Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 274
1.
J Dairy Res ; 91(1): 19-24, 2024 Feb.
Article En | MEDLINE | ID: mdl-38757385

The objective of this study was to determine the effect of dietary calcium soaps from garlic (Allium sativum) and willow (Salix babylonica) extracts on nematode loads, nutrient intake and digestibility, nitrogen balance and rumen fermentation kinetics in dairy goats. Nine adult non-lactating Saanen goats were grouped into a complete randomized block design with 3 treatments (n = 3) over a period of 28 d. Animals were fed a diet based on alfalfa hay and a concentrate that was supplemented (65 g/kg DM) with calcium soaps of safflower (control), garlic or willow. Intake of dry matter (DM), organic matter (OM) and neutral detergent fiber (NDF) were not affected by dietary calcium soaps. However, the highest digestibility of DM and OM were observed in willow supplemented goats. In vitro gas kinetics and fermentation profile were not affected by diets. Results from fecal egg count indicated a reduction in total count, Haemonchus spp. and Trychostrongylus spp. for both garlic and willow compared to control. Our results suggest that calcium soaps of garlic or willow extracts can be used to reduce gastrointestinal parasites in goats without compromising productive traits or rumen function.


Animal Feed , Diet , Digestion , Fermentation , Garlic , Goats , Nitrogen , Plant Extracts , Rumen , Salix , Animals , Goats/physiology , Garlic/chemistry , Salix/chemistry , Rumen/parasitology , Rumen/metabolism , Digestion/drug effects , Nitrogen/metabolism , Female , Plant Extracts/pharmacology , Animal Feed/analysis , Diet/veterinary , Goat Diseases/parasitology , Goat Diseases/prevention & control , Dietary Supplements , Nematoda/drug effects , Nutrients , Feces/parasitology , Feces/chemistry , Parasite Egg Count/veterinary , Animal Nutritional Physiological Phenomena , Calcium
2.
Chem Biodivers ; 20(12): e202301234, 2023 Dec.
Article En | MEDLINE | ID: mdl-37867394

The genus of Salix is used in food, medicine and nutraceuticals, and standardized by using the single marker compound Salicin only. Stem bark is the official part used for the preparation of various drugs, nutraceuticals and food products, which may lead to overexploitation and damage of tree. There is need to search substitution of the stem bark with leaf of Salix alba L. (SA), which is yet not reported. Comparative phytochemicals viz. Salicin, Procyanidin B1 and Catechin were quantified in the various parts of SA viz. heart wood (SA-HW), stem bark (SA-SB) and leaves (SA-L) of Salix alba L.by using newly developed HPLC method. It was observed that SA-HW and SA-L contained far better amount of Salicin, Procyanidin B and Catechin as compared to SA-SB (SA-HW~SA-L≫SA-SB). Essential and toxic metal ions of all three parts were analysed using newly developed ICP-OES method, where SA-L were founded as a rich source of micronutrients and essential metal ions as compared to SA-SB and SA-HW. GC-MS analysis has shown the presence of fatty acids and volatile compounds. The observed TPC and TFC values for all three parts were ranged from 2.69 to 32.30 mg GAE/g of wt. and 37.57 to 220.76 mg QCE/g of wt. respectively. In DPPH assay the IC50 values of SA-SB, SA-HW, and SA-L were 1.09 (±0.02), 5.42 (±0.08), and 8.82 (±0.10) mg/mL, respectively. The order of antibacterial activities against E. coli, S. aureus, P. aeruginosa, and B. subtilis strains was SA-L>SA-HW>SA-SB with strong antibacterial activities against S. aureus, and B. subtilis strains. The antacid activities order was SA-L>SA-SB>SA-HW. The leaves of SA have shown significant source of nutrients, phytochemicals and medicinal properties than SA-HW and SA-SB. The leaves of SA may be considered as substitute of stem bark to save the environment or to avoid over exploitation, but after the complete pharmacological and toxicological studies.


