Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.691
1.
Life Sci Alliance ; 7(8)2024 Aug.
Article En | MEDLINE | ID: mdl-38749543

Phosphatidylcholine (PC) is the major membrane phospholipid in most eukaryotic cells. Bi-allelic loss of function variants in CHKB, encoding the first step in the synthesis of PC, is the cause of a rostrocaudal muscular dystrophy in both humans and mice. Loss of sarcolemma integrity is a hallmark of muscular dystrophies; however, how this occurs in the absence of choline kinase function is not known. We determine that in Chkb -/- mice there is a failure of the α7ß1 integrin complex that is specific to affected muscle. We observed that in Chkb -/- hindlimb muscles there is a decrease in sarcolemma association/abundance of the PI(4,5)P2 binding integrin complex proteins vinculin, and α-actinin, and a decrease in actin association with the sarcolemma. In cells, pharmacological inhibition of choline kinase activity results in internalization of a fluorescent PI(4,5)P2 reporter from discrete plasma membrane clusters at the cell surface membrane to cytosol, this corresponds with a decreased vinculin localization at plasma membrane focal adhesions that was rescued by overexpression of CHKB.


Choline Kinase , Integrins , Mice, Knockout , Muscular Dystrophies , Sarcolemma , Vinculin , Animals , Mice , Vinculin/metabolism , Vinculin/genetics , Muscular Dystrophies/metabolism , Muscular Dystrophies/genetics , Integrins/metabolism , Choline Kinase/metabolism , Choline Kinase/genetics , Sarcolemma/metabolism , Humans , Focal Adhesions/metabolism , Cell Membrane/metabolism , Actinin/metabolism , Actinin/genetics , Muscle, Skeletal/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Actins/metabolism , Disease Models, Animal
2.
J Physiol ; 602(9): 1967-1986, 2024 May.
Article En | MEDLINE | ID: mdl-38564214

Mitochondria within skeletal muscle cells are located either between the muscle contractile apparatus (interfibrillar mitochondria, IFM) or beneath the cell membrane (subsarcolemmal mitochondria, SSM), with several structural and functional differences reported between IFM and SSM. However, recent 3D imaging studies demonstrate that mitochondria are particularly concentrated in the proximity of capillaries embedded in sarcolemmal grooves rather than in proximity to the sarcolemma itself (paravascular mitochondria, PVM). To evaluate the impact of capillary vs. sarcolemmal proximity, we compared the structure and function of skeletal muscle mitochondria located either lateral to embedded capillaries (PVM), adjacent to the sarcolemma but not in PVM pools (SSM) or interspersed between sarcomeres (IFM). Mitochondrial morphology and interactions were assessed by 3D electron microscopy coupled with machine learning segmentation, whereas mitochondrial energy conversion was assessed by two-photon microscopy of mitochondrial membrane potential, content, calcium, NADH redox and flux in live, intact cells. Structurally, although PVM and SSM were similarly larger than IFM, PVM were larger, rounder and had more physical connections to neighbouring mitochondria compared to both IFM and SSM. Functionally, PVM had similar or greater basal NADH flux compared to SSM and IFM, respectively, despite a more oxidized NADH pool and a greater membrane potential, signifying a greater activation of the electron transport chain in PVM. Together, these data indicate that proximity to capillaries has a greater impact on resting mitochondrial energy conversion and distribution in skeletal muscle than the sarcolemma alone. KEY POINTS: Capillaries have a greater impact on mitochondrial energy conversion in skeletal muscle than the sarcolemma. Paravascular mitochondria are larger, and the outer mitochondrial membrane is more connected with neighbouring mitochondria. Interfibrillar mitochondria are longer and have greater contact sites with other organelles (i.e. sarcoplasmic reticulum and lipid droplets). Paravascular mitochondria have greater activation of oxidative phosphorylation than interfibrillar mitochondria at rest, although this is not regulated by calcium.


Capillaries , Mitochondria, Muscle , Muscle, Skeletal , Sarcolemma , Sarcolemma/metabolism , Sarcolemma/ultrastructure , Sarcolemma/physiology , Animals , Capillaries/physiology , Capillaries/metabolism , Mitochondria, Muscle/metabolism , Mitochondria, Muscle/ultrastructure , Muscle, Skeletal/physiology , Muscle, Skeletal/metabolism , Muscle, Skeletal/blood supply , Mice , Energy Metabolism/physiology , Male , Mice, Inbred C57BL , Membrane Potential, Mitochondrial/physiology
3.
J Physiol ; 602(5): 791-808, 2024 Mar.
Article En | MEDLINE | ID: mdl-38348881

