Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.460
1.
BMC Plant Biol ; 24(1): 372, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714917

BACKGROUND: High-affinity potassium transporters (HKTs) are crucial in facilitating potassium uptake by plants. Many types of HKTs confer salt tolerance to plants through regulating K+ and Na+ homeostasis under salinity stress. However, their specific functions in cassava (Manihot esculenta) remain unclear. RESULTS: Herein, an HKT gene (MeHKT1) was cloned from cassava, and its expression is triggered by exposure to salt stress. The expression of a plasma membrane-bound protein functions as transporter to rescue a low potassium (K+) sensitivity of yeast mutant strain, but the complementation of MeHKT1 is inhibited by NaCl treatment. Under low K+ stress, transgenic Arabidopsis with MeHKT1 exhibits improved growth due to increasing shoot K+ content. In contrast, transgenic Arabidopsis accumulates more Na+ under salt stress than wild-type (WT) plants. Nevertheless, the differences in K+ content between transgenic and WT plants are not significant. Additionally, Arabidopsis expressing MeHKT1 displayed a stronger salt-sensitive phenotype. CONCLUSION: These results suggest that under low K+ condition, MeHKT1 functions as a potassium transporter. In contrast, MeHKT1 mainly transports Na+ into cells under salt stress condition and negatively regulates the response of transgenic Arabidopsis to salt stress. Our results provide a reference for further research on the function of MeHKT1, and provide a basis for further application of MeHKT1 in cassava by molecular biological means.


Arabidopsis , Manihot , Plant Proteins , Plants, Genetically Modified , Potassium , Salt Stress , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis/metabolism , Manihot/genetics , Manihot/metabolism , Manihot/physiology , Plants, Genetically Modified/genetics , Potassium/metabolism , Salt Stress/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Gene Expression Regulation, Plant , Salt Tolerance/genetics , Sodium/metabolism
2.
Plant Mol Biol ; 114(3): 57, 2024 May 14.
Article En | MEDLINE | ID: mdl-38743266

A high concentration of sodium (Na+) is the primary stressor for plants in high salinity environments. The Salt Overly Sensitive (SOS) pathway is one of the best-studied signal transduction pathways, which confers plants the ability to export too much Na+ out of the cells or translocate the cytoplasmic Na+ into the vacuole. In this study, the Salt Overly Sensitive3 (MpSOS3) gene from Pongamia (Millettia pinnata Syn. Pongamia pinnata), a semi-mangrove, was isolated and characterized. The MpSOS3 protein has canonical EF-hand motifs conserved in other calcium-binding proteins and an N-myristoylation signature sequence. The MpSOS3 gene was significantly induced by salt stress, especially in Pongamia roots. Expression of the wild-type MpSOS3 but not the mutated nonmyristoylated MpSOS3-G2A could rescue the salt-hypersensitive phenotype of the Arabidopsis sos3-1 mutant, which suggested the N-myristoylation signature sequence of MpSOS3 was required for MpSOS3 function in plant salt tolerance. Heterologous expression of MpSOS3 in Arabidopsis accumulated less H2O2, superoxide anion radical (O2-), and malondialdehyde (MDA) than wild-type plants, which enhanced the salt tolerance of transgenic Arabidopsis plants. Under salt stress, MpSOS3 transgenic plants accumulated a lower content of Na+ and a higher content of K+ than wild-type plants, which maintained a better K+/Na+ ratio in transgenic plants. Moreover, no development and growth discrepancies were observed in the MpSOS3 heterologous overexpression plants compared to wild-type plants. Our results demonstrated that the MpSOS3 pathway confers a conservative salt-tolerant role and provided a foundation for further study of the SOS pathway in Pongamia.


Arabidopsis , Cloning, Molecular , Gene Expression Regulation, Plant , Plant Proteins , Plants, Genetically Modified , Salt Tolerance , Salt-Tolerant Plants , Salt-Tolerant Plants/genetics , Salt-Tolerant Plants/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Salt Tolerance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Sodium Chloride/pharmacology , Amino Acid Sequence , Phylogeny , Plant Roots/genetics , Plant Roots/metabolism , Salt Stress/genetics , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism
3.
Sci Rep ; 14(1): 10586, 2024 05 08.
Article En | MEDLINE | ID: mdl-38719951

Carotenoids play essential roles in plant growth and development and provide plants with a tolerance to a series of abiotic stresses. In this study, the function and biological significance of lycopene ß-cyclase, lycopene ε-cyclase, and ß-carotene hydroxylase, which are responsible for the modification of the tetraterpene skeleton procedure, were isolated from Lycium chinense and analyzed. The overexpression of lycopene ß-cyclase, lycopene ε-cyclase, and ß-carotene hydroxylase promoted the accumulation of total carotenoids and photosynthesis enhancement, reactive oxygen species scavenging activity, and proline content of tobacco seedlings after exposure to the salt stress. Furthermore, the expression of the carotenoid biosynthesis genes and stress-related genes (ascorbate peroxidase, catalase, peroxidase, superoxide dismutase, and pyrroline-5-carboxylate reductase) were detected and showed increased gene expression level, which were strongly associated with the carotenoid content and reactive oxygen species scavenging activity. After exposure to salt stress, the endogenous abscisic acid content was significantly increased and much higher than those in control plants. This research contributes to the development of new breeding aimed at obtaining stronger salt tolerance plants with increased total carotenoids and vitamin A content.