Anti-Infective Agents , Anti-Ulcer Agents , Catechin , Salix , Catechin/pharmacology , Antioxidants/analysis , Antacids/analysis , Antacids/metabolism , Salix/chemistry , Salix/metabolism , Wood , Plant Bark/chemistry , Escherichia coli , Staphylococcus aureus , Plant Extracts/chemistry , Phytochemicals/chemistry , Anti-Bacterial Agents/metabolism , Plant Leaves , Anti-Infective Agents/metabolism
3.
Int J Mol Sci ; 24(14)2023 Jul 24.
Article En | MEDLINE | ID: mdl-37511606

Willow bark (Salix spp., Salicaceae) is a traditional analgesic and antirheumatic herbal medicine. The aim of this study was to evaluate and compare the phytochemical and antioxidant profiles of leaf and bark extracts of six species of the genus Salix obtained by ultrasound-assisted extraction (UAE) and to examine the inhibitory potential of target bioactive compounds against two inflammatory mediators, tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6), through in silico molecular docking. The total phenolic and flavonoid content of the extracts was estimated using spectrophotometric methods and the antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH•) and hydroxyl radical (•OH) scavenging assays. Chemical profiling of extracts was carried out using high-performance liquid chromatography coupled with a diode array detector (HPLC-DAD). Principal component analysis (PCA) was performed to differentiate the sample extracts based on their phytochemical profiles and amounts of target bioactive compounds. Chemical composition varied among the analyzed willow species and also among the plant organs of the same species. The major bioactive compounds of the extracts were salicin, chlorogenic acid, rutin and epicatechin. The extracts exhibited significant DPPH● and ●OH scavenging activities. Results of molecular docking revealed that chlorogenic acid had the highest binding affinity toward TNF-α and IL-6. UAE extracts represent valuable sources of antioxidant and anti-inflammatory compounds.


Antioxidants , Salix , Antioxidants/chemistry , Salix/chemistry , Molecular Docking Simulation , Cytokines , Chlorogenic Acid/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6 , Ultrasonics , Plant Extracts/pharmacology , Plant Extracts/chemistry , Phytochemicals/pharmacology
4.
J Chromatogr A ; 1705: 464139, 2023 Aug 30.
Article En | MEDLINE | ID: mdl-37352692

Willow (Salix spp.) is gaining an increasing interest as a fast-growing tree with high biomass yield from low agricultural inputs, which contains potentially bioactive compounds. The present work aimed to develop a high-yield extraction procedure combined with robust, sensitive and fast microLiquid Chromatography-Triple Quadrupole Mass Spectrometry (LC-MS/MS) based method for comprehensively quantifying flavonoids and salicylic acid in the bark of Salix spp. We have investigated the effect of freeze- and oven-drying procedures and five extraction solvents on the yield of individual flavonoid and salicylic acid when performing classical solid-liquid extraction. The freeze-drying was the best drying procedure for preserving monomeric and polymeric flavan-3-ols, whereas other flavonoids were less affected. Salicylic acid was not affected by the drying procedures. The best extraction solvent in terms of the yield of individual flavonoid among the tested solvents in this study was the combination of methanol acidified with 1% hydrochloric acid. LC-MS/MS method has shown a high recovery percentage (≥80%), good precision and overall robustness.


Flavonoids , Salix , Flavonoids/analysis , Solvents/chemistry , Chromatography, Liquid , Salix/chemistry , Salicylic Acid/analysis , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid
5.
J Ethnopharmacol ; 313: 116425, 2023 Sep 15.
Article En | MEDLINE | ID: mdl-37031826

ETHNOPHARMACOLOGICAL RELEVANCE: Salix babylonica L. belongs to the genus Salix, family Salicaceae. It is traditionally used as an antipyretic, antirheumatic, antidiabetic and for the treatment of ulcers and parasite skin diseases. It also has a range of pharmacological effects, such as anti-inflammatory, anti-tumor, antioxidant, and antibacterial effects. However, there are no reports on the phytochemical profile and efficacy of its leaves extract to modulate dexamethasone induced pancreatic damage. AIM OF THE STUDY: The present study was performed to annotate the phytoconstituents of Salix babylonica leaf extract and explore whether and how it could modulate dexamethasone-induced pancreatic damage and the role of oxidative stress and autophagy in mediating its protective effects. MATERIALS AND METHODS: Wistar rats were used for this study. Salix babylonica in two dose levels (100 and 200 mg/kg) or metformin (50 mg/kg) was given by oral gavage concurrently with dexamethasone which was injected SC in a dose of 10 mg/kg for 4 consecutive days. RESULTS: LC-MS analysis furnished 84 secondary metabolites belonging to phenolic acids, salicinoids, proanthocyanidins, flavonoids, cyclohexanediol glycosides, and hydroxy fatty acids. S. babylonica at both dose levels and metformin decreased the elevated pancreatic beclin while elevated the decreased pancreatic P62/SQSTM1 content compared to dexamethasone. These effects were associated with improved histopathological changes, glycemic and lipid parameters indicating that there might be a connection between autophagy and dexamethasone-induced pancreatic damage. Given that the level of GSH was negatively correlated with the levels of beclin and positively correlated with P62/SQSTM1, while both MDA and NO levels were positively correlated with beclin and negatively correlated with P62/SQSTM1, it seems that dexamethasone induced autophagy may be attributed to dexamethasone induced pancreatic oxidative stress. CONCLUSION: Our results indicate that S. babylonica protects pancreatic tissues against dexamethasone-induced damage by decreasing oxidative stress and its associated autophagy. Our study reveals a new mechanism for dexamethasone effects on pancreas and shows the potential therapeutic role of S. babylonica in mitigating dexamethasone adverse effects on pancreas and establishes the groundwork for future clinical applications.


