , Pyroptosis , STAT4 Transcription Factor/metabolism , Brain Ischemia/metabolism , CA1 Region, Hippocampal/metabolism , Neurons/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
11.
J Cutan Pathol ; 51(3): 232-238, 2024 Mar.
Article En | MEDLINE | ID: mdl-37932931

BACKGROUND: Diagnosis of early mycosis fungoides (eMF) is challenging and often delayed as many of its clinical and histopathologic features may mimic various benign inflammatory dermatoses (BIDs). The products of the thymocyte selection-associated high mobility group box (TOX), twist family BHLH transcription factor 1 (TWIST1), signal transducer and activator of transcription 4 (STAT4), and special AT-rich sequence-binding protein 1 (SATB1) genes function as transcription factors and are involved in the pathogenesis of MF. OBJECTIVES: We aim to determine the diagnostic value of TOX, TWIST1, STAT4, and SATB1 protein expressions in eMF. METHODS: This non-randomized, controlled, prospective analytic study was conducted by performing immunohistochemistry staining with TOX, TWIST1, STAT4, and SATB1 polyclonal antibodies in lesional skin biopsies of eMF and BID patients. Nuclear staining of lymphocytes was compared between eMF and BIDs, and the capacity of these antibodies to predict eMF was determined. RESULTS: Immunostainings with anti-TWIST1 showed an increase in protein expression (p = 0.003) and showed a decrease with anti-SATB1 antibodies in eMF compared to BIDs (p = 0.005) while anti-TOX and anti-STAT4 antibodies did not exhibit significant differences (p = 0.384; p = 0.150). Receiver operating characteristic analysis showed that immunohistochemical evaluations of TWIST1 and SATB1 protein expressions can differentiate eMF (area under the curve [AUC]: 0.728, 95% confidence interval [CI]: 0.605-0.851, p = 0.002; AUC: 0.686, 95% CI: 0.565-0.807, p = 0.013). CONCLUSIONS: TWIST1 and SATB1 are potential diagnostic markers for the histologic diagnosis of eMF.


Matrix Attachment Region Binding Proteins , Mycosis Fungoides , Skin Neoplasms , Humans , Matrix Attachment Region Binding Proteins/metabolism , Mycosis Fungoides/pathology , Nuclear Proteins/metabolism , Prospective Studies , Skin Neoplasms/pathology , STAT4 Transcription Factor/metabolism , Twist-Related Protein 1/metabolism
12.
Arthritis Res Ther ; 25(1): 221, 2023 11 17.
Article En | MEDLINE | ID: mdl-37978415

OBJECTIVES: The induction direction of interferon (IFN)-α in T-cell phenotype and function varies depending on the activation state of the cell and the time of stimulation. To assess the effects of elevated IFN-α on regulatory T cells (Tregs) in systemic lupus erythematosus (SLE) patients, we investigated the differentiation of Th1-like Tregs under in-sequence and out-of-sequence conditions and the reversal effect of activating TIGIT on immune suppression. METHODS: Phenotypes and activation levels of Tregs from SLE patients and healthy controls were analyzed using flow cytometry. In vitro culture conditions based on the sequence of TCR activation and IFN-α stimulation simulated in-sequence or out-of-sequence effects. CD4+T cells and Tregs were cultured under the above conditions with or without TIGIT agonist. Expression of related characteristic markers and phosphorylation levels of AKT, mTOR, and STATs were detected using flow cytometry and ELISA. RESULTS: The frequency of Th1-like Tregs and activation levels of Tregs increased, but TIGIT expression in Tregs decreased in SLE patients. IFN-α promoted the conversation of Tregs to Th1-like Tregs while reducing immunosuppressive function under in-sequence conditions. The STAT4 pathway, but not the STAT1 pathway, was crucial for the IFN-α-mediated in-sequence effects. Reactivation of TIGIT reversed Th1 polarization of Tregs by suppressing AKT/mTOR and STAT4 signaling. CONCLUSIONS: Our findings suggest that IFN-α mediated in-sequence effects on Tregs may be responsible for the expansion of Th1-like Tregs in SLE. TIGIT can restore immune suppression damage in Tregs and represents a potential therapeutic target for SLE.