Carotenoids , Gene Expression Regulation, Plant , Lycium , Nicotiana , Plant Proteins , Salt Tolerance , Carotenoids/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Salt Tolerance/genetics , Lycium/genetics , Lycium/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Reactive Oxygen Species/metabolism , Intramolecular Lyases/genetics , Intramolecular Lyases/metabolism , Photosynthesis/genetics , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Abscisic Acid/metabolism
4.
J Agric Food Chem ; 72(19): 10814-10827, 2024 May 15.
Article En | MEDLINE | ID: mdl-38710027

Foxtail millet is an important cereal crop that is relatively sensitive to salt stress, with its yield significantly affected by such stress. Alternative splicing (AS) widely affects plant growth, development, and adaptability to stressful environments. Through RNA-seq analysis of foxtail millet under different salt treatment periods, 2078 AS events were identified, and analyses were conducted on differential gene (DEG), differential alternative splicing gene (DASG), and overlapping gene. To investigate the regulatory mechanism of AS in response to salt stress in foxtail millet, the foxtail millet AS genes SiCYP19, with two AS variants (SiCYP19-a and SiCYP19-b), were identified and cloned. Yeast overexpression experiments indicated that SiCYP19 may be linked to the response to salt stress. Subsequently, we conducted overexpression experiments of both alternative splicing variants in foxtail millet roots to validate them experimentally. The results showed that, under salt stress, both SiCYP19-a and SiCYP19-b jointly regulated the salt tolerance of foxtail millet. Specifically, overexpression of SiCYP19-b significantly increased the proline content and reduced the accumulation of reactive oxygen species (ROS) in foxtail millet, compared to that in SiCYP19-a. This shows that SiCYP19-b plays an important role in increasing the content of proline and promoting the clearance of ROS, thus improving the salt tolerance of foxtail millet.


Alternative Splicing , Gene Expression Regulation, Plant , Plant Proteins , Salt Tolerance , Setaria Plant , Setaria Plant/genetics , Setaria Plant/metabolism , Setaria Plant/drug effects , Salt Tolerance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Reactive Oxygen Species/metabolism
5.
Plant Cell Rep ; 43(6): 140, 2024 May 13.
Article En | MEDLINE | ID: mdl-38740586

KEY MESSAGE: The utilization of transcriptome analysis, functional validation, VIGS, and DAB techniques have provided evidence that GhiPLATZ17 and GhiPLATZ22 play a pivotal role in improving the salt tolerance of upland cotton. PLATZ (Plant AT-rich sequences and zinc-binding proteins) are known to be key regulators in plant growth, development, and response to salt stress. In this study, we comprehensively analyzed the PLATZ family in ten cotton species in response to salinity stress. Gossypium herbaceum boasts 25 distinct PLATZ genes, paralleled by 24 in G. raimondii, 25 in G. arboreum, 46 in G. hirsutum, 48 in G. barbadense, 43 in G. tomentosum, 67 in G. mustelinum, 60 in G. darwinii, 46 in G. ekmanianum, and a total of 53 PLATZ genes attributed to G. stephensii. The PLATZ gene family shed light on the hybridization and allopolyploidy events that occurred during the evolutionary history of allotetraploid cotton. Ka/Ks analysis suggested that the PLATZ gene family underwent intense purifying selection during cotton evolution. Analysis of synteny and gene collinearity revealed a complex pattern of segmental and dispersed duplication events to expand PLATZ genes in cotton. Cis-acting elements and gene expressions revealed that GhiPLATZ exhibited salt stress resistance. Transcriptome analysis, functional validation, virus-induced gene silencing (VIGS), and diaminobenzidine staining (DAB) demonstrated that GhiPLATZ17 and GhiPLATZ22 enhance salt tolerance in upland cotton. The study can potentially advance our understanding of identifying salt-resistant genes in cotton.


Gene Expression Regulation, Plant , Gossypium , Plant Proteins , Salt Tolerance , Transcription Factors , Gossypium/genetics , Gossypium/physiology , Salt Tolerance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Plants, Genetically Modified , Phylogeny , Synteny/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Profiling
6.
Nat Commun ; 15(1): 4279, 2024 May 20.
Article En | MEDLINE | ID: mdl-38769297

The identification of genes involved in salinity tolerance has primarily focused on model plants and crops. However, plants naturally adapted to highly saline environments offer valuable insights into tolerance to extreme salinity. Salicornia plants grow in coastal salt marshes, stimulated by NaCl. To understand this tolerance, we generated genome sequences of two Salicornia species and analyzed the transcriptomic and proteomic responses of Salicornia bigelovii to NaCl. Subcellular membrane proteomes reveal that SbiSOS1, a homolog of the well-known SALT-OVERLY-SENSITIVE 1 (SOS1) protein, appears to localize to the tonoplast, consistent with subcellular localization assays in tobacco. This neo-localized protein can pump Na+ into the vacuole, preventing toxicity in the cytosol. We further identify 11 proteins of interest, of which SbiSALTY, substantially improves yeast growth on saline media. Structural characterization using NMR identified it as an intrinsically disordered protein, localizing to the endoplasmic reticulum in planta, where it can interact with ribosomes and RNA, stabilizing or protecting them during salt stress.