Metformin , Salix , Rats , Animals , Rats, Wistar , Sequestosome-1 Protein/metabolism , Salix/chemistry , Salix/metabolism , Pancreas/metabolism , Oxidative Stress , Autophagy , Metformin/pharmacology , Dexamethasone/pharmacology
6.
PeerJ ; 10: e14521, 2022.
Article En | MEDLINE | ID: mdl-36545381

To investigate the physiochemical characteristics of two new clones, Salix matsudana 'J172' (A7) and Salix matsudana 'Yankang1' (A64) in combined Cd-Pb contaminated systems, a hydroponic experiment was designed. The plant biomass, photosynthesis, antioxidant responses and the accumulation of metals in different plant parts (leaf, stem, and root) were measured after 35-day treatments with Cd (15, 30 µM) and Pb (250, 500 µM). The results showed that exposure to Cd-Pb decreased the biomass but increased the net photosynthetic rate for both A7 and A64, demonstrating that photosynthesis may be one of the metabolic processes used to resist Cd-Pb stress. Compared with control, roots exposed to Cd-Pb had higher activity of superoxide dismutase and more malondialdehyde concentrations, which indicated the roots of both clones were apt to be damaged. The concentrations of soluble protein were obviously higher in the roots of A64 than A7, indicating the roles of the antioxidative substance were different between two willow clones. Soluble protein also had significant relationship with translocation factors from accumulation in roots of A64, which illustrated it played important roles in the tolerance of A64 roots to heavy metals. The roots could accumulate more Pb rather than transport to the shoots compared with Cd. The tolerance index was more than 85% on average for both clones under all the treatments, indicating their tolerance capacities to the combined stress of Cd and Pb are strong under the tested metal levels. Both clones are the good candidates for phytoremediation of Cd and Pb by the root filtration in the combined contamination environment.


Salix , Soil Pollutants , Cadmium/toxicity , Salix/chemistry , Antioxidants/analysis , Lead/toxicity , Soil Pollutants/toxicity , Plant Roots/chemistry , Clone Cells/chemistry
7.
Molecules ; 27(20)2022 Oct 17.
Article En | MEDLINE | ID: mdl-36296558

Salix pseudolasiogyne (Salicaceae), the "weeping willow," has been used in traditional Korean medicine to treat pain and fever due to its high concentrations of salicylic acid and salicin. The present study investigated bioactive compounds from S. pseudolasiogyne twigs to discover bioactive natural products. Phytochemical investigation of the ethanol (EtOH) extract of S. pseudolasiogyne twigs followed by liquid chromatography-mass spectrometry (LC/MS)-based analysis led to the isolation of two salicin derivatives, salicortinol and salicortin, the structures of which were determined by interpretation of their NMR spectra and data from the LC/MS analysis. To the best of our knowledge, this is the first report of salicortinol isolated from S. pseudolasiogyne. The isolated compounds were evaluated for their anti-adipogenic effects in 3T3-L1 cells. Both salicortinol and salicortin were found to significantly inhibit adipocyte differentiation in 3T3-L1 cells. In particular, salicortin exhibited a strong inhibitory effect on lipid accumulation. Furthermore, salicortin inhibited the expression of lipogenic and adipogenic transcription factors, including FASN, FABP4, C/EBPα, C/EBPß, and PPARγ, without inducing cytotoxicity. These results suggest that salicortin could be a potential therapeutic compound for the prevention or treatment of metabolic disorders such as obesity.