T-tubules (TT) form a complex network of sarcolemmal membrane invaginations, essential for well-co-ordinated excitation-contraction coupling (ECC) and thus homogeneous mechanical activation of cardiomyocytes. ECC is initiated by rapid depolarization of the sarcolemmal membrane. Whether TT membrane depolarization is active (local generation of action potentials; AP) or passive (following depolarization of the outer cell surface sarcolemma; SS) has not been experimentally validated in cardiomyocytes. Based on the assessment of ion flux pathways needed for AP generation, we hypothesize that TT are excitable. We therefore explored TT excitability experimentally, using an all-optical approach to stimulate and record trans-membrane potential changes in TT that were structurally disconnected, and hence electrically insulated, from the SS membrane by transient osmotic shock. Our results establish that cardiomyocyte TT can generate AP. These AP show electrical features that differ substantially from those observed in SS, consistent with differences in the density of ion channels and transporters in the two different membrane domains. We propose that TT-generated AP represent a safety mechanism for TT AP propagation and ECC, which may be particularly relevant in pathophysiological settings where morpho-functional changes reduce the electrical connectivity between SS and TT membranes. KEY POINTS: Cardiomyocytes are characterized by a complex network of membrane invaginations (the T-tubular system) that propagate action potentials to the core of the cell, causing uniform excitation-contraction coupling across the cell. In the present study, we investigated whether the T-tubular system is able to generate action potentials autonomously, rather than following depolarization of the outer cell surface sarcolemma. For this purpose, we developed a fully optical platform to probe and manipulate the electrical dynamics of subcellular membrane domains. Our findings demonstrate that T-tubules are intrinsically excitable, revealing distinct characteristics of self-generated T-tubular action potentials. This active electrical capability would protect cells from voltage drops potentially occurring within the T-tubular network.


Myocytes, Cardiac , Optogenetics , Myocytes, Cardiac/metabolism , Sarcolemma/metabolism , Cell Membrane , Membrane Potentials , Action Potentials/physiology
4.
Mass Spectrom Rev ; 43(1): 90-105, 2024.
Article En | MEDLINE | ID: mdl-36420714

The dystrophin-associated protein complex (DAPC) is a highly organized multiprotein complex that plays a pivotal role in muscle fiber structure integrity and cell signaling. The complex is composed of three distinct interacting subgroups, intracellular peripheral proteins, transmembrane glycoproteins, and extracellular glycoproteins subcomplexes. Dystrophin protein nucleates the DAPC and is important for connecting the intracellular actin cytoskeletal filaments to the sarcolemma glycoprotein complex that is connected to the extracellular matrix via laminin, thus stabilizing the sarcolemma during muscle fiber contraction and relaxation. Genetic mutations that lead to lack of expression or altered expression of any of the DAPC proteins are associated with different types of muscle diseases. Hence characterization of this complex in healthy and dystrophic muscle might bring insights into its role in muscle pathogenesis. This review highlights the role of mass spectrometry in characterizing the DAPC interactome as well as post-translational glycan modifications of some of its components such as α-dystroglycan. Detection and quantification of dystrophin using targeted mass spectrometry are also discussed in the context of healthy versus dystrophic skeletal muscle.


Dystrophin-Associated Protein Complex , Dystrophin , Dystrophin/analysis , Dystrophin/genetics , Dystrophin/metabolism , Dystrophin-Associated Protein Complex/analysis , Dystrophin-Associated Protein Complex/metabolism , Laminin/analysis , Laminin/metabolism , Sarcolemma/chemistry , Sarcolemma/metabolism , Muscle, Skeletal/chemistry , Muscle, Skeletal/metabolism , Glycoproteins/analysis
5.
Physiol Rep ; 11(18): e15815, 2023 09.
Article En | MEDLINE | ID: mdl-37726258

While a definitive mechanism-of-action remains to be identified, recent findings indicate that ghrelin, particularly the unacylated form (UnAG), stimulates skeletal muscle fatty acid oxidation. The biological importance of UnAG-mediated increases in fat oxidation remains unclear, as UnAG peaks in the circulation before mealtimes, and decreases rapidly during the postprandial situation before increases in postabsorptive circulating lipids. Therefore, we aimed to determine if the UnAG-mediated stimulation of fat oxidation would persist long enough to affect the oxidation of meal-derived fatty acids, and if UnAG stimulated the translocation of fatty acid transporters to the sarcolemma as a mechanism-of-action. In isolated soleus muscle strips from male rats, short-term pre-treatment with UnAG elicited a persisting stimulus on fatty acid oxidation 2 h after the removal of UnAG. UnAG also caused an immediate phosphorylation of AMPK, but not an increase in plasma membrane FAT/CD36 or FABPpm. There was also no increase in AMPK signaling or increased FAT/CD36 or FABPpm content at the plasma membrane at 2 h which might explain the sustained increase in fatty acid oxidation. These findings confirm UnAG as a stimulator of fatty acid oxidation and provide evidence that UnAG may influence the handling of postprandial lipids. The underlying mechanisms are not known.