Lupus Erythematosus, Systemic , Proto-Oncogene Proteins c-akt , Humans , Proto-Oncogene Proteins c-akt/metabolism , T-Lymphocytes, Regulatory , Interferon-alpha/metabolism , TOR Serine-Threonine Kinases/metabolism , Receptors, Immunologic/metabolism , STAT4 Transcription Factor/metabolism
13.
Commun Biol ; 6(1): 967, 2023 10 02.
Article En | MEDLINE | ID: mdl-37783748

Neuroinflammation is associated with neurodegenerative diseases, including Alzheimer's and Parkinson's. The cytokine interleukin-12 activates signal transducer and activator of transcription 4 (Stat4), and consumption of a high-fat, high-cholesterol diet (HFD-C) and Stat4 activity are associated with inflammation, atherosclerosis, and a diabetic metabolic phenotype. In studies of in vitro hippocampal slices from control Stat4fl/flLdlr-/- mice fed a HFD-C diabetogenic diet, we show that Schaffer collateral-CA1 synapses exhibited larger reductions in activity-dependent, long-term potentiation (LTP) of synaptic transmission, compared to mice fed a standard diet. Glucose tolerance and insulin sensitivity shifts produced by HFD-C diet were reduced in Stat4ΔLysMLdlr-/- mice compared to Stat4fl/flLdlr-/- controls. Stat4ΔLysMLdlr-/- mice, which lack Stat4 under control of the LysMCre promoter, were resistant to HFD-C induced impairments in LTP. In contrast, Schaffer collateral-CA1 synapses in Stat4ΔLysMLdlr-/- mice fed the HFD-C diet showed larger LTP than control Stat4fl/flLdlr-/- mice. Expression of a number of neuroinflammatory and synaptic plasticity genes was reduced by HFD-C diet in control mice, and less affected by HFD-C diet in Stat4ΔLysMLdlr-/- mice. These data suggest that suppression of Stat4 activation may protect against effects of Western diet on cognition, type 2 diabetes, and reduce risk of Alzheimer's disease and other neurodegenerative disorders associated with neuroinflammation.


Diabetes Mellitus, Type 2 , STAT4 Transcription Factor , Mice , Animals , STAT4 Transcription Factor/metabolism , Neuroinflammatory Diseases , Neuronal Plasticity , Cholesterol/metabolism , Myeloid Cells/metabolism
14.
J Immunol ; 211(10): 1469-1474, 2023 11 15.
Article En | MEDLINE | ID: mdl-37830760

NK cells represent a cellular component of the mammalian innate immune system, and they mount rapid responses against viral infection, including the secretion of the potent antiviral effector cytokine IFN-γ. Following mouse CMV infection, Bhlhe40 was the most highly induced transcription factor in NK cells among the basic helix-loop-helix family. Bhlhe40 upregulation in NK cells depended upon IL-12 and IL-18 signals, with the promoter of Bhlhe40 enriched for STAT4 and the permissive histone H3K4me3, and with STAT4-deficient NK cells showing an impairment of Bhlhe40 induction and diminished H3K4me3. Transcriptomic and protein analysis of Bhlhe40-deficient NK cells revealed a defect in IFN-γ production during mouse CMV infection, resulting in diminished protective immunity following viral challenge. Finally, we provide evidence that Bhlhe40 directly promotes IFN-γ by binding throughout the Ifng loci in activated NK cells. Thus, our study reveals how STAT4-mediated control of Bhlhe40 drives protective IFN-γ secretion by NK cells during viral infection.


Cytomegalovirus Infections , Killer Cells, Natural , Mice , Animals , Interferon-gamma , Cytokines/metabolism , Interleukin-12/metabolism , Cytomegalovirus Infections/metabolism , STAT4 Transcription Factor/metabolism , Mammals/metabolism , Homeodomain Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism
15.
Oncol Rep ; 50(1)2023 07.
Article En | MEDLINE | ID: mdl-37264954

