Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.408
1.
Nat Commun ; 15(1): 3875, 2024 May 08.
Article En | MEDLINE | ID: mdl-38719800

The genomes of charophyte green algae, close relatives of land plants, typically do not show signs of developmental regulation by phytohormones. However, scattered reports of endogenous phytohormone production in these organisms exist. We performed a comprehensive analysis of multiple phytohormones in Viridiplantae, focusing mainly on charophytes. We show that auxin, salicylic acid, ethylene and tRNA-derived cytokinins including cis-zeatin are found ubiquitously in Viridiplantae. By contrast, land plants but not green algae contain the trans-zeatin type cytokinins as well as auxin and cytokinin conjugates. Charophytes occasionally produce jasmonates and abscisic acid, whereas the latter is detected consistently in land plants. Several phytohormones are excreted into the culture medium, including auxin by charophytes and cytokinins and salicylic acid by Viridiplantae in general. We note that the conservation of phytohormone biosynthesis and signaling pathways known from angiosperms does not match the capacity for phytohormone biosynthesis in Viridiplantae. Our phylogenetically guided analysis of established algal cultures provides an important insight into phytohormone biosynthesis and metabolism across Streptophyta.


Cytokinins , Indoleacetic Acids , Phylogeny , Plant Growth Regulators , Plant Growth Regulators/metabolism , Indoleacetic Acids/metabolism , Cytokinins/metabolism , Viridiplantae/metabolism , Viridiplantae/genetics , Ethylenes/metabolism , Oxylipins/metabolism , Salicylic Acid/metabolism , Abscisic Acid/metabolism , Gene Expression Regulation, Plant , Cyclopentanes/metabolism , Biological Evolution , Chlorophyta/metabolism , Chlorophyta/genetics , Signal Transduction
2.
Arch Dermatol Res ; 316(6): 230, 2024 May 24.
Article En | MEDLINE | ID: mdl-38787441

Adult acne vulgaris affects up to 43-51% of individuals. While there are numerous treatment options for acne including topical, oral, and energy-based approaches, benzoyl peroxide (BPO) is a popular over the counter (OTC) treatment. Although BPO monotherapy has a long history of efficacy and safety, it suffers from several disadvantages, most notably, skin irritation, particularly for treatment naïve patients. In this prospective, randomized, controlled, split-face study, we evaluated the comparative efficacy, safety, and tolerability of a novel 3-step azelaic acid, salicylic acid, and graduated retinol regimen versus a common OTC BPO-based regimen over 12 weeks. A total of 37 adult subjects with self-reported mild to moderate acne vulgaris were recruited. A total of 21 subjects underwent a 2-week washout period and completed the full study with 3 dropping out due to product irritation from the BPO routine, and 13 being lost to follow-up. Detailed tolerability surveys were conducted at Week 4. Additional surveys on tolerability and product preferences were collected monthly, at Week 4, Week 8, and Week 12. A blinded board-certified dermatologist objectively scored the presence and type of acne lesions (open or closed comedones, papules, pustules, nodules, and cysts) at baseline, Week 4, Week 8, and Week 12. Patients photographed themselves and uploaded the images using personal mobile phones. Detailed Week 4 survey results showed across 25 domains of user-assessed product performance, the novel routine outperformed the BPO routine in 19 (76%) which included domains in preference (e.g. "I would use this in the future) and performance ("my skin improved" and "helped my acne clear up faster"). Users of the novel routine reported less facial redness, itching, and burning, though differences did not reach statistical significance. In terms of efficacy, both products performed similarly, reducing total acne lesions by 36% (novel routine) and 40% (BPO routine) by Week 12. Overall, accounting for user preferences and tolerability the novel routine was more preferred than the BPO routine in 79% of domains (22/28). Differences in objective acne lesion reduction were not statistically significant (p = 0.97). In a randomized split-face study, a 3-step azelaic acid, salicylic acid, and graduated retinol regimen delivered similar acne lesion reduction, fewer user dropouts, greater user tolerability, and higher use preference compared to a 3-step BPO routine based in a cohort of participants with mild-to-moderate acne vulgaris.


Acne Vulgaris , Benzoyl Peroxide , Dermatologic Agents , Dicarboxylic Acids , Salicylic Acid , Humans , Acne Vulgaris/drug therapy , Benzoyl Peroxide/administration & dosage , Benzoyl Peroxide/adverse effects , Benzoyl Peroxide/therapeutic use , Adult , Male , Female , Salicylic Acid/administration & dosage , Salicylic Acid/adverse effects , Salicylic Acid/therapeutic use , Prospective Studies , Young Adult , Treatment Outcome , Double-Blind Method , Dicarboxylic Acids/adverse effects , Dicarboxylic Acids/administration & dosage , Dicarboxylic Acids/therapeutic use , Dermatologic Agents/adverse effects , Dermatologic Agents/administration & dosage , Dermatologic Agents/therapeutic use , Vitamin A/administration & dosage , Vitamin A/adverse effects , Vitamin A/therapeutic use , Administration, Cutaneous , Adolescent , Severity of Illness Index , Nonprescription Drugs/administration & dosage , Nonprescription Drugs/adverse effects , Nonprescription Drugs/therapeutic use , Drug Therapy, Combination/methods
3.
Plant Cell Rep ; 43(6): 149, 2024 May 23.
Article En | MEDLINE | ID: mdl-38780624