AMP-Activated Protein Kinases , Ghrelin , Male , Animals , Rats , Muscle, Skeletal , Sarcolemma , CD36 Antigens , Fatty Acids , Membrane Transport Proteins
6.
Physiol Rep ; 11(15): e15779, 2023 08.
Article En | MEDLINE | ID: mdl-37537144

Remodeling of cardiac t-tubules in normal and pathophysiological conditions is an important process contributing to the functional performance of the heart. While it is well documented that deterioration of t-tubule network associated with various pathological conditions can be reversed under certain conditions, the mechanistic understanding of the recovery process is essentially lacking. Accordingly, in this study we investigated some aspects of the recovery of t-tubules after experimentally-induced detubulation. T-tubules of isolated mouse ventricular myocytes were first sealed using osmotic shock approach, and their recovery under various experimental conditions was then characterized using electrophysiologic and imaging techniques. The data show that t-tubule recovery is a strongly temperature-dependent process involving reopening of previously collapsed t-tubular segments. T-tubule recovery is slowed by (1) metabolic inhibition of cells, (2) reducing influx of extracellular Ca2+ as well as by (3) both stabilization and disruption of microtubules. Overall, the data show that t-tubule recovery is a highly dynamic process involving several central intracellular structures and processes and lay the basis for more detailed investigations in this area.


Myocytes, Cardiac , Sarcolemma , Mice , Animals , Myocytes, Cardiac/metabolism , Sarcolemma/metabolism , Calcium/metabolism , Calcium Signaling/physiology
7.
Clin Biomech (Bristol, Avon) ; 108: 106055, 2023 08.
Article En | MEDLINE | ID: mdl-37562331

BACKGROUND: Myalgic encephalomyelitis is an invalidating chronic disease often associated with exercise-induced alterations of muscle membrane excitability (M wave). No simultaneous measurements of maximal isometric force production and sarcolemma fatigue in the same muscle group have been previously reported. We hypothesized that M wave alterations could be partly responsible for the reduced muscle force present in this invalidating disease. METHODS: This retrospective study compared two groups of patients who presented (n = 30) or not (n = 28) alterations of M waves evoked by direct muscle stimulation during and after a cycling exercise bout. The maximal handgrip strength was measured before and after exercise, concomitantly with electromyogram recordings from flexor digitorum longus muscle. The patients also answered a questionnaire to identify eventual exacerbation of their clinical symptoms following the exercise test. FINDINGS: The M wave amplitude significantly decreased in muscles and the M wave duration significantly increased in the group of patients with M wave alterations after exercise. Resting values of handgrip were significantly lower in patients with exercise-induced M-wave alterations than in patients without M-wave abnormalities. In patients with exercise-induced M-wave alterations, handgrip significantly decreased after exercise and the changes in handgrip and M wave were positively correlated. The frequency of post-exertion malaise, increased fatigue, myalgia, headache and cognitive dysfunction was significantly higher in patients with M-wave alterations and variations in handgrip after exercise. INTERPRETATION: These data suggest that post-exercise sarcolemma fatigue often measured in patients with myalgic encephalomyelitis could be the cause of muscle failure.


Fatigue Syndrome, Chronic , Humans , Sarcolemma , Hand Strength , Retrospective Studies , Muscle, Skeletal/physiology , Muscle Strength , Muscle Fatigue/physiology
8.
Sci Rep ; 13(1): 4360, 2023 03 16.
Article En | MEDLINE | ID: mdl-36928364

Dystrophin maintains membrane integrity as a sarcolemmal protein. Dystrophin mutations lead to Duchenne muscular dystrophy, an X-linked recessive disorder. Since dystrophin is one of the largest genes consisting of 79 exons in the human genome, delivering a full-length dystrophin using virus vectors is challenging for gene therapy. Human artificial chromosome is a vector that can load megabase-sized genome without any interference from the host chromosome. Chimeric mice carrying a 2.4-Mb human dystrophin gene-loaded human artificial chromosome (DYS-HAC) was previously generated, and dystrophin expression from DYS-HAC was confirmed in skeletal muscles. Here we investigated whether human dystrophin expression from DYS-HAC rescues the muscle phenotypes seen in dystrophin-deficient mice. Human dystrophin was normally expressed in the sarcolemma of skeletal muscle and heart at expected molecular weights, and it ameliorated histological and functional alterations in dystrophin-deficient mice. These results indicate that the 2.4-Mb gene is enough for dystrophin to be correctly transcribed and translated, improving muscular dystrophy. Therefore, this technique using HAC gives insight into developing new treatments and novel humanized Duchenne muscular dystrophy mouse models with human dystrophin gene mutations.