Ovarian serous carcinoma (OC) is a common cause of mortality among gynecological malignancies. Although tumor­infiltrating CD8 T cells are associated with a favorable prognosis of OC, the underlying mechanisms are not clearly understood. The present study identified the key genes and potential molecular mechanisms associated with CD8 T­cell infiltration in OC. The score of CD8 T cells in The Cancer Genome Atlas dataset (376 samples from patients with OC) was estimated using the quanTIseq and MCP­counter algorithms. Thereafter, a protein­protein interaction network of differentially expressed genes was constructed and the hub genes were identified using cytoHubba in Cytoscape. The results revealed that signal transducer and activator of transcription 4 (STAT4) was strongly correlated with CD8 T­cell infiltration in OC. Furthermore, the prognostic value of STAT4 in OC was verified by Kaplan­Meier curve, and univariate and multivariate analyses. The biological functions of STAT4 were determined by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses, which revealed that STAT4 is closely related to cytokines in OC. Moreover, Spearman correlation analysis suggested that STAT4 was most positively correlated with CC chemokine ligand 5 (CCL5). CCL5 was revealed to be critical for orchestrating T­cell infiltration in tumors. Moreover, immunohistochemistry and reverse transcription­quantitative PCR showed that STAT4, CCL5 and CD8A (a marker for CD8 T cells) were closely related in OC. Moreover, in vitro analysis revealed that STAT4 knockdown led to a decrease in CCL5 expression and CD8 T­cell migration. Taken together, the present study suggested that STAT4 may regulate CD8 T­cell infiltration in OC tissues by inducing CCL5 secretion. Furthermore, STAT4 may be considered a promising prognostic biomarker for OC.


Carcinoma , Ovarian Neoplasms , Humans , Female , Chemokines, CC/metabolism , Ligands , Prognosis , CD8-Positive T-Lymphocytes/metabolism , Carcinoma/pathology , Ovarian Neoplasms/pathology , Chemokine CCL5/genetics , Chemokine CCL5/metabolism , STAT4 Transcription Factor/genetics , STAT4 Transcription Factor/metabolism
16.
J Transl Med ; 21(1): 326, 2023 05 16.
Article En | MEDLINE | ID: mdl-37194066

BACKGROUND: Renal tubulointerstitial fibrosis is the hallmark of various chronic kidney diseases. Symmetric dimethylarginine (SDMA) is an independent cardiovascular risk factor in patients with chronic kidney diseases, which is mostly excreted through renal tubules. However, the effect of SDMA on kidneys in a pathological condition is currently unknown. In this study, we investigated the role of SDMA in renal tubulointerstitial fibrosis and explored its underlying mechanisms. METHODS: Mouse unilateral ureteral obstruction (UUO) and unilateral ischemia-reperfusion injury (UIRI) models were established to study renal tubulointerstitial fibrosis. SDMA was injected into kidneys through ureter retrogradely. TGF-ß stimulated human renal epithelial (HK2) cells were used as an in vitro model and treated with SDMA. Signal transducer and activator of transcription-4 (STAT4) was inhibited by berbamine dihydrochloride or siRNA or overexpressed by plasmids in vitro. Masson staining and Western blotting were performed to evaluate renal fibrosis. Quantitative PCR was performed to validate findings derived from RNA sequencing analysis. RESULTS: We observed that SDMA (from 0.01 to 10 µM) dose-dependently inhibited the expression of pro-fibrotic markers in TGF-ß stimulated HK2 cells. Intrarenal administration of SDMA (2.5 µmol/kg or 25 µmol/kg) dose-dependently attenuated renal fibrosis in UUO kidneys. A significant increase in SDMA concentration (from 19.5 to 117.7 nmol/g, p < 0.001) in mouse kidneys was observed after renal injection which was assessed by LC-MS/MS. We further showed that intrarenal administration of SDMA attenuated renal fibrosis in UIRI induced mouse fibrotic kidneys. Through RNA sequencing analysis, we found that the expression of STAT4 was reduced by SDMA in UUO kidneys, which was further confirmed by quantitative PCR and Western blotting analysis in mouse fibrotic kidneys and renal cells. Inhibition of STAT4 by berbamine dihydrochloride (0.3 mg/ml or 3.3 mg/ml) or siRNA reduced the expression of pro-fibrotic markers in TGF-ß stimulated HK2 cells. Furthermore, blockage of STAT4 attenuated the anti-fibrotic effect of SDMA in TGF-ß stimulated HK2 cells. Conversely, overexpression of STAT4 reversed the anti-fibrotic effect of SDMA in TGF-ß stimulated HK2 cells. CONCLUSION: Taken together, our study indicates that renal SDMA ameliorates renal tubulointerstitial fibrosis through inhibition of STAT4.