Salix , Mice , Animals , 3T3-L1 Cells , Salix/chemistry , PPAR gamma/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Adipogenesis , CCAAT-Enhancer-Binding Protein-alpha/metabolism , Salicylic Acid/pharmacology , Ethanol/pharmacology , Lipids/pharmacology
8.
J Agric Food Chem ; 70(9): 2948-2956, 2022 Mar 09.
Article En | MEDLINE | ID: mdl-35200036

Hundreds of different fast-growing Salix hybrids have been developed mainly for energy crops. In this paper, we studied water extracts from the bark of 15 willow hybrids and species as potential antimicrobial additives. Treatment of ground bark in water under mild conditions extracted 12-25% of the dry material. Preparative high-performance liquid chromatography is proven here as a fast and highly efficient tool in the small-scale recovery of raffinose from Salix bark crude extracts for structural elucidation. Less than half of the dissolved material was assigned by chromatographic (gas chromatography and liquid chromatography) and spectroscopic (mass spectrometry and nuclear magnetic resonance spectroscopy) techniques for low-molecular-weight compounds, including mono- and oligosaccharides (sucrose, raffinose, and stachyose) and aromatic phytochemicals (triandrin, catechin, salicin, and picein). The composition of the extracts varied greatly depending on the hybrid or species and the harvesting season. This information generated new scientific knowledge on the variation in the content and composition of the extracts between Salix hybrids and harvesting season depending on the desired molecule. The extracts showed high antibacterial activity on Staphylococcus aureus with a minimal inhibitory concentration (MIC) of 0.6-0.8 mg/mL; however, no inhibition was observed against Escherichia coli, Enterococcus faecalis, and Salmonella typhimurium. MIC of triandrin (i.e., 1.25 mg/mL) is reported for the first time. Although antibacterial triandrin and (+)-catechin were present in extracts, clear correlation between the antibacterial effect and the chemical composition was not established, which indicates that antibacterial activity of the extracts mainly originates from some not yet elucidated substances. Aquatic toxicity and mutagenicity assessments showed the safe usage of Salix water extracts as possible antibacterial additives.


Salix , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/pharmacology , Gas Chromatography-Mass Spectrometry , Plant Bark/chemistry , Plant Extracts/chemistry , Salix/chemistry , Seasons
9.
J Sci Food Agric ; 102(8): 3237-3249, 2022 Jun.
Article En | MEDLINE | ID: mdl-34796978

BACKGROUND: Willow trees represent a suitable species for the development of agroforestry systems, integrating bioenergy and animal feed production. However, there is a lack of information regarding the suitability of leaves and stems, considered a bioenergy by-product, as animal feed. The aim of this study was the employment of attenuated total reflectance Fourier transform infrared spectroscopy (550-4000 cm-1 ) to investigate differences in the nutrient molecular structure profile of leaves and stems of selected willow cultivars to understand their utility for ruminant nutrition. RESULTS: Univariate analysis of variance of leaves showed lower intensities of cellulosic compounds and higher of protein in comparison with stems, which suggests higher leaf dry matter and protein digestibility. Spectral analyses revealed differences in both plant parts between Salix cv. Terra Nova and Salix cv. Beagle, cv. Resolution, and cv. Olof. The higher α-helix to ß-sheet ratio, which is related to a higher protein digestibility, was in correlation with the lower content of condensed tannins. Principal component and agglomerative hierarchical cluster analyses showed significant discrimination among willow cultivars in the cellulosic, structural carbohydrate, and amide regions, whereas differences were less evident for total carbohydrate and lipid-related regions. CONCLUSION: The application of attenuated total reflectance Fourier transform infrared molecular spectroscopy is an effective tool to rapidly identify spectral features related to the nutritional composition of willow foliage and to discriminate between cultivars and parts of the plant. This information would be useful to optimize the use of willow fodders in agroforestry systems. © 2021 Society of Chemical Industry.


Salix , Animal Feed/analysis , Animals , Dietary Carbohydrates/analysis , Plant Leaves/chemistry , Ruminants , Salix/chemistry , Spectroscopy, Fourier Transform Infrared/methods
10.
J Toxicol Environ Health A ; 85(3): 121-130, 2022 02 01.
Article En | MEDLINE | ID: mdl-34674609

Salix alba (white willow) bark extract is widely used for conditions associated with inflammation, fever, microbial infection or pain. Exposure of human cultured leukocytes to S. alba in vitro noted a genotoxic response. However, data regarding the influence of this bark extract on DNA damage in vivo are lacking. The main goal of this study was to examine the potential of S.alba bark extract to induce DNA damage and chromosome aberrations in an in vivo model using cells obtained from male Swiss albino mice administered the compound orally. The extract was administered by oral gavage daily for 7 days at doses of 500, 1000, or 2000 mg/kg b.w. Genotoxicity analysis was performed using the comet assay on peripheral blood leukocytes, as well as liver, bone marrow, heart, and testicular cells collected 4 hr after the last treatment and the micronucleus (MN) test on bone marrow cells. In essence cells were collected 28 hr after the penultimate treatment Data demonstrated that S. alba bark extract did not induce significant DNA damage in any cell types examined, or clastogenic/aneugenic effects as detected by the MN test at the three tested doses. Under these experimental conditions, evidence indicates that S.alba bark extract did not initiate genotoxic or chromosome aberrations in various mouse cells investigated.


