Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.844
2.
Front Cell Infect Microbiol ; 14: 1341545, 2024.
Article En | MEDLINE | ID: mdl-38779561

Background: Engaging in anal sexual intercourse markedly increases the risk of developing HIV among men who have sex with men (MSM); oral sexual activities tend to uniquely introduce gut-derived microbes to salivary microbiota, which, combined with an individual's positive HIV status, may greatly perturb oral microecology. However, till date, only a few published studies have addressed this aspect. Methods: Based on 16S rRNA sequencing data of bacterial taxa, MicroPITA picks representative samples for metagenomic analysis, effectively revealing how the development and progression of the HIV disease influences oral microbiota in MSM. Therefore, we collected samples from 11 HIV-negative and 44 HIV-positive MSM subjects (stage 0 was defined by HIV RNA positivity, but negative or indeterminate antibody status; stages 1, 2, and 3 were defined by CD4+ T lymphocyte counts ≥ 500, 200-499, and ≤ 200 or opportunistic infection) and selected 25 representative saliva samples (5 cases/stage) using MicroPITA. Metagenomic sequencing analysis were performed to explore whether positive HIV status changes salivary bacterial KEGG function and metabolic pathway in MSM. Results: The core functions of oral microbiota were maintained across each of the five groups, including metabolism, genetic and environmental information processing. All HIV-positive groups displayed KEGG functions of abnormal proliferation, most prominently at stage 0, and others related to metabolism. Clustering relationship analysis tentatively identified functional relationships between groups, with bacterial function being more similar between stage 0-control groups and stage 1-2 groups, whereas the stage 3 group exhibited large functional changes. Although we identified most metabolic pathways as being common to all five groups, several unique pathways formed clusters for certain groups; the stage 0 group had several, while the stage 2 and 3 groups had few, such clusters. The abundance of K03046 was positively correlated with CD4 counts. Conclusion: As HIV progresses, salivary bacterial function and metabolic pathways in MSM progressively changes, which may be related to HIV promoting abnormal energy metabolism and exacerbate pathogen virulence. Further, infection and drug resistance of acute stage and immune cell destruction of AIDS stage were abnormally increased, predicting an increased risk for MSM individuals to develop systemic and oral diseases.


HIV Infections , Homosexuality, Male , RNA, Ribosomal, 16S , Saliva , Humans , Male , Saliva/microbiology , Saliva/virology , HIV Infections/microbiology , RNA, Ribosomal, 16S/genetics , Adult , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Microbiota , Metagenomics , CD4 Lymphocyte Count , Middle Aged , Young Adult , Sexual and Gender Minorities
3.
Parasit Vectors ; 17(1): 220, 2024 May 13.
Article En | MEDLINE | ID: mdl-38741172

BACKGROUND: Japanese encephalitis virus (JEV) is an emerging mosquito-borne Orthoflavivirus that poses a significant public health risk in many temperate and tropical regions in Asia. Since the climate in some endemic countries is similar to temperate climates observed in Europe, understanding the role of specific mosquito species in the transmission of JEV is essential for predicting and effectively controlling the potential for the introduction and establishment of JEV in Europe. METHODS: This study aimed to investigate the vector competence of colonized Culex pipiens biotype molestus mosquitoes for JEV. The mosquitoes were initially collected from the field in southern Sweden. The mosquitoes were offered a blood meal containing the Nakayama strain of JEV (genotype III), and infection rates, dissemination rates, and transmission rates were evaluated at 14, 21, and 28 days post-feeding. RESULTS: The study revealed that colonized Swedish Cx. pipiens are susceptible to JEV infection, with a stable infection rate of around 10% at all timepoints. However, the virus was only detected in the legs of one mosquito at 21 days post-feeding, and no mosquito saliva contained JEV. CONCLUSIONS: Overall, this research shows that Swedish Cx. pipiens can become infected with JEV, and emphasizes the importance of further understanding of the thresholds and barriers for JEV dissemination in mosquitoes.


Culex , Encephalitis Virus, Japanese , Encephalitis, Japanese , Mosquito Vectors , Animals , Culex/virology , Culex/physiology , Encephalitis Virus, Japanese/physiology , Sweden , Mosquito Vectors/virology , Encephalitis, Japanese/transmission , Encephalitis, Japanese/virology , Female , Saliva/virology , Humans
4.
Mikrochim Acta ; 191(6): 333, 2024 05 16.
Article En | MEDLINE | ID: mdl-38753167

The COVID-19 pandemic has underscored the urgent need for rapid and reliable strategies for early detection of SARS-CoV-2. In this study, we propose a DNA nanosphere-based crosslinking catalytic hairpin assembly (CCHA) system for the rapid and sensitive SARS-CoV-2 RNA detection. The CCHA system employs two DNA nanospheres functionalized with catalytic hairpin assembly (CHA) hairpins. The presence of target SARS-CoV-2 RNA initiated the crosslinking of DNA nanospheres via CHA process, leading to the amplification of fluorescence signals. As a result, the speed of SARS-CoV-2 diagnosis was enhanced by significantly increasing the local concentration of the reagents in a crosslinked DNA product, leading to a detection limit of 363 fM within 5 min. The robustness of this system has been validated in complex environments, such as fetal bovine serum and saliva. Hence, the proposed CCHA system offers an efficient and simple approach for rapid detection of SARS-CoV-2 RNA, holding substantial promise for enhancing COVID-19 diagnosis.