Kidney Diseases , Renal Insufficiency, Chronic , Ureteral Obstruction , Humans , Mice , Animals , Chromatography, Liquid , Tandem Mass Spectrometry , Kidney Diseases/complications , Kidney/pathology , Ureteral Obstruction/complications , Ureteral Obstruction/genetics , Ureteral Obstruction/pathology , Renal Insufficiency, Chronic/pathology , Transforming Growth Factor beta/metabolism , Fibrosis , RNA, Small Interfering , Transforming Growth Factor beta1/metabolism , STAT4 Transcription Factor/metabolism
17.
J Immunol ; 210(11): 1667-1676, 2023 06 01.
Article En | MEDLINE | ID: mdl-37093664

Effector CD4 T cells are central to the development of autoimmune chronic inflammatory diseases, yet factors that mediate pathogenicity remain ill-defined. Single-nucleotide polymorphisms in the human STAT4 locus are associated with susceptibility to multiple autoimmune disorders, and Stat4 is linked to the pathogenic Th17 gene signature; however, Th17 cells differentiate independently of STAT4. Hence the interplay between STAT4 and CD4 T cell function, especially Th17 cells, during autoimmune disease is unclear. In this article, we demonstrate that CD4 T cell-intrinsic STAT4 expression is essential for the induction of autoimmune CNS inflammation in mice, in part by regulating the migration of CD4 T cells to the inflamed CNS. Moreover, unbiased transcriptional profiling revealed that STAT4 controls the expression of >200 genes in Th17 cells and is important for the upregulation of genes associated with IL-23-stimulated, pathogenic Th17 cells. Importantly, we show that Th17 cells specifically require STAT4 to evoke autoimmune inflammation, highlighting, to our knowledge, a novel function for STAT4 in Th17 pathogenicity.


CD4-Positive T-Lymphocytes , Encephalomyelitis, Autoimmune, Experimental , Humans , Mice , Animals , Th17 Cells , Th1 Cells , Virulence , Inflammation , Cell Differentiation , STAT4 Transcription Factor/metabolism
18.
J Biol Chem ; 299(5): 104703, 2023 05.
Article En | MEDLINE | ID: mdl-37059181

The conversion of signal transducer and activator of transcription (STAT) proteins from latent to active transcription factors is central to cytokine signaling. Triggered by their signal-induced tyrosine phosphorylation, it is the assembly of a range of cytokine-specific STAT homo- and heterodimers that marks a key step in the transition of hitherto latent proteins to transcription activators. In contrast, the constitutive self-assembly of latent STATs and how it relates to the functioning of activated STATs is understood less well. To provide a more complete picture, we developed a co-localization-based assay and tested all 28 possible combinations of the seven unphosphorylated STAT (U-STAT) proteins in living cells. We identified five U-STAT homodimers-STAT1, STAT3, STAT4, STAT5A, and STAT5B-and two heterodimers-STAT1:STAT2 and STAT5A:STAT5B-and performed semi-quantitative assessments of the forces and characterizations of binding interfaces that support them. One STAT protein-STAT6-was found to be monomeric. This comprehensive analysis of latent STAT self-assembly lays bare considerable structural and functional diversity in the ways that link STAT dimerization before and after activation.