Chenopodiaceae , Plant Proteins , Salt Tolerance , Chenopodiaceae/metabolism , Chenopodiaceae/genetics , Chenopodiaceae/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics , Salt Tolerance/genetics , Gene Expression Regulation, Plant/drug effects , Vacuoles/metabolism , Salinity , Sodium Chloride/pharmacology , Sodium Chloride/metabolism , Endoplasmic Reticulum/metabolism , Salt Stress , Proteomics , Nicotiana/metabolism , Nicotiana/genetics , Nicotiana/drug effects , Transcriptome
7.
Nat Commun ; 15(1): 3978, 2024 May 10.
Article En | MEDLINE | ID: mdl-38729926

A key mechanism employed by plants to adapt to salinity stress involves maintaining ion homeostasis via the actions of ion transporters. While the function of cation transporters in maintaining ion homeostasis in plants has been extensively studied, little is known about the roles of their anion counterparts in this process. Here, we describe a mechanism of salt adaptation in plants. We characterized the chloride channel (CLC) gene AtCLCf, whose expression is regulated by WRKY transcription factor under salt stress in Arabidopsis thaliana. Loss-of-function atclcf seedlings show increased sensitivity to salt, whereas AtCLCf overexpression confers enhanced resistance to salt stress. Salt stress induces the translocation of GFP-AtCLCf fusion protein to the plasma membrane (PM). Blocking AtCLCf translocation using the exocytosis inhibitor brefeldin-A or mutating the small GTPase gene AtRABA1b/BEX5 (RAS GENES FROM RAT BRAINA1b homolog) increases salt sensitivity in plants. Electrophysiology and liposome-based assays confirm the Cl-/H+ antiport function of AtCLCf. Therefore, we have uncovered a mechanism of plant adaptation to salt stress involving the NaCl-induced translocation of AtCLCf to the PM, thus facilitating Cl- removal at the roots, and increasing the plant's salinity tolerance.


Arabidopsis Proteins , Arabidopsis , Cell Membrane , Chloride Channels , Golgi Apparatus , Salt Stress , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/physiology , Arabidopsis/drug effects , Cell Membrane/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Golgi Apparatus/metabolism , Chloride Channels/metabolism , Chloride Channels/genetics , Gene Expression Regulation, Plant , Protein Transport/drug effects , Salt Tolerance/genetics , Sodium Chloride/pharmacology , Plants, Genetically Modified
8.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38731831

Small secreted peptides (SSPs) play important roles in regulating plants' growth and development in response to external stimulus, but the genes and functions of SSPs in many species are still unknown. Therefore, it is particularly significant to characterize and annotate SSP genes in plant genomes. As a widely used stock of pears, Pyrus betulifolia has strong resistance to biotic and abiotic stresses. In this study, we analyzed the SSPs genes in the genome of P. betulifolia according to their characteristics and homology. A total of 1195 SSP genes were identified, and most of them are signaling molecules. Among these, we identified a new SSP, subtilase peptide 3 (SUBPEP3), which derived from the PA region of preSUBPEP3, increasing the expression level under salt stress. Both adding synthetic peptide SUBPEP3 to the culture medium of pears and the overexpression of SUBPEP3 in tobacco can improve the salt tolerance of plants. In summary, we annotated the SSP genes in the P. betulifolia genome and identified a small secreted peptide SUBPEP3 that regulates the salt tolerance of P. betulifolia, which provides an important theoretical basis for further revealing the function of SSPs.


Gene Expression Regulation, Plant , Plant Proteins , Pyrus , Salt Tolerance , Pyrus/genetics , Pyrus/metabolism , Salt Tolerance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Salt Stress/genetics , Nicotiana/genetics , Nicotiana/metabolism , Amino Acid Sequence , Peptides/metabolism , Peptides/genetics , Stress, Physiological/genetics , Plants, Genetically Modified/genetics
9.
PeerJ ; 12: e17311, 2024.
Article En | MEDLINE | ID: mdl-38766484