COVID-19 , Limit of Detection , RNA, Viral , SARS-CoV-2 , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , RNA, Viral/analysis , RNA, Viral/genetics , Humans , COVID-19/diagnosis , COVID-19/virology , Nanospheres/chemistry , DNA/chemistry , Inverted Repeat Sequences , Animals , COVID-19 Nucleic Acid Testing/methods , Cattle , Cross-Linking Reagents/chemistry , Saliva/virology
5.
Parasit Vectors ; 17(1): 223, 2024 May 15.
Article En | MEDLINE | ID: mdl-38750581

BACKGROUND: Batai virus (BATV) is a zoonotic arbovirus of veterinary importance. A high seroprevalence in cows, sheep and goats and infection in different mosquito species has been observed in Central Europe. Therefore, we studied indigenous as well as exotic species of the genera Culex and Aedes for BATV vector competence at different fluctuating temperature profiles. METHODS: Field caught Culex pipiens biotype pipiens, Culex torrentium, Aedes albopictus and Aedes japonicus japonicus from Germany and Aedes aegypti laboratory colony were infected with BATV strain 53.3 using artificial blood meals. Engorged mosquitoes were kept under four (Culex species) or three (Aedes species) fluctuating temperature profiles (18 ± 5 °C, 21 ± 5 °C, 24 ± 5 °C, 27 ± 5 °C) at a humidity of 70% and a dark/light rhythm of 12:12 for 14 days. Transmission was measured by testing the saliva obtained by forced salivation assay for viable BATV particles. Infection rates were analysed by testing whole mosquitoes for BATV RNA by quantitative reverse transcription PCR. RESULTS: No transmission was detected for Ae. aegypti, Ae. albopictus or Ae. japonicus japonicus. Infection was observed for Cx. p. pipiens, but only in the three conditions with the highest temperatures (21 ± 5 °C, 24 ± 5 °C, 27 ± 5 °C). In Cx. torrentium infection was measured at all tested temperatures with higher infection rates compared with Cx. p. pipiens. Transmission was only detected for Cx. torrentium exclusively at the highest temperature of 27 ± 5 °C. CONCLUSIONS: Within the tested mosquito species, only Cx. torrentium seems to be able to transmit BATV if the climatic conditions are feasible.


Aedes , Bunyamwera virus , Culex , Mosquito Vectors , Temperature , Animals , Aedes/virology , Aedes/physiology , Aedes/classification , Culex/virology , Culex/physiology , Culex/classification , Mosquito Vectors/virology , Mosquito Vectors/physiology , Bunyamwera virus/genetics , Bunyamwera virus/physiology , Bunyamwera virus/isolation & purification , Saliva/virology , Bunyaviridae Infections/transmission , Bunyaviridae Infections/virology , Female , Europe , Germany
6.
Parasit Vectors ; 17(1): 200, 2024 May 04.
Article En | MEDLINE | ID: mdl-38704595

BACKGROUND: Mayaro virus (MAYV) is an emerging alphavirus, primarily transmitted by the mosquito Haemagogus janthinomys in Central and South America. However, recent studies have shown that Aedes aegypti, Aedes albopictus and various Anopheles mosquitoes can also transmit the virus under laboratory conditions. MAYV causes sporadic outbreaks across the South American region, particularly in areas near forests. Recently, cases have been reported in European and North American travelers returning from endemic areas, raising concerns about potential introductions into new regions. This study aims to assess the vector competence of three potential vectors for MAYV present in Europe. METHODS: Aedes albopictus from Italy, Anopheles atroparvus from Spain and Culex pipiens biotype molestus from Belgium were exposed to MAYV and maintained under controlled environmental conditions. Saliva was collected through a salivation assay at 7 and 14 days post-infection (dpi), followed by vector dissection. Viral titers were determined using focus forming assays, and infection rates, dissemination rates, and transmission efficiency were calculated. RESULTS: Results indicate that Ae. albopictus and An. atroparvus from Italy and Spain, respectively, are competent vectors for MAYV, with transmission possible starting from 7 dpi under laboratory conditions. In contrast, Cx. pipiens bioform molestus was unable to support MAYV infection, indicating its inability to contribute to the transmission cycle. CONCLUSIONS: In the event of accidental MAYV introduction in European territories, autochthonous outbreaks could potentially be sustained by two European species: Ae. albopictus and An. atroparvus. Entomological surveillance should also consider certain Anopheles species when monitoring MAYV transmission.