KEY MESSAGE: The small-molecule glucosyltransferase loss-of-function mutant ugt76b1 exhibits both SID2- or NPR1-dependent and independent facets of enhanced plant immunity, whereupon FMO1 is required for the SID2 and NPR1 independence. The small-molecule glucosyltransferase UGT76B1 inactivates salicylic acid (SA), isoleucic acid (ILA), and N-hydroxypipecolic acid (NHP). ugt76b1 loss-of-function plants manifest an enhanced defense status. Thus, we were interested how UGT76B1 genetically integrates in defense pathways and whether all impacts depend on SA and NHP. We study the integration of UGT76B1 by transcriptome analyses of ugt76b1. The comparison of transcripts altered by the loss of UGT76B1 with public transcriptome data reveals both SA-responsive, ISOCHORISMATE SYNTHASE 1/SALICYLIC ACID INDUCTION DEFICIENT 2 (ICS1/SID2)- and NON EXPRESSOR OF PR GENES 1 (NPR1)-dependent, consistent with the role of UGT76B1 in glucosylating SA, and SA-non-responsive, SID2/NPR1-independent genes. We also discovered that UGT76B1 impacts on a group of genes showing non-SA-responsiveness and regulation by infections independent from SID2/NPR1. Enhanced resistance of ugt76b1 against Pseudomonas syringae is partially independent from SID2 and NPR1. In contrast, the ugt76b1-activated resistance is completely dependent on FMO1 encoding the NHP-synthesizing FLAVIN-DEPENDENT MONOOXYGENASE 1). Moreover, FMO1 ranks top among the ugt76b1-induced SID2- and NPR1-independent pathogen responsive genes, suggesting that FMO1 determines the SID2- and NPR1-independent effect of ugt76b1. Furthermore, the genetic study revealed that FMO1, ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), SID2, and NPR1 are required for the SA-JA crosstalk and senescence development of ugt76b1, indicating that EDS1 and FMO1 have a similar effect like stress-induced SA biosynthesis (SID2) or the key SA signaling regulator NPR1. Thus, UGT76B1 influences both SID2/NPR1-dependent and independent plant immunity, and the SID2/NPR1 independence is relying on FMO1 and its product NHP, another substrate of UGT76B1.


Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Glucosyltransferases , Salicylic Acid , Salicylic Acid/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/microbiology , Arabidopsis/immunology , Arabidopsis/metabolism , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Plant Immunity/genetics , Pseudomonas syringae/pathogenicity , Pseudomonas syringae/physiology , Pipecolic Acids/metabolism , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Intramolecular Transferases/genetics , Intramolecular Transferases/metabolism
4.
Planta ; 259(6): 152, 2024 May 12.
Article En | MEDLINE | ID: mdl-38735012

MAIN CONCLUSION: Overexpression of Artemisia annua jasmonic acid carboxyl methyltransferase (AaJMT) leads to enhanced artemisinin content in Artemisia annua. Artemisinin-based combination therapies remain the sole deterrent against deadly disease malaria and Artemisia annua remains the only natural producer of artemisinin. In this study, the 1101 bp gene S-adenosyl-L-methionine (SAM): Artemisia annua jasmonic acid carboxyl methyltransferase (AaJMT), was characterised from A. annua, which converts jasmonic acid (JA) to methyl jasmonate (MeJA). From phylogenetic analysis, we confirmed that AaJMT shares a common ancestor with Arabidopsis thaliana, Eutrema japonica and has a close homology with JMT of Camellia sinensis. Further, the Clustal Omega depicted that the conserved motif I, motif III and motif SSSS (serine) required to bind SAM and JA, respectively, are present in AaJMT. The relative expression of AaJMT was induced by wounding, MeJA and salicylic acid (SA) treatments. Additionally, we found that the recombinant AaJMT protein catalyses the synthesis of MeJA from JA with a Km value of 37.16 µM. Moreover, site-directed mutagenesis of serine-151 in motif SSSS to tyrosine, asparagine-10 to threonine and glutamine-25 to histidine abolished the enzyme activity of AaJMT, thus indicating their determining role in JA substrate binding. The GC-MS analysis validated that mutant proteins of AaJMT were unable to convert JA into MeJA. Finally, the artemisinin biosynthetic and trichome developmental genes were upregulated in AaJMT overexpression transgenic lines, which in turn increased the artemisinin content.