Background: Genetic variation for salt tolerance remains elusive in jamun (Syzygium cumini). Methods: Effects of gradually increased salinity (2.0-12.0 dS/m) were examined in 20 monoembryonic and 28 polyembryonic genotypes of jamun. Six genotypes were additionally assessed for understanding salt-induced changes in gas exchange attributes and antioxidant enzymes. Results: Salt-induced reductions in leaf, stem, root and plant dry mass (PDM) were relatively greater in mono- than in poly-embryonic types. Reductions in PDM relative to control implied more adverse impacts of salinity on genotypes CSJ-28, CSJ-31, CSJ-43 and CSJ-47 (mono) and CSJ-1, CSJ-24, CSJ-26 and CSJ-27 (poly). Comparably, some mono- (CSJ-5, CSJ-18) and poly-embryonic (CSJ-7, CSJ-8, CSJ-14, CSJ-19) genotypes exhibited least reductions in PDM following salt treatment. Most polyembryonic genotypes showed lower reductions in root than in shoot mass, indicating that they may be more adept at absorbing water and nutrients when exposed to salt. The majority of genotypes did not exhibit leaf tip burn and marginal scorch despite significant increases in Na+ and Cl-, suggesting that tissue tolerance existed for storing excess Na+ and Cl- in vacuoles. Jamun genotypes were likely more efficient in Cl- exclusion because leaf, stem and root Cl- levels were consistently lower than those of Na+ under salt treatment. Leaf K+ was particularly little affected in genotypes with high leaf Na+. Lack of discernible differences in leaf, stem and root Ca2+ and Mg2+ contents between control and salt treatments was likely due to their preferential uptake. Correlation analysis suggested that Na+ probably had a greater inhibitory effect on biomass in both mono- and poly-embryonic types. Discriminant analysis revealed that while stem and root Cl- probably accounted for shared responses, root Na+, leaf K+ and leaf Cl- explained divergent responses to salt stress of mono- and poly-embryonic types. Genotypes CSJ-18 and CSJ-19 seemed efficient in fending off oxidative damage caused by salt because of their stronger antioxidant defences. Conclusions: Polyembryonic genotypes CSJ-7, CSJ-8, CSJ-14 and CSJ-19, which showed least reductions in biomass even after prolonged exposure to salinity stress, may be used as salt-tolerant rootstocks. The biochemical and molecular underpinnings of tissue tolerance to excess Na+ and Cl- as well as preferential uptake of K+, Ca2+, and Mg2+ need to be elucidated.


Genotype , Syzygium , Salt Stress/genetics , Salt Tolerance/genetics , Plant Leaves/drug effects , Plant Roots/drug effects , Salinity , Antioxidants/metabolism
10.
BMC Plant Biol ; 24(1): 432, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773389

The VIM (belonged to E3 ubiquitin ligase) gene family is crucial for plant growth, development, and stress responses, yet their role in salt stress remains unclear. We analyzed phylogenetic relationships, chromosomal localization, conserved motifs, gene structure, cis-acting elements, and gene expression patterns of the VIM gene family in four cotton varieties. Our findings reveal 29, 29, 17, and 14 members in Gossypium hirsutum (G.hirsutum), Gossypium barbadense (G.barbadense), Gossypium arboreum (G.arboreum), and Gossypium raimondii (G. raimondii), respectively, indicating the maturity and evolution of this gene family. motifs among GhVIMs genes were observed, along with the presence of stress-responsive, hormone-responsive, and growth-related elements in their promoter regions. Gene expression analysis showed varying patterns and tissue specificity of GhVIMs genes under abiotic stress. Silencing GhVIM28 via virus-induced gene silencing revealed its role as a salt-tolerant negative regulator. This work reveals a mechanism by which the VIM gene family in response to salt stress in cotton, identifying a potential negative regulator, GhVIM28, which could be targeted for enhancing salt tolerance in cotton. The objective of this study was to explore the evolutionary relationship of the VIM gene family and its potential function in salt stress tolerance, and provide important genetic resources for salt tolerance breeding of cotton.


Gene Expression Regulation, Plant , Gossypium , Multigene Family , Phylogeny , Plant Proteins , Salt Stress , Gossypium/genetics , Gossypium/physiology , Salt Stress/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Genes, Plant , Salt Tolerance/genetics
11.
Sci Rep ; 14(1): 10981, 2024 05 14.
Article En | MEDLINE | ID: mdl-38745099

Melia azedarach demonstrates strong salt tolerance and thrives in harsh saline soil conditions, but the underlying mechanisms are poorly understood. In this study, we analyzed gene expression under low, medium, and high salinity conditions to gain a deeper understanding of adaptation mechanisms of M. azedarach under salt stress. The GO (gene ontology) analysis unveiled a prominent trend: as salt stress intensified, a greater number of differentially expressed genes (DEGs) became enriched in categories related to metabolic processes, catalytic activities, and membrane components. Through the analysis of the category GO:0009651 (response to salt stress), we identified four key candidate genes (CBL7, SAPK10, EDL3, and AKT1) that play a pivotal role in salt stress responses. Furthermore, the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis revealed that DEGs were significantly enriched in the plant hormone signaling pathways and starch and sucrose metabolism under both medium and high salt exposure in comparison to low salt conditions. Notably, genes involved in JAZ and MYC2 in the jasmonic acid (JA) metabolic pathway were markedly upregulated in response to high salt stress. This study offers valuable insights into the molecular mechanisms underlying M. azedarach salt tolerance and identifies potential candidate genes for enhancing salt tolerance in M. azedarach.