Aedes , Alphavirus Infections , Alphavirus , Culex , Mosquito Vectors , Animals , Aedes/virology , Mosquito Vectors/virology , Alphavirus/physiology , Alphavirus/isolation & purification , Culex/virology , Europe , Alphavirus Infections/transmission , Alphavirus Infections/virology , Saliva/virology , Anopheles/virology , Spain , Italy , Female , Belgium
7.
Nat Commun ; 15(1): 4488, 2024 May 27.
Article En | MEDLINE | ID: mdl-38802350

Understanding of infection dynamics is important for public health measures against monkeypox virus (MPXV) infection. Herein, samples from multiple body sites and environmental fomites of 77 acute MPXV infections (HIV co-infection: N = 42) were collected every two to three days and used for detection of MPXV DNA, surface protein specific antibodies and neutralizing titers. Skin lesions show 100% positivity rate of MPXV DNA, followed by rectum (88.16%), saliva (83.78%) and oropharynx (78.95%). Positivity rate of oropharynx decreases rapidly after 7 days post symptom onset (d.p.o), while the rectum and saliva maintain a positivity rate similar to skin lesions. Viral dynamics are similar among skin lesions, saliva and oropharynx, with a peak at about 6 d.p.o. In contrast, viral levels in the rectum peak at the beginning of symptom onset and decrease rapidly thereafter. 52.66% of environmental fomite swabs are positive for MPXV DNA, with highest positivity rate (69.89%) from air-conditioning air outlets. High seropositivity against A29L (100%) and H3L (94.74%) are detected, while a correlation between IgG endpoint titers and neutralizing titers is only found for A29L. Most indexes are similar between HIV and Non-HIV participants, while HIV and rectitis are associated with higher viral loads in rectum.


Antibodies, Viral , Monkeypox virus , Mpox (monkeypox) , Virus Shedding , Humans , Male , Antibodies, Viral/immunology , Antibodies, Viral/blood , Prospective Studies , Adult , Monkeypox virus/immunology , Mpox (monkeypox)/immunology , Mpox (monkeypox)/virology , Mpox (monkeypox)/epidemiology , Saliva/virology , Saliva/immunology , HIV Infections/immunology , HIV Infections/virology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Middle Aged , Longitudinal Studies , DNA, Viral , Oropharynx/virology , Oropharynx/immunology , Coinfection/immunology , Coinfection/virology , Coinfection/epidemiology , Viral Load , Fomites/virology
8.
Viruses ; 16(5)2024 05 13.
Article En | MEDLINE | ID: mdl-38793653

BACKGROUND: Several screening strategies for identifying congenital CMV (cCMV) have been proposed; however, the optimal solution has yet to be determined. We aimed to determine the prevalence of cCMV by universal screening with saliva pool testing and to identify the clinical variables associated with a higher risk of cCMV to optimize an expanded screening strategy. METHODS: We carried out a prospective universal cCMV screening (September/2022 to August/2023) of 2186 newborns, analyzing saliva samples in pools of five (Alethia-LAMP-CMV®) and then performed confirmatory urine CMV RT-PCR. Infants with risk factors (small for gestational age, failed hearing screening, HIV-exposed, born to immunosuppressed mothers, or <1000 g birth weight) underwent expanded screening. Multivariate analyses were used to assess the association with maternal/neonatal variables. RESULTS: We identified 10 infants with cCMV (prevalence: 0.46%, 95% CI 0.22-0.84), with significantly higher rates (2.1%, 95% CI 0.58-5.3) in the high-risk group (p = 0.04). False positives occurred in 0.09% of cases. No significant differences in maternal/neonatal characteristics were observed, except for a higher prevalence among infants born to non-Chilean mothers (p = 0.034), notably those born to Haitian mothers (1.5%, 95% CI 0.31-4.34), who had higher odds of cCMV (OR 6.82, 95% CI 1.23-37.9, p = 0.04). Incorporating maternal nationality improved predictive accuracy (AUC: 0.65 to 0.83). CONCLUSIONS: For low-prevalence diseases such as cCMV, universal screening with pool testing in saliva represents an optimal and cost-effective approach to enhance diagnosis in asymptomatic patients. An expanded screening strategy considering maternal nationality could be beneficial in resource-limited settings.