DNA Damage , Plant Extracts/toxicity , Salix/chemistry , Administration, Oral , Animals , Comet Assay , Male , Mice , Micronucleus Tests , Plant Bark/chemistry , Plants, Medicinal
11.
Int J Mol Sci ; 22(20)2021 Oct 15.
Article En | MEDLINE | ID: mdl-34681798

Salix cortex-containing medicine is used against pain conditions, fever, headaches, and inflammation, which are partly mediated via arachidonic acid-derived prostaglandins (PGs). We used an activity-guided fractionation strategy, followed by structure elucidation experiments using LC-MS/MS, CD-spectroscopy, and 1D/2D NMR techniques, to identify the compounds relevant for the inhibition of PGE2 release from activated human peripheral blood mononuclear cells. Subsequent compound purification by means of preparative and semipreparative HPLC revealed 2'-O-acetylsalicortin (1), 3'-O-acetylsalicortin (2), 2'-O-acetylsalicin (3), 2',6'-O-diacetylsalicortin (4), lasiandrin (5), tremulacin (6), and cinnamrutinose A (7). In contrast to 3 and 7, compounds 1, 2, 4, 5, and 6 showed inhibitory activity against PGE2 release with different potencies. Polyphenols were not relevant for the bioactivity of the Salix extract but salicylates, which degrade to, e.g., catechol, salicylic acid, salicin, and/or 1-hydroxy-6-oxo-2-cycohexenecarboxylate. Inflammation presents an important therapeutic target for pharmacological interventions; thus, the identification of relevant key drugs in Salix could provide new prospects for the improvement and standardization of existing clinical medicine.


Inflammation/drug therapy , Salicylates/isolation & purification , Salix/chemistry , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Cells, Cultured , Chromatography, Liquid , Dinoprostone/metabolism , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Molecular Targeted Therapy/methods , Molecular Targeted Therapy/trends , Pain/drug therapy , Phytotherapy/methods , Plant Bark/chemistry , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Salicylates/analysis , Salicylates/pharmacology , Tandem Mass Spectrometry
12.
PLoS One ; 16(10): e0258159, 2021.
Article En | MEDLINE | ID: mdl-34597329

Wood-inhabiting fungi are crucial to wood decay and decomposition in S. psammophila sand barriers, which in turn consumingly influence nutrient dynamics in desert soils. In the case of an extremely arid desert, as opposed to forests, little of known about the fungal community composition of decaying wood and the effects of decomposing wood on soil physical and chemical properties. Combined with high-throughput gene sequencing technology, we investigated the relationships between microenvironment factors with fungal community composition and diversity during the decomposition of Salix psammophila sand barriers. The results showed that the destruction of lignocellulose components during the decay process of S. psammophila sand barrier alters the physical and chemical properties of the surrounding soil. Compared with one-year sand barrier, lignin and cellulose of seven-year S. psammophila sand barrier decreased by 40.48% and 38.33%, respectively. Soil available potassium and available nitrogen increased by 39.80% and 99.46%, respectively. We confirmed that soil available nitrogen, soil pH and soil moisture content significantly affected the fungal community distribution of S. psammophila sand barriers. Sordariomycetes are mainly affected by the positive correlation of soil pH, while Eurotiomycetes are most affected by the positive correlation of soil moisture content and soil porosity. Although our results highlighted the importance of bidirectional interactions between fungi in decayed sand barriers and soil properties, their contribution to the desert ecosystem still needs further confirmation from future studies. However, overall our findings improved the current understanding of the sand barrier-soil interactions on the process of ecological restoration.