Gene Expression Profiling , Gene Expression Regulation, Plant , Salt Stress , Salt Tolerance , Salt Tolerance/genetics , Gene Expression Regulation, Plant/drug effects , Salt Stress/genetics , Transcriptome , Salinity , Gene Ontology , Plant Proteins/genetics , Plant Proteins/metabolism
12.
Sci Rep ; 14(1): 11100, 2024 05 15.
Article En | MEDLINE | ID: mdl-38750032

The growth and productivity of crop plants are negatively affected by salinity-induced ionic and oxidative stresses. This study aimed to provide insight into the interaction of NaCl-induced salinity with Azolla aqueous extract (AAE) regarding growth, antioxidant balance, and stress-responsive genes expression in wheat seedlings. In a pot experiment, wheat kernels were primed for 21 h with either deionized water or 0.1% AAE. Water-primed seedlings received either tap water, 250 mM NaCl, AAE spray, or AAE spray + NaCl. The AAE-primed seedlings received either tap water or 250 mM NaCl. Salinity lowered growth rate, chlorophyll level, and protein and amino acids pool. However, carotenoids, stress indicators (EL, MDA, and H2O2), osmomodulators (sugars, and proline), antioxidant enzymes (CAT, POD, APX, and PPO), and the expression of some stress-responsive genes (POD, PPO and PAL, PCS, and TLP) were significantly increased. However, administering AAE contributed to increased growth, balanced leaf pigments and assimilation efficacy, diminished stress indicators, rebalanced osmomodulators and antioxidant enzymes, and down-regulation of stress-induced genes in NaCl-stressed plants, with priming surpassing spray in most cases. In conclusion, AAE can be used as a green approach for sustaining regular growth and metabolism and remodelling the physio-chemical status of wheat seedlings thriving in salt-affected soils.


Antioxidants , Gene Expression Regulation, Plant , Plant Extracts , Salt Tolerance , Seedlings , Triticum , Triticum/drug effects , Triticum/genetics , Triticum/metabolism , Triticum/growth & development , Salt Tolerance/genetics , Salt Tolerance/drug effects , Antioxidants/metabolism , Gene Expression Regulation, Plant/drug effects , Seedlings/drug effects , Seedlings/growth & development , Seedlings/genetics , Seedlings/metabolism , Plant Extracts/pharmacology , Ferns/drug effects , Ferns/genetics , Ferns/metabolism , Stress, Physiological/drug effects , Salinity , Sodium Chloride/pharmacology , Oxidative Stress/drug effects
13.
Physiol Plant ; 176(3): e14328, 2024.
Article En | MEDLINE | ID: mdl-38695265

While endophytic fungi offer promising avenues for bolstering plant resilience against abiotic stressors, the molecular mechanisms behind this biofortification remain largely unknown. This study employed a multifaceted approach, combining plant physiology, proteomic, metabolomic, and targeted hormonal analyses to illuminate the early response of Brassica napus to Acremonium alternatum during the nascent stages of their interaction. Notably, under optimal growth conditions, the initial reaction to fungus was relatively subtle, with no visible alterations in plant phenotype and only minor impacts on the proteome and metabolome. Interestingly, the identified proteins associated with the Acremonium response included TUDOR 1, Annexin D4, and a plastidic K+ efflux antiporter, hinting at potential processes that could counter abiotic stressors, particularly salt stress. Subsequent experiments validated this hypothesis, showcasing significantly enhanced growth in Acremonium-inoculated plants under salt stress. Molecular analyses revealed a profound impact on the plant's proteome, with over 50% of salt stress response proteins remaining unaffected in inoculated plants. Acremonium modulated ribosomal proteins, increased abundance of photosynthetic proteins, enhanced ROS metabolism, accumulation of V-ATPase, altered abundances of various metabolic enzymes, and possibly promoted abscisic acid signaling. Subsequent analyses validated the accumulation of this hormone and its enhanced signaling. Collectively, these findings indicate that Acremonium promotes salt tolerance by orchestrating abscisic acid signaling, priming the plant's antioxidant system, as evidenced by the accumulation of ROS-scavenging metabolites and alterations in ROS metabolism, leading to lowered ROS levels and enhanced photosynthesis. Additionally, it modulates ion sequestration through V-ATPase accumulation, potentially contributing to the observed decrease in chloride content.