Acetates , Artemisia annua , Artemisinins , Cyclopentanes , Methyltransferases , Oxylipins , Phylogeny , Artemisia annua/genetics , Artemisia annua/enzymology , Artemisia annua/metabolism , Cyclopentanes/metabolism , Cyclopentanes/pharmacology , Artemisinins/metabolism , Oxylipins/metabolism , Oxylipins/pharmacology , Methyltransferases/metabolism , Methyltransferases/genetics , Acetates/pharmacology , Acetates/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Gene Expression Regulation, Plant , Salicylic Acid/metabolism
5.
BMC Microbiol ; 24(1): 165, 2024 May 15.
Article En | MEDLINE | ID: mdl-38745279

Globally, drought stress poses a significant threat to crop productivity. Improving the drought tolerance of crops with microbial biostimulants is a sustainable strategy to meet a growing population's demands. This research aimed to elucidate microbial biostimulants' (Plant Growth Promoting Rhizobacteria) role in alleviating drought stress in oil-seed crops. In total, 15 bacterial isolates were selected for drought tolerance and screened for plant growth-promoting (PGP) attributes like phosphate solubilization and production of indole-3-acetic acid, siderophore, hydrogen cyanide, ammonia, and exopolysaccharide. This research describes two PGPR strains: Acinetobacter calcoaceticus AC06 and Bacillus amyloliquefaciens BA01. The present study demonstrated that these strains (AC06 and BA01) produced abundant osmolytes under osmotic stress, including proline (2.21 and 1.75 µg ml- 1), salicylic acid (18.59 and 14.21 µg ml- 1), trehalose (28.35 and 22.74 µg mg- 1 FW) and glycine betaine (11.35 and 7.74 mg g- 1) respectively. AC06 and BA01 strains were further evaluated for their multifunctional performance by inoculating in Arachis hypogaea L. (Groundnut) under mild and severe drought regimes (60 and 40% Field Capacity). Inoculation with microbial biostimulants displayed distinct osmotic-adjustment abilities of the groundnut, such as growth parameters, plant biomass, photosynthetic pigments, relative water content, proline, and soluble sugar in respective to control during drought. On the other hand, plant sensitivity indexes such as electrolyte leakage and malondialdehyde (MDA) contents were decreased as well as cooperatively conferred plant drought tolerance by induced alterations in stress indicators such as catalase (CAT), ascorbate peroxidase (APX), and superoxide dismutase (SOD). Thus, Acinetobacter sp. AC06 and Bacillus sp. BA01 can be considered as osmolyte producing microbial biostimulants to simultaneously induce osmotic tolerance and metabolic changes in groundnuts under drought stress.


Arachis , Droughts , Stress, Physiological , Arachis/microbiology , Arachis/growth & development , Arachis/metabolism , Arachis/physiology , Proline/metabolism , Bacillus amyloliquefaciens/metabolism , Bacillus amyloliquefaciens/physiology , Soil Microbiology , Osmotic Pressure , Betaine/metabolism , Indoleacetic Acids/metabolism , Salicylic Acid/metabolism , Acinetobacter/metabolism , Acinetobacter/growth & development , Acinetobacter/physiology , Hydrogen Cyanide/metabolism , Trehalose/metabolism
6.
Plant Physiol Biochem ; 210: 108660, 2024 May.
Article En | MEDLINE | ID: mdl-38678945

The combined stress studies provide fundamental knowledge that could assist in producing multiple stress resilient crops. The fungal phytopathogen, Macrophomina phaseolina is a major limiting factor in the productivity of the crop, Vigna radiata (mungbean). This fungal species tends to flourish under hot and dry conditions. Therefore, in this study the salicylic acid (SA) mediated stress responses in contrasting mungbean cultivars (Shikha and RMG-975) exposed to combined M. phaseolina infection (F) and drought stress (D) have been elucidated. The combined stress was applied to ten days seedlings in three orders i.e. drought followed by fungal infection (DF), drought followed by fungal infection with extended water deficit (DFD) and fungal infection followed by drought stress (FD). The severity of infection was analyzed using ImageJ analysis. Besides, the concentration of SA has been correlated with the phenylpropanoid pathway products, expression of pathogenesis-related proteins (ß-1,3-glucanase and chitinase) and the specific activity of certain related enzymes (phenylalanine ammonia lyase, lipoxygenase and glutathione-S-transferase). The data revealed that the cultivar RMG-975 was relatively more tolerant than Shikha under individual stresses. However, the former became more susceptible to the infection under DFD treatment while the latter showed tolerance. Otherwise, the crown rot severity was reduced in both the cultivars under other combined treatments. The stress response analysis suggested that enhanced chitinase expression is vital for tolerance against both, the pathogen and drought stress. Also, it was noted that plants treat each stress combination differently and the role of SA was more prominently visible under individual stress conditions.