Salix/chemistry , Soil Microbiology , Soil/chemistry , Wood/chemistry , Cellulose/chemistry , Desert Climate , Lignin/chemistry , Mycobiome , Salix/metabolism
13.
Molecules ; 26(16)2021 Aug 19.
Article En | MEDLINE | ID: mdl-34443612

Eucalyptus leaves (ELE) and willow bark (WBE) extracts were utilized towards the formation of silver nanoparticles (AgNPs(ELE), AgNPs(WBE)). AgNPs(ELE) and AgNPs(WBE) were dispersed in polymer hydrogels to create pHEMA@AgNPs(ELE)_2 and pHEMA@AgNPs(WBE)_2 using hydroxyethyl-methacrylate (HEMA). The materials were characterized in a solid state by X-ray fluorescence (XRF) spectroscopy, X-ray powder diffraction analysis (XRPD), thermogravimetric differential thermal analysis (TG-DTA), differential scanning calorimetry (DTG/DSC) and attenuated total reflection spectroscopy (ATR-FTIR) and ultraviolet visible (UV-vis) spectroscopy in solution. The antimicrobial potential of the materials was investigated against the Gram-negative bacterial strain Pseudomonas aeruginosa (P. aeruginosa) and the Gram-positive bacterial strain of the genus Staphylococcus epidermidis (S. epidermidis) and Staphylococcus aureus (S. aureus), which are involved in microbial keratitis. The percentage of bacterial viability of P. aeruginosa and S. epidermidis upon their incubation over the pHEMA@AgNPs(ELE)_2 discs is interestingly low (28.3 and 6.8% respectively), while the inhibition zones (IZ) formed are 12.3 ± 1.7 and 13.2 ± 1.2 mm, respectively. No in vitro toxicity of this material towards human corneal epithelial cells (HCEC) was detected. Despite its low performance against S. aureus, pHEMA@AgNPs(ELE)_2 could be an efficient candidate towards the development of contact lenses that reduces microbial infection risk.


Contact Lenses/microbiology , Eucalyptus/chemistry , Hydrogels/chemistry , Plant Extracts/chemistry , Salix/chemistry , Silver/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Humans , Metal Nanoparticles , Microbial Sensitivity Tests , Silver/chemistry
14.
Molecules ; 26(3)2021 Jan 21.
Article En | MEDLINE | ID: mdl-33494378

Renewable feedstock from perennial industrial crops, including those cultivated on marginal land in a short-rotation coppice system, could be an important contribution to the bioeconomy. The majority of data available on the topic are limited to the production of bioenergy from this type of biomass. According to the concept of bioeconomy, biomass-based bioproducts have priority over energy production. This paper characterizes the chemical composition and antioxidant activity of extracts from bark (b), wood (w) or a mixture of bark and wood (b + w) from Salix purpurea, Salix viminalis and Populus nigra obtained using supercritical carbon dioxide (scCO2), scCO2 and water (1%, w/w) or only water. Generally, a high concentration of polyphenols was obtained after extraction with scCO2 and water, while the lowest concentration was found in extracts obtained with scCO2. The highest concentration of polyphenols (p < 0.05) was obtained in an extract from P. nigra (b) (502.62 ± 9.86 mg GAE/g dry matter (d.m.)) after extraction with scCO2 and water, whereas the lowest polyphenol concentration was observed in an scCO2 extract from S. purpurea (b) (6.02 ± 0.13 mg GAE/g d.m.). The flavonoids were effectively separated by extraction with scCO2 (0.88-18.37 mg QE/g d.m.). A positive linear relationship between the antioxidant activity determined by DPPH and ABTS assays and the concentration of polyphenols was demonstrated, R2 = 0.8377 and R2 = 0.9568, respectively. It is most probable that the concentration of flavonoids, rather than the concentration of polyphenols, determines the chelating activity of Fe2+. The Fe2+-chelating activity of scCO2 extracts ranged from 75.11% (EC50 = 5.41 mg/cm3, S. purpurea, b + w) to 99.43% (EC50 = 0.85 mg/cm3, P. nigra, b + w). The lowest chelating activity was demonstrated by the extracts obtained with scCO2 and water (maximum 26.36%, S. purpurea, b + w). In extracts obtained with scCO2 and water, p-hydroxybenzoic acid (210-428 µg/g), p-coumaric acid (56-281 µg/g), saligenin (142-300 µg/g) and salicortin (16-164 µg/g) were the dominant polyphenols. All of these chemical compounds occurred mainly in the free form. The S. purpurea, S. viminalis and P. nigra biomass proved to be an attractive source of biologically active compounds for various possible applications in food, drugs or cosmetics. These compounds could be extracted using an environmentally friendly method with scCO2 and water as a co-solvent.