Acremonium , Homeostasis , Oxidation-Reduction , Plant Growth Regulators , Salt Tolerance , Signal Transduction , Acremonium/metabolism , Acremonium/physiology , Plant Growth Regulators/metabolism , Salt Tolerance/physiology , Brassica napus/microbiology , Brassica napus/metabolism , Brassica napus/physiology , Brassica napus/drug effects , Salt Stress/physiology , Plant Proteins/metabolism , Plant Proteins/genetics , Abscisic Acid/metabolism , Photosynthesis
14.
Plant Mol Biol ; 114(3): 52, 2024 May 02.
Article En | MEDLINE | ID: mdl-38696020

Salt stress is one of the major factors limiting plant growth and productivity. Many studies have shown that serine hydroxymethyltransferase (SHMT) gene play an important role in growth, development and stress response in plants. However, to date, there have been few studies on whether SHMT3 can enhance salt tolerance in plants. Therefore, the effects of overexpression or silencing of CsSHMT3 gene on cucumber seedling growth under salt stress were investigated in this study. The results showed that overexpression of CsSHMT3 gene in cucumber seedlings resulted in a significant increase in chlorophyll content, photosynthetic rate and proline (Pro) content, and antioxidant enzyme activity under salt stress condition; whereas the content of malondialdehyde (MDA), superoxide anion (H2O2), hydrogen peroxide (O2·-) and relative conductivity were significantly decreased when CsSHMT3 gene was overexpressed. However, the content of chlorophyll and Pro, photosynthetic rate, and antioxidant enzyme activity of the silenced CsSHMT3 gene lines under salt stress were significantly reduced, while MDA, H2O2, O2·- content and relative conductivity showed higher level in the silenced CsSHMT3 gene lines. It was further found that the expression of stress-related genes SOD, CAT, SOS1, SOS2, NHX, and HKT was significantly up-regulated by overexpressing CsSHMT3 gene in cucumber seedlings; while stress-related gene expression showed significant decrease in silenced CsSHMT3 gene seedlings under salt stress. This suggests that overexpression of CsSHMT3 gene increased the salt tolerance of cucumber seedlings, while silencing of CsSHMT3 gene decreased the salt tolerance. In conclusion, CsSHMT3 gene might positively regulate salt stress tolerance in cucumber and be involved in regulating antioxidant activity, osmotic adjustment, and photosynthesis under salt stress. KEY MESSAGE: CsSHMT3 gene may positively regulate the expression of osmotic system, photosynthesis, antioxidant system and stress-related genes in cucumber.


Chlorophyll , Cucumis sativus , Gene Expression Regulation, Plant , Photosynthesis , Salt Stress , Salt Tolerance , Seedlings , Cucumis sativus/genetics , Cucumis sativus/growth & development , Cucumis sativus/physiology , Cucumis sativus/drug effects , Seedlings/genetics , Seedlings/growth & development , Seedlings/drug effects , Seedlings/physiology , Gene Expression Regulation, Plant/drug effects , Salt Tolerance/genetics , Salt Stress/genetics , Chlorophyll/metabolism , Photosynthesis/genetics , Photosynthesis/drug effects , Hydrogen Peroxide/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Glycine Hydroxymethyltransferase/genetics , Glycine Hydroxymethyltransferase/metabolism , Antioxidants/metabolism , Malondialdehyde/metabolism , Plants, Genetically Modified , Gene Silencing
15.
BMC Plant Biol ; 24(1): 365, 2024 May 06.
Article En | MEDLINE | ID: mdl-38706002

BACKGROUND: In plants, GABA plays a critical role in regulating salinity stress tolerance. However, the response of soybean seedlings (Glycine max L.) to exogenous gamma-aminobutyric acid (GABA) under saline stress conditions has not been fully elucidated. RESULTS: This study investigated the effects of exogenous GABA (2 mM) on plant biomass and the physiological mechanism through which soybean plants are affected by saline stress conditions (0, 40, and 80 mM of NaCl and Na2SO4 at a 1:1 molar ratio). We noticed that increased salinity stress negatively impacted the growth and metabolism of soybean seedlings, compared to control. The root-stem-leaf biomass (27- and 33%, 20- and 58%, and 25- and 59% under 40- and 80 mM stress, respectively]) and the concentration of chlorophyll a and chlorophyll b significantly decreased. Moreover, the carotenoid content increased significantly (by 35%) following treatment with 40 mM stress. The results exhibited significant increase in the concentration of hydrogen peroxide (H2O2), malondialdehyde (MDA), dehydroascorbic acid (DHA) oxidized glutathione (GSSG), Na+, and Cl- under 40- and 80 mM stress levels, respectively. However, the concentration of mineral nutrients, soluble proteins, and soluble sugars reduced significantly under both salinity stress levels. In contrast, the proline and glycine betaine concentrations increased compared with those in the control group. Moreover, the enzymatic activities of ascorbate peroxidase, monodehydroascorbate reductase, glutathione reductase, and glutathione peroxidase decreased significantly, while those of superoxide dismutase, catalase, peroxidase, and dehydroascorbate reductase increased following saline stress, indicating the overall sensitivity of the ascorbate-glutathione cycle (AsA-GSH). However, exogenous GABA decreased Na+, Cl-, H2O2, and MDA concentration but enhanced photosynthetic pigments, mineral nutrients (K+, K+/Na+ ratio, Zn2+, Fe2+, Mg2+, and Ca2+); osmolytes (proline, glycine betaine, soluble sugar, and soluble protein); enzymatic antioxidant activities; and AsA-GSH pools, thus reducing salinity-associated stress damage and resulting in improved growth and biomass. The positive impact of exogenously applied GABA on soybean plants could be attributed to its ability to improve their physiological stress response mechanisms and reduce harmful substances. CONCLUSION: Applying GABA to soybean plants could be an effective strategy for mitigating salinity stress. In the future, molecular studies may contribute to a better understanding of the mechanisms by which GABA regulates salt tolerance in soybeans.