Cytomegalovirus Infections , Cytomegalovirus , Developing Countries , Neonatal Screening , Saliva , Humans , Saliva/virology , Cytomegalovirus Infections/diagnosis , Cytomegalovirus Infections/congenital , Cytomegalovirus Infections/epidemiology , Cytomegalovirus Infections/virology , Infant, Newborn , Female , Cytomegalovirus/genetics , Cytomegalovirus/isolation & purification , Prospective Studies , Neonatal Screening/methods , Male , Molecular Diagnostic Techniques/methods , Prevalence , Mass Screening/methods , Sensitivity and Specificity , Pregnancy , Risk Factors
9.
Diagn Microbiol Infect Dis ; 109(3): 116320, 2024 Jul.
Article En | MEDLINE | ID: mdl-38678688

Saliva samples are important for diagnosis, because they are noninvasive and easy to acquire. The objective of this cross-sectional study was to investigate the value saliva samples have in detecting SARS-CoV-2 in comparison to nasal swabs and a new system named CovidCheck. A standard methodology identified the virus in 185 nasopharyngeal swabs and saliva samples revealing a sensitivity, specificity and positive and negative predictive values of 82,100,100 and 94.67%, respectively for saliva samples. Viral presence in saliva samples with the standard methodology in comparison to the CovidCheck system was evaluated in 67 samples with sensitivity, specificity and positive and negative predictive values of 68, 81, 68 and 81%, respectively. In conclusion, our results highlight the usefulness saliva samples have in detecting respiratory viral infections. However, presence of viral inhibitors and viral load in saliva, and the patient's clinical status should be considered as they might affect amplifying systems results.


COVID-19 , Nasopharynx , SARS-CoV-2 , Saliva , Sensitivity and Specificity , Humans , Saliva/virology , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Cross-Sectional Studies , Nasopharynx/virology , Viral Load , Male , Female , Adult , Middle Aged , Aged
10.
Viruses ; 16(4)2024 03 28.
Article En | MEDLINE | ID: mdl-38675863

One of the methods to inactivate viruses is to denature viral proteins using released ions. However, there have been no reports detailing the effects of changes in humidity or contamination with body fluids on the inactivation of viruses. This study investigated the effects of humidity changes and saliva contamination on the efficacy of SARS-CoV-2 inactivation with ions using multiple viral strains. Virus solutions with different infectious titers were dropped onto a circular nitrocellulose membrane and irradiated with ions from 10 cm above the membrane. After the irradiation of ions for 60, 90, and 120 min, changes in viral infectious titers were measured. The effect of ions on virus inactivation under different humidity conditions was also examined using virus solutions containing 90% mixtures of saliva collected from 10 people. A decrease in viral infectivity was observed over time for all strains, but ion irradiation further accelerated the decrease in viral infectivity. Ion irradiation can inactivate all viral strains, but at 80% humidity, the effect did not appear until 90 min after irradiation. The presence of saliva protected the virus from drying and maintained infectiousness for a longer period compared with no saliva. In particular, the Omicron strain retained its infectivity titer longer than the other strains. Ion irradiation demonstrated a consistent reduction in the number of infectious viruses when compared to the control across varying levels of humidity and irradiation periods. This underscores the notable effectiveness of irradiation, even when the reduction effect is as modest as 50%, thereby emphasizing its crucial role in mitigating the rapid dissemination of SARS-CoV-2.


COVID-19 , Humidity , SARS-CoV-2 , Saliva , Virus Inactivation , SARS-CoV-2/radiation effects , SARS-CoV-2/physiology , Saliva/virology , Humans , Virus Inactivation/radiation effects , COVID-19/virology , COVID-19/prevention & control , Ions , Animals , Vero Cells , Chlorocebus aethiops
11.
BMC Oral Health ; 24(1): 491, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664718