Ascomycota , Droughts , Plant Diseases , Salicylic Acid , Stress, Physiological , Vigna , Salicylic Acid/metabolism , Ascomycota/physiology , Ascomycota/pathogenicity , Plant Diseases/microbiology , Vigna/microbiology , Vigna/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Chitinases/metabolism , Lipoxygenase/metabolism , Phenylalanine Ammonia-Lyase/metabolism , Glutathione Transferase/metabolism , Gene Expression Regulation, Plant
7.
Int J Biol Macromol ; 267(Pt 2): 131442, 2024 May.
Article En | MEDLINE | ID: mdl-38621573

Citrus bacterial canker (CBC) is a harmful bacterial disease caused by Xanthomonas citri subsp. citri (Xcc), negatively impacting citrus production worldwide. The basic helix-loop-helix (bHLH) transcription factor family plays crucial roles in plant development and stress responses. This study aimed to identify and annotate bHLH proteins encoded in the Citrus sinensis genome and explore their involvement and functional importance in regulating CBC resistance. A total of 135 putative CsbHLHs TFs were identified and categorized into 16 subfamilies. Their chromosomal locations, collinearity, and phylogenetic relationships were comprehensively analyzed. Upon Xcc strain YN1 infection, certain CsbHLHs were differentially regulated in CBC-resistant and CBC-sensitive citrus varieties. Among these, CsbHLH085 was selected for further functional characterization. CsbHLH085 was upregulated in the CBC-resistant citrus variety, was localized in the nucleus, and had a transcriptional activation activity. CsbHLH085 overexpression in Citrus significantly enhanced CBC resistance, accompanied by increased levels of salicylic acid (SA), jasmonic acid (JA), reactive oxygen species (ROS), and decreased levels of abscisic acid (ABA) and antioxidant enzymes. Conversely, CsbHLH085 virus-induced gene silencing resulted in opposite phenotypic and biochemical responses. CsbHLH085 silencing also affected the expression of phytohormone biosynthesis and signaling genes involved in SA, JA, and ABA signaling. These findings highlight the crucial role of CsbHLH085 in regulating CBC resistance, suggesting its potential as a target for biotechnological-assisted breeding citrus varieties with improved resistance against phytopathogens.


Basic Helix-Loop-Helix Transcription Factors , Citrus sinensis , Disease Resistance , Gene Expression Regulation, Plant , Plant Diseases , Plant Proteins , Xanthomonas , Citrus sinensis/microbiology , Citrus sinensis/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Disease Resistance/genetics , Xanthomonas/pathogenicity , Plant Proteins/genetics , Plant Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Phylogeny , Oxylipins/metabolism , Genome, Plant , Cyclopentanes/metabolism , Salicylic Acid/metabolism , Multigene Family
8.
J Hazard Mater ; 471: 134310, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38640677

Microbial interactions, particularly metabolic cross-feeding, play important roles in removing recalcitrant environmental pollutants; however, the underlying mechanisms involved in this process remain unclear. Thus, this study aimed to elucidate the mechanism by which metabolic cross-feeding occurs during synergistic dibenzofuran degradation between a highly efficient degrader, Rhodococcus sp. strain p52, and a partner incapable of utilizing dibenzofuran. A bottom-up approach combined with pairwise coculturing was used to examine metabolic cross-feeding between strain p52 and Arthrobacter sp. W06 or Achromobacter sp. D10. Pairwise coculture not only promoted bacterial pair growth but also facilitated dibenzofuran degradation. Specifically, strain p52, acting as a donor, released dibenzofuran metabolic intermediates, including salicylic acid and gentisic acid, for utilization and growth, respectively, by the partner strains W06 and D10. Both salicylic acid and gentisic acid exhibited biotoxicity, and their accumulation inhibited dibenzofuran degradation. The transcriptional activity of the genes responsible for the catabolism of dibenzofuran and its metabolic intermediates was coordinately regulated in strain p52 and its cocultivated partners, thus achieving synergistic dibenzofuran degradation. This study provides insights into microbial metabolic cross-feeding during recalcitrant environmental pollutant removal.


Biodegradation, Environmental , Rhodococcus , Salicylic Acid , Rhodococcus/metabolism , Salicylic Acid/metabolism , Dibenzofurans/metabolism , Benzofurans/metabolism , Gentisates/metabolism , Microbial Interactions
9.
New Phytol ; 242(6): 2524-2540, 2024 Jun.
Article En | MEDLINE | ID: mdl-38641854

Leaf senescence is a complex process strictly regulated by various external and endogenous factors. However, the key signaling pathway mediating leaf senescence remains unknown. Here, we show that Arabidopsis SPX1/2 negatively regulate leaf senescence genetically downstream of the strigolactone (SL) pathway. We demonstrate that the SL receptor AtD14 and MAX2 mediate the age-dependent degradation of SPX1/2. Intriguingly, we uncover an age-dependent accumulation of SLs in leaves via transcriptional activation of SL biosynthetic genes by the transcription factors (TFs) SPL9/15. Furthermore, we reveal that SPX1/2 interact with the WRKY75 subclade TFs to inhibit their DNA-binding ability and thus repress transcriptional activation of salicylic acid (SA) biosynthetic gene SA Induction-Deficient 2, gating the age-dependent SA accumulation in leaves at the leaf senescence onset stage. Collectively, our new findings reveal a signaling pathway mediating sequential activation of SL and salicylate biosynthesis for the onset of leaf senescence in Arabidopsis.


Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Lactones , Plant Leaves , Plant Senescence , Transcription Factors , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/drug effects , Plant Leaves/metabolism , Plant Leaves/drug effects , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/drug effects , Lactones/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Salicylic Acid/metabolism , Salicylates/metabolism , Signal Transduction , Protein Binding/drug effects , Proteolysis/drug effects , Biosynthetic Pathways/drug effects , Biosynthetic Pathways/genetics
10.
Planta ; 259(6): 124, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38630137

KEY MESSAGE: OsICS1 but not OsICS1-L mediates the rice response to Xoo inoculation, with its overexpression increasing resistance against this pathogen. OsICS1 but not OsICS-L is directly upregulated by OsWRKY6. Rice (Oryza sativa) is a staple crop for about half of the global population and is particularly important in the diets of people living in Asia, Latin America, and Africa. This crop is continually threatened by bacterial leaf blight disease caused by Xanthomonas oryzae pv. oryzae (Xoo), which drastically reduces yields; therefore, it is needed to elucidate the plant's resistance mechanisms against Xoo. Isochorismate synthase (ICS1) generates salicylic acid (SA) and increases resistance against bacterial disease. The OsICS1 is differently annotated in rice genome databases and has not yet been functionally characterized in the context of Xoo infection. Here, we report that the expression of the OsICS1 is directly regulated by OsWRKY6 and increases plant resistance against Xoo. Inoculation with Xoo increased the expression of OsICS1 but not that of the long variant of OsICS1 (OsICS1-L). OsWRKY6 directly activated the OsICS1 promoter but not the OsICS1-L promoter. OsICS1 overexpression in rice increased resistance against Xoo through the induction of SA-dependent bacterial defense genes. These data show that OsICS1 promotes resistance against Xoo infection.


Oryza , Xanthomonas , Humans , Asia , Oryza/genetics , Promoter Regions, Genetic/genetics , Salicylic Acid
11.
Planta ; 259(6): 129, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38639804

MAIN CONCLUSION: IAA cooperates with JA to inhibit SA and negatively regulates rose black spot disease resistance. Black spot disease caused by the fungus Marssonina rosae is the most prevalent and severe ailment in rose cultivation, leading to the appearance of black spots on leaves and eventual leaf fall, significantly impacting the utilization of roses in gardens. Salicylic acid (SA) and jasmonic acid (JA) are pivotal hormones that collaborate with indole-3 acetic acid (IAA) in regulating plant defense responses; however, the detailed mechanisms underlying the induction of black spot disease resistance by IAA, JA, and SA remain unclear. In this study, transcript analysis was conducted on resistant (R13-54) and susceptible (R12-26) lines following M. rosae infection. In addition, the impact of exogenous interference with IAA on SA- and JA-mediated disease resistance was examined. The continuous accumulation of JA, in synergy with IAA, inhibited activation of the SA signaling pathway in the early infection stage, thereby negatively regulating the induction of effective resistance to black spot disease. IAA administration alleviated the inhibition of SA on JA to negatively regulate the resistance of susceptible strains by further enhancing the synthesis and accumulation of JA. However, IAA did not contribute to the negative regulation of black spot resistance when high levels of JA were inhibited. Virus-induced gene silencing of RcTIFY10A, an inhibitor of the JA signaling pathway, further suggested that IAA upregulation led to a decrease in disease resistance, a phenomenon not observed when the JA signal was inhibited. Collectively, these findings indicate that the IAA-mediated negative regulation of black spot disease resistance relies on activation of the JA signaling pathway.