Antioxidants/chemistry , Carbon Dioxide/chemistry , Plant Extracts/chemistry , Populus/chemistry , Salix/chemistry
15.
Biomolecules ; 10(10)2020 09 29.
Article En | MEDLINE | ID: mdl-33003576

The study examines the phenolic compounds in hydromethanolic extracts of Salix alba (L.) leaves and bark as well as their antioxidant activity and cytotoxic potential. UPLC-PDA-Q/TOF-MS analysis showed a total of 29 phenolic compounds in leaves and 34 in bark. Total phenolic compound content was 5575.96 mg/100 g of dry weight (DW) in leaves and 2330.31 mg/100 g DW in bark. The compounds were identified as derivatives of phenolic acids (seven in leaves and five in bark), flavanols and procyanidins (eight in leaves and 26 in bark) and flavonols (14 in leaves and three in bark). Both extracts exhibited strong antioxidant potential, assessed by radical scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS), but the bark extract was even stronger than the ascorbic acid used as a standard. The cytotoxicity of both extracts was evaluated against human skin fibroblasts and human epidermal keratinocytes cell lines using the Presto Blue cell viability assay. The keratinocytes were more resistant to tested extracts than fibroblasts. The leaf and bark extracts at concentrations which exhibited antioxidant activity were also not toxic against the keratinocyte cell line. Thus, S. alba extracts, especially the leaf extract, offer promise as a nontoxic natural antioxidant, in cosmetic products or herbal medicines, and as a source of bioactive secondary metabolites.


Phenols/chemistry , Plant Bark/chemistry , Plant Leaves/chemistry , Salix/chemistry , Antioxidants/chemistry , Benzothiazoles/chemistry , Biphenyl Compounds/chemistry , Flavonoids/chemistry , Flavonoids/isolation & purification , Free Radical Scavengers/chemistry , Phenols/classification , Phenols/isolation & purification , Picrates/chemistry , Plant Extracts/chemistry , Sulfonic Acids/chemistry
16.
Carbohydr Polym ; 250: 116956, 2020 Dec 15.
Article En | MEDLINE | ID: mdl-33049860

In this work, deep eutectic solvent (DES) was prepared by mixing choline chloride (ChCl) with lactic acid (LA), and effects of cellulase non-productive binding onto DES-extracted lignin from willow and corn stover on enzymatic hydrolysis of cellulose was investigated. The correlation between hydrolysis yield of cellulose and chemical features of lignin was evaluated, and a potential inhibitory mechanism was proposed. Condensation of lignin was observed during DES treatment, and these condensed aromatic structures had an increased tendency to adsorb enzymes through hydrophobic interactions. As well as hydrophobic interactions mediated by lignin condensation, an increase in phenolic hydroxyl groups resulted in a greater amount of hydrogen bonds between cellulases and lignin that appeared to inhibit enzymatic hydrolysis yields of cellulose (39.96-42.86 % to 31.96-32.68 %). Although large amounts of COOHs were generated, the elevated electrostatic repulsion as a result of ionic groups was insufficient to decrease non-productive adsorption.


Cellulases/antagonists & inhibitors , Cellulose/metabolism , Lignin/pharmacology , Salix/chemistry , Solvents/chemistry , Zea mays/chemistry , Enzyme Inhibitors , Hydrolysis , Hydrophobic and Hydrophilic Interactions , Lignin/chemistry , Lignin/isolation & purification
17.
Mol Med Rep ; 22(4): 3525-3532, 2020 Oct.
Article En | MEDLINE | ID: mdl-32945423

α­glucosidase is a key enzyme that plays a role in glucose absorption in the gastrointestinal tract, and the inhibition of its activity induces the prevention of postprandial hyperglycemia. Several α­glucosidase inhibitors have been used as medicines for type 2 diabetes, but a similar effect is observed in natural resources, including traditional herbs and their phytochemicals. To identify the presence of the α­glucosidase inhibitory activity in herbs, in which various functional effects have been known to occur, the present study investigated the effects of hot­water extracts of 26 types of herbs on α­glucosidase activity in an in vitro assay. The results indicated significant increases in the inhibition of α­glucosidase activity in 1,000 µg/ml olive (P<0.01), white willow (P<0.01) and red rooibos hot­water extracts. Furthermore, ≥50% inhibition of α­glucosidase activity was determined to be significant in 1,000 µg/ml coltsfoot, green tea and bearberry hot­water extracts. In addition, the effects of bearberry, green tea and coltsfoot hot­water extracts on α­glucosidase activity in vivo were evaluated according to the blood glucose levels (BGLs) in maltose and glucose load model rats. It was indicated that the administration of these three herb extracts significantly reduced the increasing BGLs after maltose loading until 0.5 h compared with the control group. However, only coltsfoot extract significantly reduced the increasing BGLs after glucose loading until 0.5 h compared with the control group. Thus, the present results may facilitate the understanding of a novel functionality in traditional herbs, which could be useful for the prevention of disease onset and progression, such as in hyperglycemia and type 2 diabetes.