BACKGROUND: Recent randomized clinical trials suggest that the effect of using cetylpyridinium chloride (CPC) mouthwashes on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral load in COVID-19 patients has been inconsistent. Additionally, no clinical study has investigated the effectiveness of on-demand aqueous chlorine dioxide mouthwash against COVID-19. METHODS: We performed a randomized, placebo-controlled, open-label clinical trial to assess for any effects of using mouthwash on the salivary SARS-CoV-2 viral load among asymptomatic to mildly symptomatic adult COVID-19-positive patients. Patients were randomized to receive either 20 mL of 0.05% CPC, 10 mL of 0.01% on-demand aqueous chlorine dioxide, or 20 mL of placebo mouthwash (purified water) in a 1:1:1 ratio. The primary endpoint was the cycle threshold (Ct) values employed for SARS-CoV-2 salivary viral load estimation. We used linear mixed-effects models to assess for any effect of the mouthwashes on SARS-CoV-2 salivary viral load. RESULTS: Of a total of 96 eligible participants enrolled from November 7, 2022, to January 19, 2023, 90 were accepted for the primary analysis. The use of 0.05% CPC mouthwash was not shown to be superior to placebo in change from baseline salivary Ct value at 30 min (difference vs. placebo, 0.640; 95% confidence interval [CI], -1.425 to 2.706; P = 0.543); 2 h (difference vs. placebo, 1.158; 95% CI, -0.797 to 3.112; P = 0.246); 4 h (difference vs. placebo, 1.283; 95% CI, -0.719 to 3.285; P = 0.209); 10 h (difference vs. placebo, 0.304; 95% CI, -1.777 to 2.385; P = 0.775); or 24 h (difference vs. placebo, 0.782; 95% CI, -1.195 to 2.759; P = 0.438). The use of 0.01% on-demand aqueous chlorine dioxide mouthwash was also not shown to be superior to placebo in change from baseline salivary Ct value at 30 min (difference vs. placebo, 0.905; 95% CI, -1.079 to 2.888; P = 0.371); 2 h (difference vs. placebo, 0.709; 95% CI, -1.275 to 2.693; P = 0.483); 4 h (difference vs. placebo, 0.220; 95% CI, -1.787 to 2.226; P = 0.830); 10 h (difference vs. placebo, 0.198; 95% CI, -1.901 to 2.296; P = 0.854); or 24 h (difference vs. placebo, 0.784; 95% CI, -1.236 to 2.804; P = 0.447). CONCLUSIONS: In asymptomatic to mildly symptomatic adults with COVID-19, compared to placebo, the use of 0.05% CPC and 0.01% on-demand aqueous chlorine dioxide mouthwash did not lead to a significant reduction in SARS-CoV-2 salivary viral load. Future studies of the efficacy of CPC and on-demand aqueous chlorine dioxide mouthwash on the viral viability of SARS-CoV-2 should be conducted using different specimen types and in multiple populations and settings.


COVID-19 , Cetylpyridinium , Mouthwashes , Saliva , Viral Load , Humans , Mouthwashes/therapeutic use , Viral Load/drug effects , Saliva/virology , Male , Female , Adult , Cetylpyridinium/therapeutic use , Middle Aged , SARS-CoV-2 , Chlorine Compounds/therapeutic use , Chlorine Compounds/pharmacology , Oxides/therapeutic use , Aged
12.
Diagn Microbiol Infect Dis ; 109(3): 116297, 2024 Jul.
Article En | MEDLINE | ID: mdl-38604076

The LAMPdirect Genelyzer KIT allows for the detection of SARS-CoV-2 RNA in saliva samples with a loop-mediated isothermal amplification (LAMP) method and generates results within 20 min. It has been approved by the Pharmaceuticals and Medical Devices Agency in Japan. In this study, the performance of the LAMPdirect Genelyzer KIT was compared with that of the RT-qPCR reference method using 50 nasopharyngeal swabs and 100 saliva samples. In addition, we evaluated the applicability of an alternative reverse transcriptase and the effects of an inactivation buffer. The total agreement rates were 80.0 % and 82.0 % for nasopharyngeal and saliva samples, respectively. When considering samples at the detection limit (50 copies/reaction) that increases the chance of transmission between humans, the total agreement rates were 100% and 94.1% for nasopharyngeal and saliva samples, respectively. The LAMP method is simple, fast, and inexpensive, making it useful for small medical institutions or rural areas.


COVID-19 , Molecular Diagnostic Techniques , Nasopharynx , Nucleic Acid Amplification Techniques , RNA, Viral , SARS-CoV-2 , Saliva , Humans , Saliva/virology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Nasopharynx/virology , Nucleic Acid Amplification Techniques/methods , RNA, Viral/genetics , RNA, Viral/isolation & purification , COVID-19/diagnosis , COVID-19/virology , Molecular Diagnostic Techniques/methods , Sensitivity and Specificity , Reagent Kits, Diagnostic/standards , COVID-19 Nucleic Acid Testing/methods , COVID-19 Nucleic Acid Testing/instrumentation , Specimen Handling/methods
13.
Diagn Microbiol Infect Dis ; 109(3): 116298, 2024 Jul.
Article En | MEDLINE | ID: mdl-38604075

Nanoparticles derived from plant viruses play an important role in nanomedicine due to their biocompatibility, self-assembly and easily-modifiable surface. In this study, we developed a novel platform for increasing antibody sensing using viral nanoparticles derived from turnip mosaic virus (TuMV) functionalized with SARS-CoV-2 receptor binding domain (RBD) through three different methods: chemical conjugation, gene fusion and the SpyTag/SpyCatcher technology. Even though gene fusion turned out to be unsuccessful, the other two constructs were proven to significantly increase antibody sensing when tested with saliva of patients with different infection and vaccination status to SARS-CoV-2. Our findings show the high potential of TuMV nanoparticles in the fields of diagnostics and immunodetection, being especially attractive for the development of novel antibody sensing devices.