Gene Expression Regulation , STAT Transcription Factors , Trans-Activators , Cytokines/metabolism , Phosphorylation , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , STAT2 Transcription Factor/genetics , STAT2 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , STAT4 Transcription Factor/genetics , STAT4 Transcription Factor/metabolism , STAT5 Transcription Factor/genetics , STAT5 Transcription Factor/metabolism , Trans-Activators/metabolism , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolism , Protein Multimerization
19.
J Immunol ; 210(9): 1292-1304, 2023 05 01.
Article En | MEDLINE | ID: mdl-36961447

It is generally accepted that influenza A virus (IAV) infection promotes a Th1-like CD4 T cell response and that this effector program underlies its protective impact. Canonical Th1 polarization requires cytokine-mediated activation of the transcription factors STAT1 and STAT4 that synergize to maximize the induction of the "master regulator" Th1 transcription factor, T-bet. Here, we determine the individual requirements for these transcription factors in directing the Th1 imprint primed by influenza infection in mice by tracking virus-specific wild-type or T-bet-deficient CD4 T cells in which STAT1 or STAT4 is knocked out. We find that STAT1 is required to protect influenza-primed CD4 T cells from NK cell-mediated deletion and for their expression of hallmark Th1 attributes. STAT1 is also required to prevent type I IFN signals from inhibiting the induction of the Th17 master regulator, Rorγt, in Th17-prone T-bet-/- cells responding to IAV. In contrast, STAT4 expression does not appreciably impact the phenotypic or functional attributes of wild-type or T-bet-/- CD4 T cell responses. However, cytokine-mediated STAT4 activation in virus-specific CD4 T cells enhances their Th1 identity in a T-bet-dependent manner, indicating that influenza infection does not promote maximal Th1 induction. Finally, we show that the T-bet-dependent protective capacity of CD4 T cell effectors against IAV is optimized by engaging both STAT1 and STAT4 during Th1 priming, with important implications for vaccine strategies aiming to generate T cell immunity.


CD4-Positive T-Lymphocytes , Influenza, Human , Mice , Animals , Humans , Antiviral Agents/metabolism , T-Box Domain Proteins/metabolism , Interferon-gamma/metabolism , Transcription Factors/metabolism , Th1 Cells , STAT4 Transcription Factor/metabolism , Cell Differentiation , STAT1 Transcription Factor/metabolism
20.
J Orthop Res ; 41(4): 747-758, 2023 04.
Article En | MEDLINE | ID: mdl-35880357

Osteoarthritis (OA) is a chronic degenerative bone and joint disease common in middle-aged and elderly people. Currently, there is no satisfactory pharmacological treatment. Eugenol is a phenolic compound that has been shown to exert biological anti-inflammatory, antioxidant, and antiapoptotic effects in multiple systems and organs of the human body. However, its therapeutic effect on OA is unclear. This study examined the effect of eugenol on OA using an anterior cruciate ligament transection (ACLT) model in mice and its related signaling pathways in interleukin-1ß (IL-1ß)-stimulated human chondrocytes. A certain concentration of eugenol inhibited the decrease in cell viability induced by IL-1ß or carbonyl cyanide 3-chlorophenylhydrazone (CCCP). In vitro, eugenol effectively inhibited CCCP-induced chondrocyte apoptosis and mitochondrial membrane potential changes and inhibited the expressions of ADAMTS4 and MMP13 upregulated by IL-1ß. In vivo, ACLT induced destruction of the articular cartilage and subchondral bone of the mouse tibial plateau, while eugenol effectively protected the cartilage and subchondral bone from such damage. At the same time, eugenol reduced the ACLT-induced upregulation of ADAMTS4 and MMP13 and the downregulation of type II collagen (COLII) and aggrecan in the mouse knee cartilage. Eugenol also inhibited the increased expression of cartilage metabolism signaling molecules such as C-telopeptides of COLII (CTX-II) in ACLT-induced mouse serum. Consistent with the specific changes in the messenger RNA chip, eugenol inhibited the phosphorylation of JAK3 and STAT4 induced by IL-1ß. Together, these results suggest eugenol as an effective new drug for the prevention and treatment of OA.


Cartilage, Articular , Osteoarthritis , Aged , Middle Aged , Humans , Mice , Animals , Chondrocytes/metabolism , Cartilage, Articular/metabolism , Matrix Metalloproteinase 13/metabolism , Eugenol/metabolism , Eugenol/pharmacology , Eugenol/therapeutic use , Carbonyl Cyanide m-Chlorophenyl Hydrazone , Osteoarthritis/metabolism , Signal Transduction , Interleukin-1beta/metabolism , Disease Models, Animal , Janus Kinase 3/metabolism , STAT4 Transcription Factor/metabolism
...