Ascorbic Acid , Glutathione , Glycine max , Seedlings , gamma-Aminobutyric Acid , gamma-Aminobutyric Acid/metabolism , Seedlings/drug effects , Seedlings/metabolism , Seedlings/physiology , Glycine max/drug effects , Glycine max/metabolism , Glycine max/physiology , Ascorbic Acid/metabolism , Glutathione/metabolism , Minerals/metabolism , Salt Tolerance/drug effects , Salt Stress/drug effects , Chlorophyll/metabolism , Salinity
16.
BMC Plant Biol ; 24(1): 425, 2024 May 20.
Article En | MEDLINE | ID: mdl-38769518

Peanut (Arachis hypogaea L.) is an important oilseed crop worldwide. However, soil salinization becomes one of the main limiting factors of peanut production. Therefore, developing salt-tolerant varieties and understanding the molecular mechanisms of salt tolerance is important to protect peanut yield in saline areas. In this study, we selected four peanut varieties with contrasting response to salt challenges with T1 and T2 being tolerance and S1 and S2 being susceptible. High-throughput RNA sequencing resulted in more than 314.63 Gb of clean data from 48 samples. We identified 12,057 new genes, 7,971of which have functional annotations. KEGG pathway enrichment analysis of uniquely expressed genes in salt-tolerant peanut revealed that upregulated genes in the root are involved in the MAPK signaling pathway, fatty acid degradation, glycolysis/gluconeogenesis, and upregulated genes in the shoot were involved in plant hormone signal transduction and the MAPK signaling pathway. Na+ content, K+ content, K+/ Na+, and dry mass were measured in root and shoot tissues, and two gene co-expression networks were constructed based on weighted gene co-expression network analysis (WGCNA) in root and shoot. In this study, four key modules that are highly related to peanut salt tolerance in root and shoot were identified, plant hormone signal transduction, phenylpropanoid biosynthesis, starch and sucrose metabolism, flavonoid biosynthesis, carbon metabolism were identified as the key biological processes and metabolic pathways for improving peanut salt tolerance. The hub genes include genes encoding ion transport (such as HAK8, CNGCs, NHX, NCL1) protein, aquaporin protein, CIPK11 (CBL-interacting serine/threonine-protein kinase 11), LEA5 (late embryogenesis abundant protein), POD3 (peroxidase 3), transcription factor, and MAPKKK3. There were some new salt-tolerant genes identified in peanut, including cytochrome P450, vinorine synthase, sugar transport protein 13, NPF 4.5, IAA14, zinc finger CCCH domain-containing protein 62, beta-amylase, fatty acyl-CoA reductase 3, MLO-like protein 6, G-type lectin S-receptor-like serine/threonine-protein kinase, and kinesin-like protein KIN-7B. The identification of key modules, biological pathways, and hub genes in this study enhances our understanding of the molecular mechanisms underlying salt tolerance in peanuts. This knowledge lays a theoretical foundation for improving and innovating salt-tolerant peanut germplasm.


Arachis , Gene Expression Regulation, Plant , Gene Regulatory Networks , Salt Tolerance , Arachis/genetics , Arachis/physiology , Arachis/metabolism , Salt Tolerance/genetics , Salt Stress/genetics , Genes, Plant , Plant Roots/genetics , Plant Roots/metabolism , Gene Expression Profiling
17.
BMC Plant Biol ; 24(1): 232, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38561659

BACKGROUND: Chrysanthemum, one of the four major cut flowers all over the world, is very sensitive to salinity during cultivation. DNA binding with one finger (DOF) transcription factors play important roles in biological processes in plants. The response mechanism of CmDOF18 from chrysanthemum to salt stress remains unclear. RESULTS: In this study, CmDOF18 was cloned from Chrysanthemum morifolium, and its expression was induced by salinity stress. The gene encodes a 291-amino acid protein with a typical DOF domain. CmDOF18 was localized to the nucleus in onion epidermal cells and showed transcriptional activation in yeast. CmDOF18 transgenic plants were generated to identify the role of this gene in resistance to salinity treatment. Chrysanthemum plants overexpressing CmDOF18 were more resistant to salinity stress than wild-type plants. Under salinity stress, the malondialdehyde content and leaf electrolyte conductivity in CmDOF18-overexpressing transgenic plants were lower than those in wild-type plants, while the proline content, chlorophyll content, superoxide dismutase activity and peroxidase activity were higher than those in wild-type plants. The opposite findings were observed in gene-silenced plants compared with wild-type plants. The gene expression levels of oxidoreductase increased in CmDOF18-overexpressing transgenic plants but decreased in CmDOF18-SRDX gene-silenced transgenic plants. CONCLUSION: In summary, we analyzed the function of CmDOF18 from chrysanthemum, which may regulate salinity stress in plants, possibly due to its role in the regulation of oxidoreductase.