Antibodies, Viral , COVID-19 , Nanoparticles , SARS-CoV-2 , Saliva , Humans , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Nanoparticles/chemistry , Saliva/immunology , Saliva/virology , COVID-19/diagnosis , COVID-19/immunology , COVID-19/virology , Antibodies, Viral/immunology , Spike Glycoprotein, Coronavirus/immunology , Tymovirus/immunology , Tymovirus/genetics , Antigens, Viral/immunology
14.
Microbiol Spectr ; 12(5): e0028724, 2024 May 02.
Article En | MEDLINE | ID: mdl-38517168

Multipartite viruses exhibit a fragmented genome composed of several nucleic acid segments individually packaged in distinct viral particles. The genome of all species of the genus Nanovirus holds eight segments, which accumulate at a very specific and reproducible relative frequency in the host plant tissues. In a given host species, the steady state pattern of the segments' relative frequencies is designated the genome formula and is thought to have an adaptive function through the modulation of gene expression. Nanoviruses are aphid-transmitted circulative non-propagative viruses, meaning that the virus particles are internalized into the midgut cells, transferred to the hemolymph, and then to the saliva, with no replication during this transit. Unexpectedly, a previous study on the faba bean necrotic stunt virus revealed that the genome formula changes after ingestion by aphids. We investigate here the possible mechanism inducing this change by first comparing the relative segment frequencies in different compartments of the aphid. We show that changes occur both in the midgut lumen and in the secreted saliva but not in the gut, salivary gland, or hemolymph. We further establish that the viral particles differentially resist physicochemical variations, in particular pH, ionic strength, and/or type of salt, depending on the encapsidated segment. We thus propose that the replication-independent genome formula changes within aphids are not adaptive, contrary to changes occurring in plants, and most likely reflect a fortuitous differential degradation of virus particles containing distinct segments when passing into extra-cellular media such as gastric fluid or saliva. IMPORTANCE: The genome of multipartite viruses is composed of several segments individually packaged into distinct viral particles. Each segment accumulates at a specific frequency that depends on the host plant species and regulates gene expression. Intriguingly, the relative frequencies of the genome segments also change when the octopartite faba bean necrotic stunt virus (FBNSV) is ingested by aphid vectors, despite the present view that this virus travels through the aphid gut and salivary glands without replicating. By monitoring the genomic composition of FBNSV populations during the transit in aphids, we demonstrate here that the changes take place extracellularly in the gut lumen and in the saliva. We further show that physicochemical factors induce differential degradation of viral particles depending on the encapsidated segment. We propose that the replication-independent changes within the insect vector are not adaptive and result from the differential stability of virus particles containing distinct segments according to environmental parameters.


Aphids , Genome, Viral , Insect Vectors , Nanovirus , Virus Replication , Aphids/virology , Animals , Genome, Viral/genetics , Nanovirus/genetics , Nanovirus/physiology , Insect Vectors/virology , Saliva/virology , Plant Diseases/virology , Virion/genetics , Vicia faba/virology , Hemolymph/virology
15.
Talanta ; 274: 125986, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38537348

The outbreak of novel coronavirus pneumonia (COVID-19) in 2019 has garnered widespread attention. The virus exhibits high contagiousness, and in certain cases, it can lead to recurrent infections. Therefore, it is imperative to develop portable, sensitive, and accurate sensors to promptly detect infected individuals, control the virus's transmission, and determine suitable treatment strategies. In this study, we proposed a magnetically-assisted method employing CFO@CS-Au MNP as the substrate material, which was functionalized with human angiotensin-converting enzyme (ACE2) for efficient capture of SARS-CoV-2 spike protein in solution. Subsequently, the captured protein was sensitively detected through differential pulse voltammetry (DPV) electrical analysis. The linear detection range of the labeled GCE/MNP/GA/ACE2/BSA electrochemical sensor is from 1 pg/mL to 10 µg/mL, with a minimum detection limit of 0.15 pg/mL. Furthermore, the fabricated GCE/MNP/GA/ACE2/BSA sensor achieved satisfactory recoveries of SARS-CoV-2 spike protein in saliva and nasal swab samples within 10 min. These results indicate that this magnetically-assisted biosensor has established a solid foundation for the swift on-site detection of COVID-19.


Biosensing Techniques , COVID-19 , Electrochemical Techniques , Limit of Detection , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Spike Glycoprotein, Coronavirus/analysis , Biosensing Techniques/methods , Humans , SARS-CoV-2/isolation & purification , Electrochemical Techniques/methods , COVID-19/diagnosis , COVID-19/virology , Angiotensin-Converting Enzyme 2/metabolism , Cobalt/chemistry , Saliva/virology , Saliva/chemistry , Ferric Compounds/chemistry , Nanostructures/chemistry
16.
Gene Ther ; 31(5-6): 345-351, 2024 May.
Article En | MEDLINE | ID: mdl-38467879