Diabetes Mellitus, Type 2/drug therapy , Glycoside Hydrolase Inhibitors/administration & dosage , Plants, Medicinal/chemistry , Water/administration & dosage , alpha-Glucosidases/metabolism , Animals , Arctostaphylos/chemistry , Aspalathus/chemistry , Diabetes Mellitus, Type 2/chemically induced , Diabetes Mellitus, Type 2/enzymology , Disease Models, Animal , Glucose/adverse effects , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Hot Temperature , Male , Maltose/adverse effects , Olea/chemistry , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Plant Extracts/pharmacology , Rats , Salix/chemistry , Tea/chemistry , Tussilago/chemistry , Water/chemistry , Water/pharmacology
18.
Sci Rep ; 10(1): 11468, 2020 07 10.
Article En | MEDLINE | ID: mdl-32651422

Plants roots are severely injured during the process of withstanding transient tensile, and the injured roots can self-repair. We investigated the change law of the growth characteristics and tensile strength on straight roots withstand transient tensile injured after self-repair. The survival rate of two kinds of injured plants roots was between 60 and 89%. The test roots after self-repaired, the tensile strength reduction rate of Hippophae rhamnoides L. roots was greater than that of Salix psammophila roots. The tensile force was positively related to the power function of root diameter, the tensile strength was negatively related to the root diameter in a power function. The tensile strength of straight roots under small injured force showed an increasing trend, but the straight roots under the large injured force showed the opposite result. The survival rate of rough roots was greater than that of fine roots. The large injured force was not conducive to the repair and force again of the straight roots of two kinds of plants. The reduction rate of tensile strength after repaired with small force was less than that of large force. The self-repair ability of fine roots was weaker than that of rough roots.


Hippophae/chemistry , Plant Roots/chemistry , Salix/chemistry , Tensile Strength , Caragana , Hippophae/growth & development , Plant Roots/growth & development , Salix/growth & development , Soil/chemistry
19.
J Vis Exp ; (160)2020 06 15.
Article En | MEDLINE | ID: mdl-32597874

The method presented uses mass spectrometry imaging (MSI) to establish the metabolic profile of S. alba leaves when exposed to xenobiotics. Using a non-targeted approach, plant metabolites and xenobiotics of interest are identified and localized in plant tissues to uncover specific distribution patterns. Then, in silico prediction of potential metabolites (i.e., catabolites and conjugates) from the identified xenobiotics is performed. When a xenobiotic metabolite is located in the tissue, the type of enzyme involved in its alteration by the plant is recorded. These results were used to describe different types of biological reactions occurring in S. alba leaves in response to xenobiotic accumulation in the leaves. The metabolites were predicted in two generations, allowing the documentation of successive biological reactions to transform xenobiotics in the leaf tissues.


Imaging, Three-Dimensional , Plant Leaves/chemistry , Salix/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Xenobiotics/metabolism , Metabolome , Tin Compounds/chemistry , Xenobiotics/chemistry
20.
Sci Rep ; 10(1): 6477, 2020 04 15.
Article En | MEDLINE | ID: mdl-32296088

Willow (Salix spp.) is well known as a source of medicinal compounds, the most famous being salicin, the progenitor of aspirin. Here we describe the isolation, structure determination, and anti-cancer activity of a cyclodimeric salicinoid (miyabeacin) from S. miyabeana and S. dasyclados. We also show that the capability to produce such dimers is a heritable trait and how variation in structures of natural miyabeacin analogues is derived via cross-over Diels-Alder reactions from pools of ortho-quinol precursors. These transient ortho-quinols have a role in the, as yet uncharacterised, biosynthetic pathways around salicortin, the major salicinoid of many willow genotypes.


Antineoplastic Agents, Phytogenic/pharmacology , Neoplasms/drug therapy , Salix/chemistry , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/therapeutic use , Benzyl Alcohols/chemistry , Biosynthetic Pathways/genetics , Cell Line, Tumor , Drug Screening Assays, Antitumor , Glucosides/biosynthesis , Glucosides/chemistry , Humans , Inhibitory Concentration 50 , Plant Bark/chemistry , Plant Bark/metabolism , Salix/genetics , Salix/metabolism
...