Disease Resistance , Salicylic Acid , Salicylic Acid/metabolism , Disease Resistance/genetics , Cyclopentanes/metabolism , Oxylipins/metabolism , Signal Transduction , Acetates/pharmacology , Plant Diseases/microbiology , Gene Expression Regulation, Plant
12.
Biosens Bioelectron ; 257: 116329, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38677023

Considerable effort has been invested in developing salicylic acid (SA) biosensors for various application purposes. Here, by engineering the sensing modules and host cell chassis, we have gradually optimized the NahR-Psal/Pr-based SA biosensor, increasing the sensitivity and maximum output by 17.2-fold and 9.4-fold, respectively, and improving the detection limit by 800-fold, from 80 µM to 0.1 µM. A portable SA sensing device was constructed by embedding a gelatin-based hydrogel containing an optimized biosensor into the perforations of tape adhered to glass slide, which allowed good determination of SA in the range of 0.1 µM-10 µM. Then, we developed a customized smartphone App to measure the fluorescence intensity of each perforation and automatically calculate the corresponding SA concentration so that we could detect SA concentrations in real cosmetic samples. We anticipate that this smartphone-based imaging biosensor, with its compact size, higher sensitivity, cost-effectiveness, and easy data transfer, will be useful for long-term monitoring of SA.


Biosensing Techniques , Limit of Detection , Salicylic Acid , Smartphone , Biosensing Techniques/instrumentation , Salicylic Acid/analysis , Salicylic Acid/chemistry , Equipment Design , Humans , Hydrogels/chemistry , Cosmetics/chemistry , Cosmetics/analysis
13.
Int J Biol Macromol ; 267(Pt 1): 131402, 2024 May.
Article En | MEDLINE | ID: mdl-38582462

This study investigates how wheat gluten (WG) films in the presence of salicylic acid are influenced by thermal pretreatment. Unlike previous methods conducted at low moisture content, our procedure involves pretreating WG at different temperatures (65 °C, 75 °C, and 85 °C), in a solution with salicylic acid. This pretreatment aims to enhance protein unfolding, thus providing more opportunities for protein-protein interactions during the subsequent solvent casting into films. A significant increase in ß-sheet structures was observed in FTIR spectra of samples pretreated at 75 °C and 85 °C, showing a prominent peak in the range of 1630-1640 cm-1. The pretreatment at 85 °C was found to be effective in improving the water resistivity of the films by up to 247 %. Moreover, it led to a significant enhancement of 151 % in tensile strength and a 45 % increase in the elastic modulus. The reduced solubility observed in films derived from pretreated WG suggests the development of an intricate protein network arising from protein-protein interactions during the pretreatment and film formation. Thermal pretreatment at 85 °C significantly enhances the structural and mechanical properties of WG films, including improved water resistivity, tensile strength, and intricate protein network formation.


Glutens , Hot Temperature , Salicylic Acid , Tensile Strength , Salicylic Acid/chemistry , Glutens/chemistry , Solubility , Water/chemistry , Triticum/chemistry , Spectroscopy, Fourier Transform Infrared
14.
Food Chem ; 449: 139264, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38593724

In this study, a microelectrode array sensor based on boron and nitrogen co-doped vertical graphene (BNVG) was assembled to quantify salicylic acid (SA) in living plants. The influence of B and N contents on the electrochemical reaction kinetics and SA response signal was investigated. A microneedle sensor with three optimized BNVG microelectrodes (3.57 at.% B and 3.27 at.% N) was used to quantitatively analyze SA in the 0.5-100 µM concentration range and pH 4.0-9.0, with limits of detection of 0.14-0.18 µM. Additionally, a quantitative electrochemical model database based on the BNVG microelectrode sensor was constructed to monitor the growth of cucumbers and cauliflowers, which confirmed that the SA level and plant growth rate were positively correlated. Moreover, the SA levels in various vegetables and fruits purchased from the market were measured to demonstrate the practical application prospects for on-site inspection and evaluation.


Boron , Electrochemical Techniques , Fruit , Graphite , Microelectrodes , Nitrogen , Salicylic Acid , Vegetables , Graphite/chemistry , Salicylic Acid/analysis , Vegetables/chemistry , Fruit/chemistry , Electrochemical Techniques/instrumentation , Boron/chemistry , Nitrogen/analysis , Needles , Cucumis sativus/chemistry , Biosensing Techniques/instrumentation , Limit of Detection
15.
J Cosmet Dermatol ; 23(6): 2125-2134, 2024 Jun.
Article En | MEDLINE | ID: mdl-38590107

OBJECTIVE: Salicylic acid (SA) has been used for treatment of acne of different severity levels. However, there are few researches about the safety and efficacy for treatment of mild to moderate acne, and the improvement of the skin condition by using 2% supramolecular salicylic acid (SSA) compared to Davuwen Adapaline gel. METHODS: A multicenter, randomized, assessor-blind and parallel-controlled study was conducted. A total of 500 patients (trial group: 249, control group: 251) with mild to moderate (grade I-II) facial acne vulgaris were recruited in this study over a 16-week trial period. Patients in the trial group were treated with Broda 2% SSA hydrogel, while control group treated with Davuwen Adapaline gel once a day. The number of inflammatory papules, comedones, and pustules were counted and the rate of lesion reduction was calculated pre- and post-treatment. Then, the skin physiological indicators, including L*a*b*, TEWL, skin sebum and hydration were measured. Statistical analysis was conducted using SAS 9.4. Significance was set at p = 0.05. RESULTS: At the end of 12 weeks' therapy, the regression and markedly improvement rate of the trail group and the control group were 51.01% and 43.10% respectively, and there was no significant difference in the improvement rate between two groups (p = 0.0831). Although, there was no difference in adverse events rate between two groups, the adverse events rate of the trail group was 0.40%, a little lower than the control group (0.80%). Moreover, there was a significant difference in the numbers of pores at T1 between two groups. CONCLUSION: Both 2% SSA and Adapaline gel were equally effective in the treatment of mild to moderate acne vulgaris. 2% SSA is worth the clinical promotion and application in mild to moderate acne vulgaris.