Adeno-associated viruses (AAV) are commonly used in the scientific field due to their diverse application range. However, AAV shedding, the release of virions from the host organism, can impact the safety of AAV-based approaches. An increasing number of authorities require the characterization of vector shedding in clinical trials. Recently, shedding of transduced laboratory animals has also gained attention regarding the necessary disposal measures of their waste products. However, no explicit international regulations for AAV-shedding waste exist. Generating insights into shedding dynamics becomes increasingly relevant to help authorities develop adequate regulations. To date, knowledge of AAV vector shedding in mice is very limited. Moreover, confirmation of functional shed AAV particles in mice is missing. Therefore, we examined feces, urine, and saliva of mice after CNS injection with AAV2/8. It revealed the presence of viral DNA fragments via qPCR for up to 4 days after injection. To examine AAV functionality we performed nested PCR and could not detect full-length viral genomes in any but two collected feces samples. Furthermore, a functional infection assay did not reveal evidence of intact AAV particles. Our findings are supposed to contribute murine shedding data as a foundation to help establish still lacking adequate biosafety regulations in the context of AAV shedding.


DNA, Viral , Dependovirus , Genetic Vectors , Virus Shedding , Animals , Dependovirus/genetics , Mice , Genetic Vectors/genetics , Genetic Vectors/administration & dosage , DNA, Viral/genetics , Feces/virology , Mice, Inbred C57BL , Saliva/virology , Humans
17.
Heart Lung ; 66: 31-36, 2024.
Article En | MEDLINE | ID: mdl-38547583

BACKGROUND: Autoantibodies have been demonstrated to dampen the interferon (IFN) response in viral infections. Elevated levels of these preexisting autoantibodies (aAbs) decrease basal interferon levels, increasing susceptibility to severe infections. OBJECTIVES: This study aimed to evaluate the prevalence of type I IFN aAbs in both plasma and saliva from COVID-19 patients, analyze their neutralizing activity, and examine their associations with clinical outcomes, including the need for mechanical ventilation and in-hospital mortality. METHODS: Prospective analyses of patients admitted to intensive care units in three UAE hospitals from June 2020 to March 2021 were performed to measure aAbs using enzyme-linked immunosorbent assay (ELISA), assess aAbs activity via neutralization assays, and correlate aAbs with clinical outcomes. RESULTS: Type I IFN aAbs (α2 and/or ω) were measured in plasma samples from 213 ICU patients, and positive results were obtained for 20 % (n = 42) of the patients, with half exhibiting neutralizing activity. Saliva samples from a subgroup of 24 patients reflected plasma levels. In multivariate regression analyses, presence of type I IFN aAbs was associated with a higher need for mechanical ventilation (OR 2.58; 95 % CI 1.07-6.22) and greater in-hospital mortality (OR 2.40; 95 % CI 1.13 - 5.07; P = 0.022). Similarly, positive neutralizing aAbs (naAbs) were associated with a greater need for mechanical ventilation (OR 4.96; 95 % CI 1.12-22.07; P = 0.035) and greater odds of in-hospital mortality (OR 2.87; 95 % CI 1.05-7.89; P = 0.041). CONCLUSIONS: Type I IFN autoantibodies can be detected in noninvasive saliva samples, alongside conventional plasma samples, from COVID-19 patients and are associated with worse outcomes, such as greater mechanical ventilation needs and in-hospital mortality.


Autoantibodies , COVID-19 , Interferon Type I , Saliva , Humans , COVID-19/immunology , COVID-19/epidemiology , Saliva/immunology , Saliva/virology , Female , Male , Autoantibodies/blood , Middle Aged , Interferon Type I/immunology , Prospective Studies , Aged , SARS-CoV-2/immunology , Hospital Mortality , Feasibility Studies , Enzyme-Linked Immunosorbent Assay , Respiration, Artificial/statistics & numerical data , Intensive Care Units , Adult
18.
Clin Microbiol Infect ; 30(6): 829.e1-829.e4, 2024 Jun.
Article En | MEDLINE | ID: mdl-38467247

OBJECTIVES: To compare the prevalence of SARS-CoV-2 and other respiratory viruses in saliva and bioaerosols between two winters and to model the probability of virus detection in classroom air for different viruses. METHODS: We analysed saliva, air, and air cleaner filter samples from studies conducted in two Swiss secondary schools (students aged 14-17 years) over 7 weeks during the winters of 2021/22 and 2022/23. Two bioaerosol sampling devices and high efficiency particulate air (HEPA) filters from air cleaners were used to collect airborne virus particles in four classrooms. Daily bioaerosol samples were pooled for each sampling device before PCR analysis of a panel of 19 respiratory viruses and viral subtypes. The probability of detection of airborne viruses was modelled using an adjusted Bayesian logistic regression model. RESULTS: Three classes (58 students) participated in 2021/22, and two classes (38 students) in 2022/23. During winter 2021/22, SARS-CoV-2 dominated in saliva (19 of 21 positive samples) and bioaerosols (9 of 10). One year later, there were 50 positive saliva samples, mostly influenza B, rhinovirus, and adenovirus, and two positive bioaerosol samples, one rhinovirus and one adenovirus. The weekly probability of airborne detection was 34% (95% credible interval [CrI] 22-47%) for SARS-CoV-2 and 10% (95% CrI 5-16%) for other respiratory viruses. DISCUSSION: There was a distinct shift in the distribution of respiratory viruses from SARS-CoV-2 during the omicron wave to other respiratory viruses one year later. SARS-CoV-2 is more likely to be detected in the air than other endemic respiratory viruses, possibly reflecting differences in viral characteristics and the composition of virus-carrying particles that facilitate airborne long-range transmission.