Chrysanthemum , Oxidoreductases , Oxidoreductases/metabolism , Salt Tolerance/genetics , Chrysanthemum/genetics , Chrysanthemum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Saccharomyces cerevisiae/metabolism , Salinity , Gene Expression Regulation, Plant , Stress, Physiological/genetics
18.
Physiol Plant ; 176(2): e14275, 2024.
Article En | MEDLINE | ID: mdl-38566267

Developing and cultivating rice varieties is a potent strategy for reclaiming salinity-affected soils for rice production. Nevertheless, the molecular mechanisms conferring salt tolerance, especially in conventional high-yield japonica rice varieties, remain obscure. In this study, Zhendao 23309 (ZD23309) exhibited significantly less grain yield reduction under a salt stress gradient than the control variety Wuyunjing 30 (WYJ30). High positive correlations between grain yield and dry matter accumulation at the jointing, heading and maturity stages indicated that early salt tolerance performance is a crucial hallmark for yield formation. After a mild salt stress (85 mM NaCl) of young seedlings, RNA sequencing (RNA-seq) of shoot and root separately identified a total of 1952 and 3647 differentially expressed genes (DEGs) in ZD23309, and 2114 and 2711 DEGs in WYJ30, respectively. Gene ontology (GO) analysis revealed numerous DEGs in ZD23309 that play pivotal roles in strengthening salt tolerance, encompassing the response to stimulus (GO:0050896) in shoots and nucleoside binding (GO:0001882) in roots. Additionally, distinct expression patterns were observed in a fraction of genes in the two rice varieties under salt stress, corroborating the efficacy of previously reported salt tolerance genes. Our research not only offers fresh insights into the differences in salt stress tolerance among conventional high-yield rice varieties but also unveils the intricate nature of salt tolerance mechanisms. These findings lay a solid groundwork for deciphering the mechanisms underlying salt tolerance.


Oryza , Oryza/physiology , Gene Expression Profiling , Salt Stress , Seedlings/physiology , Salt Tolerance/genetics
19.
Sci Rep ; 14(1): 8105, 2024 04 06.
Article En | MEDLINE | ID: mdl-38582792

The response of 14 Hollyhock (Alcea rosea L.) varieties to salinity were evaluated in a field experiment over two growing seasons. Carotenoid, Chl a, Chl b, total Chl, proline and MDA content, CAT, APX and GPX activity and petal and seeds yields were determined in order to investigate the mechanism of salt tolerance exhibited by Hollyhock, and too identify salt tolerant varieties. Overall, the photosynthetic pigment content,petal and seed yields were reduced by salt stress. Whereas the proline and MDA content, and the CAT, APX and GPX activities increased as salt levels increased. However, the values of the measured traits were dependent upon the on the level of salt stress, the Varietie and the interaction between the two variables. Based upon the smallest reduction in petal yield, the Masouleh variety was shown to be the most salt tolerant, when grown under severe salt stress. However, based upon the smallest reduction in seed yield, Khorrmabad was the most tolerant variety to severe salt stress. These data suggest that the selection of more salt tolerant Hollyhock genotypes may be possible based upon the wide variation in tolerance to salinity exhibited by the varieties tested.


Malvaceae , Oxidative Stress , Oxidative Stress/physiology , Antioxidants/metabolism , Salt Tolerance/genetics , Proline/metabolism
20.
Physiol Plant ; 176(2): e14287, 2024.
Article En | MEDLINE | ID: mdl-38606719

Salt stress substantially leads to flowering delay. The regulation of salt-induced late flowering has been studied at the transcriptional and protein levels; however, the involvement of secondary metabolites has rarely been investigated. Here, we report that FMOGS-OXs (EC 1.14.13.237), the enzymes that catalyze the biosynthesis of glucosinolates (GSLs), promote flowering transition in Arabidopsis thaliana. It has been reported that WRKY75 is a positive regulator, and MAF4 is a negative regulator of flowering transition. The products of FMOGS-OXs, methylsulfinylalkyl GSLs (MS GSLs), facilitate flowering by inducing WRKY75 and repressing the MAS-MAF4 module. We further show that the degradation of MS GSLs is involved in salt-induced late flowering and salt tolerance. Salt stress induces the expression of myrosinase genes, resulting in the degradation of MS GSLs, thereby relieving the promotion of WRKY75 and inhibition of MAF4, leading to delayed flowering. In addition, the degradation products derived from MS GSLs enhance salt tolerance. Previous studies have revealed that FMOGS-OXs exhibit alternative catalytic activity to form trimethylamine N-oxide (TMAO) under salt stress, which activates multiple stress-related genes to promote salt tolerance. Therefore, FMOGS-OXs integrate flowering transition and salt tolerance in various ways. Our study shed light on the functional diversity of GSLs and established a connection between flowering transition, salt resistance, and GSL metabolism.


Arabidopsis Proteins , Arabidopsis , Oxygenases , Arabidopsis/metabolism , Salt Tolerance , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Glucosinolates
...