Acne Vulgaris , Gels , Hydrogels , Salicylic Acid , Severity of Illness Index , Humans , Acne Vulgaris/drug therapy , Female , Male , Salicylic Acid/administration & dosage , Salicylic Acid/adverse effects , Salicylic Acid/therapeutic use , Young Adult , Adolescent , Adult , Single-Blind Method , Hydrogels/administration & dosage , Treatment Outcome , Dermatologic Agents/administration & dosage , Dermatologic Agents/adverse effects , Administration, Cutaneous , Adapalene/administration & dosage , Adapalene/adverse effects
16.
Eur J Pharm Biopharm ; 199: 114282, 2024 Jun.
Article En | MEDLINE | ID: mdl-38614434

A film-forming system (FFS) represents a convenient topical dosage form for drug delivery. In this study, a non-commercial poly(lactic-co-glycolic acid) (PLGA) was chosen to formulate an FFS containing salicylic acid (SA) and methyl salicylate (MS). This unique combination is advantageous from a therapeutic point of view, as it enabled modified salicylate release. It is beneficial from a technological perspective too, because it improved thermal, rheological, and adhesive properties of the in situ film. DSC revealed complete dissolution of SA and good miscibility of MS with the polymer. MS also ensures optimal viscoelastic and adhesive properties of the film, leading to prolonged and sustained drug release. The hydrolysis of MS to active SA was very slow at skin pH 5.5, but it apparently occurred at physiological pH 7.4. The film structure is homogeneous without cracks, unlike some commercial preparations. The dissolution study of salicylates revealed different courses in their release and the influence of MS concentration in the film. The formulated PLGA-based FFS containing 5 % SA and 10 % MS is promising for sustained and prolonged local delivery of salicylates, used mainly for keratolytic and anti-inflammatory actions and pain relief.


Drug Delivery Systems , Lactic Acid , Polyglycolic Acid , Polylactic Acid-Polyglycolic Acid Copolymer , Salicylates , Salicylic Acid , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Salicylates/administration & dosage , Salicylates/chemistry , Salicylates/pharmacokinetics , Lactic Acid/chemistry , Drug Delivery Systems/methods , Salicylic Acid/administration & dosage , Salicylic Acid/chemistry , Salicylic Acid/pharmacokinetics , Polyglycolic Acid/chemistry , Drug Liberation , Administration, Topical , Chemistry, Pharmaceutical/methods , Administration, Cutaneous , Hydrogen-Ion Concentration , Solubility , Delayed-Action Preparations , Skin/metabolism
17.
ACS Biomater Sci Eng ; 10(5): 3097-3107, 2024 May 13.
Article En | MEDLINE | ID: mdl-38591966

To develop a peri-implantitis model in a Gottingen minipig and evaluate the effect of local application of salicylic acid poly(anhydride-ester) (SAPAE) on peri-implantitis progression in healthy, metabolic syndrome (MS), and type-2 diabetes mellitus (T2DM) subjects. Eighteen animals were allocated to three groups: (i) control, (ii) MS (diet for obesity induction), and (iii) T2DM (diet plus streptozotocin for T2DM induction). Maxillary and mandible premolars and first molar were extracted. After 3 months of healing, four implants per side were placed in both jaws of each animal. After 2 months, peri-implantitis was induced by plaque formation using silk ligatures. SAPAE polymer was mixed with mineral oil (3.75 mg/µL) and topically applied biweekly for up to 60 days to halt peri-implantitis progression. Periodontal probing was used to assess pocket depth over time, followed by histomorphologic analysis of harvested samples. The adopted protocol resulted in the onset of peri-implantitis, with healthy minipigs taking twice as long to reach the same level of probing depth relative to MS and T2DM subjects (∼3.0 mm), irrespective of jaw. In a qualitative analysis, SAPAE therapy revealed decreased levels of inflammation in the normoglycemic, MS, and T2DM groups. SAPAE application around implants significantly reduced the progression of peri-implantitis after ∼15 days of therapy, with ∼30% lower probing depth for all systemic conditions and similar rates of probing depth increase per week between the control and SAPAE groups. MS and T2DM conditions presented a faster progression of the peri-implant pocket depth. SAPAE treatment reduced peri-implantitis progression in healthy, MS, and T2DM groups.