Air Microbiology , COVID-19 , SARS-CoV-2 , Saliva , Schools , Humans , Saliva/virology , Adolescent , SARS-CoV-2/isolation & purification , SARS-CoV-2/genetics , COVID-19/transmission , COVID-19/diagnosis , COVID-19/virology , COVID-19/epidemiology , Male , Female , Seasons , Switzerland/epidemiology , Viruses/isolation & purification , Viruses/classification , Viruses/genetics , Aerosols/analysis
19.
mSphere ; 9(4): e0006224, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38530016

Mosquito-borne viruses cause various infectious diseases in humans and animals. Tibet orbivirus (TIBOV), a newly identified arbovirus, efficiently replicates in different types of vertebrate and mosquito cells, with its neutralizing antibodies detected in cattle and goats. However, despite being isolated from Culicoides midges, Anopheles, and Culex mosquitoes, there has been a notable absence of systematic studies on its vector competence. Thus, in this study, Aedes aegypti and Culex pipiens pallens were reared in the laboratory to measure vector susceptibility through blood-feeding infection. Furthermore, RNA sequencing was used to examine the overall alterations in the Ae. aegypti transcriptome following TIBOV infection. The results revealed that Ae. aegypti exhibited a high susceptibility to TIBOV compared to Cx. p. pallens. Effective replication of the virus in Ae. aegypti midguts occurred when the blood-feeding titer of TIBOV exceeded 105 plaque-forming units mL-1. Nevertheless, only a few TIBOV RNA-positive samples were detected in the saliva of Ae. aegypti and Cx. p. pallens, suggesting that these mosquito species may not be the primary vectors for TIBOV. Moreover, at 2 dpi of TIBOV, numerous antimicrobial peptides downstream of the Toll and Imd signaling pathways were significantly downregulated in Ae. aegypti, indicating that TIBOV suppressed mosquitos' defense to survive in the vector at an early stage. Subsequently, the stress-activated protein kinase JNK, a crucial component of the MAPK signaling pathway, exhibited significant upregulation. Certain genes were also enriched in the MAPK signaling pathway in TIBOV-infected Ae. aegypti at 7 dpi.IMPORTANCETibet orbivirus (TIBOV) is an understudied arbovirus of the genus Orbivirus. Our study is the first-ever attempt to assess the vector susceptibility of this virus in two important mosquito vectors, Aedes aegypti and Culex pipiens pallens. Additionally, we present transcriptome data detailing the interaction between TIBOV and the immune system of Ae. aegypti, which expands the knowledge about orbivirus infection and its interaction with mosquitoes.


Aedes , Culex , Mosquito Vectors , Orbivirus , Animals , Aedes/virology , Aedes/genetics , Culex/virology , Culex/genetics , Mosquito Vectors/virology , Mosquito Vectors/genetics , Orbivirus/genetics , Orbivirus/physiology , Female , Virus Replication , Saliva/virology , Transcriptome , Tibet
20.
J Med Entomol ; 61(3): 818-823, 2024 May 13.
Article En | MEDLINE | ID: mdl-38408180

Arboviruses can be difficult to detect in the field due to relatively low prevalence in mosquito populations. The discovery that infected mosquitoes can release viruses in both their saliva and excreta gave rise to low-cost methods for the detection of arboviruses during entomological surveillance. We implemented both saliva and excreta-based entomological surveillance during the emergence of Zika virus (ZIKV) in French Guiana in 2016 by trapping mosquitoes around households of symptomatic cases with confirmed ZIKV infection. ZIKV was detected in mosquito excreta and not in mosquito saliva in 1 trap collection out of 85 (1.2%). One female Ae. aegypti L. (Diptera: Culicidae) was found with a ZIKV systemic infection in the corresponding trap. The lag time between symptom onset in a ZIKV-infected individual living near the trap site and ZIKV detection in this mosquito was 1 wk. These results highlight the potential of detection in excreta from trapped mosquitoes as a sensitive and cost-effective method to non invasively detect arbovirus circulation.


Aedes , Feces , Saliva , Zika Virus , Animals , French Guiana , Zika Virus/isolation & purification , Feces/virology , Female , Aedes/virology , Saliva/virology , Mosquito Vectors/virology , Male , Zika Virus Infection/transmission
...