Peri-Implantitis , Salicylic Acid , Swine, Miniature , Animals , Swine , Peri-Implantitis/drug therapy , Peri-Implantitis/pathology , Salicylic Acid/administration & dosage , Salicylic Acid/pharmacology , Salicylic Acid/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Disease Models, Animal , Disease Progression , Hyperglycemia/drug therapy , Male , Diabetes Mellitus, Experimental/drug therapy , Metabolic Syndrome/drug therapy , Metabolic Syndrome/metabolism , Dental Implants
18.
Nat Commun ; 15(1): 2943, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38580637

Increased exposure to environmental stresses due to climate change have adversely affected plant growth and productivity. Upon stress, plants activate a signaling cascade, involving multiple molecules like H2O2, and plant hormones such as salicylic acid (SA) leading to resistance or stress adaptation. However, the temporal ordering and composition of the resulting cascade remains largely unknown. In this study we developed a nanosensor for SA and multiplexed it with H2O2 nanosensor for simultaneous monitoring of stress-induced H2O2 and SA signals when Brassica rapa subsp. Chinensis (Pak choi) plants were subjected to distinct stress treatments, namely light, heat, pathogen stress and mechanical wounding. Nanosensors reported distinct dynamics and temporal wave characteristics of H2O2 and SA generation for each stress. Based on these temporal insights, we have formulated a biochemical kinetic model that suggests the early H2O2 waveform encodes information specific to each stress type. These results demonstrate that sensor multiplexing can reveal stress signaling mechanisms in plants, aiding in developing climate-resilient crops and pre-symptomatic stress diagnoses.


Brassica rapa , Hydrogen Peroxide , Hydrogen Peroxide/pharmacology , Stress, Physiological , Brassica rapa/physiology , Plant Growth Regulators/pharmacology , Salicylic Acid
19.
PLoS One ; 19(4): e0296995, 2024.
Article En | MEDLINE | ID: mdl-38558084

Emerging resistance to existing antimalarial drugs drives the search for new antimalarials, and protein translation is a promising pathway to target. Threonyl t-RNA synthetase (ThrRS) is one of the enzymes involved in this pathway, and it has been validated as an anti-malarial drug target. Here, we present 9 structurally diverse low micromolar Plasmodium falciparum ThrRS inhibitors that were identified using high-throughput virtual screening (HTVS) and were verified in a FRET enzymatic assay. Salicylic acid-based compound (LE = 0.34) was selected as a most perspective hit and was subjected to hit-to-lead optimisation. A total of 146 hit analogues were synthesised or obtained from commercial vendors and were tested. Structure-activity relationship study was supported by the crystal structure of the complex of a salicylic acid analogue with a close homologue of the plasmodium target, E. coli ThrRS (EcThrRS). Despite the availability of structural information, the hit identified via virtual screening remained one of the most potent PfThrRS inhibitors within this series. However, the compounds presented herein provide novel scaffolds for ThrRS inhibitors, which could serve as starting points for further medicinal chemistry projects targeting ThrRSs or structurally similar enzymes.


Antimalarials , Malaria , Threonine-tRNA Ligase , Humans , Threonine-tRNA Ligase/chemistry , Threonine-tRNA Ligase/genetics , Threonine-tRNA Ligase/metabolism , Escherichia coli/genetics , Structure-Activity Relationship , Plasmodium falciparum/genetics , Antimalarials/pharmacology , Salicylic Acid/pharmacology , RNA, Transfer
20.
Biosens Bioelectron ; 255: 116261, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38565026

Drought and salinity stresses present significant challenges that exert a severe impact on crop productivity worldwide. Understanding the dynamics of salicylic acid (SA), a vital phytohormone involved in stress response, can provide valuable insights into the mechanisms of plant adaptation to cope with these challenging conditions. This paper describes and tests a sensor system that enables real-time and non-invasive monitoring of SA content in avocado plants exposed to drought and salinity. By using a reverse iontophoretic system in conjunction with a laser-induced graphene electrode, we demonstrated a sensor with high sensitivity (82.3 nA/[µmol L-1⋅cm-2]), low limit of detection (LOD, 8.2 µmol L-1), and fast sampling response (20 s). Significant differences were observed between the dynamics of SA accumulation in response to drought versus those of salt stress. SA response under drought stress conditions proved to be faster and more intense than under salt stress conditions. These different patterns shed light on the specific adaptive strategies that avocado plants employ to cope with different types of environmental stressors. A notable advantage of the proposed technology is the minimal interference with other plant metabolites, which allows for precise SA detection independent of any interfering factors. In addition, the system features a short extraction time that enables an efficient and rapid analysis of SA content.


Biosensing Techniques , Graphite , Wearable Electronic Devices , Salicylic Acid , Stress, Physiological
...