Chromosomes, Artificial, Human , Dystrophin , Muscular Dystrophy, Duchenne , Animals , Humans , Mice , Chromosomes, Artificial, Human/genetics , Disease Models, Animal , Dystrophin/genetics , Dystrophin/metabolism , Mice, Inbred mdx , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/therapy , Muscular Dystrophy, Duchenne/metabolism , Sarcolemma/metabolism
9.
Med ; 4(4): 245-251.e3, 2023 04 14.
Article En | MEDLINE | ID: mdl-36905929

BACKGROUND: Utrophin, a dystrophin homolog, is consistently upregulated in muscles of patients with Duchenne muscular dystrophy (DMD) and is believed to partially compensate for the lack of dystrophin in dystrophic muscle. Even though several animal studies support the idea that utrophin can modulate DMD disease severity, human clinical data are scarce. METHODS: We describe a patient with the largest reported in-frame deletion in the DMD gene, including exons 10-60 and thus encompassing the entire rod domain. FINDINGS: The patient presented with an unusually early and severe progressive weakness, initially suggesting congenital muscular dystrophy. Immunostaining of his muscle biopsy showed that the mutant protein was able to localize at the sarcolemma and stabilize the dystrophin-associated complex. Strikingly, utrophin protein was absent from the sarcolemmal membrane despite the upregulation of utrophin mRNA. CONCLUSIONS: Our results suggest that the internally deleted and dysfunctional dystrophin lacking the entire rod domain may exert a dominant-negative effect by preventing upregulated utrophin protein from reaching the sarcolemmal membrane and thus blocking its partial rescue of muscle function. This unique case may set a lower size limit for similar constructs in potential gene therapy approaches. FUNDING: This work was supported by a grant from MDA USA (MDA3896) and by grant number R01AR051999 from NIAMS/NIH to C.G.B.


Dystrophin , Muscular Dystrophy, Duchenne , Animals , Humans , Dystrophin/genetics , Dystrophin/metabolism , Utrophin/genetics , Utrophin/metabolism , Utrophin/therapeutic use , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/pathology , Muscles/metabolism , Muscles/pathology , Sarcolemma/metabolism , Sarcolemma/pathology
10.
Int J Mol Sci ; 24(5)2023 Feb 28.
Article En | MEDLINE | ID: mdl-36902136

Quantitative surface plasmon resonance (SPR) was utilized to determine binding strength and calcium dependence of direct interactions between dysferlin and proteins likely to mediate skeletal muscle repair, interrupted in limb girdle muscular dystrophy type 2B/R2. Dysferlin canonical C2A (cC2A) and C2F/G domains directly interacted with annexin A1, calpain-3, caveolin-3, affixin, AHNAK1, syntaxin-4, and mitsugumin-53, with cC2A the primary target and C2F lesser involved, overall demonstrating positive calcium dependence. Dysferlin C2 pairings alone showed negative calcium dependence in almost all cases. Like otoferlin, dysferlin directly interacted via its carboxy terminus with FKBP8, an anti-apoptotic outer mitochondrial membrane protein, and via its C2DE domain with apoptosis-linked gene (ALG-2/PDCD6), linking anti-apoptosis with apoptosis. Confocal Z-stack immunofluorescence confirmed co-compartmentalization of PDCD6 and FKBP8 at the sarcolemmal membrane. Our evidence supports the hypothesis that prior to injury, dysferlin C2 domains self-interact and give rise to a folded, compact structure as indicated for otoferlin. With elevation of intracellular Ca2+ in injury, dysferlin would unfold and expose the cC2A domain for interaction with annexin A1, calpain-3, mitsugumin 53, affixin, and caveolin-3, and dysferlin would realign from its interactions with PDCD6 at basal calcium levels to interact strongly with FKBP8, an intramolecular rearrangement facilitating membrane repair.


Apoptosis Regulatory Proteins , Calcium-Binding Proteins , Calcium , Dysferlin , Muscle, Skeletal , Regeneration , Tacrolimus Binding Proteins , Annexin A1/metabolism , Calcium/metabolism , Calpain/metabolism , Caveolin 3/metabolism , Dysferlin/metabolism , Muscle, Skeletal/injuries , Muscle, Skeletal/physiology , Sarcolemma/metabolism , Calcium-Binding Proteins/metabolism , Apoptosis Regulatory Proteins/metabolism , Surface Plasmon Resonance , Tacrolimus Binding Proteins/metabolism , Apoptosis , Signal Transduction , Animals , Rats
11.
J Genet ; 1022023.
Article En | MEDLINE | ID: mdl-36814107

Duchenne muscular dystrophy (DMD) is the most common form of progressive childhood muscular dystrophy associated with weakness of limbs, loss of ambulation, heart weakness and early death. The mutations causing either loss-of-expression or function of the full-length protein dystrophin (Dp427) from the DMD gene are responsible for the disease pathology. Dp427 forms a part of the large dystroglycan complex, called DAPC, in the sarcolemma, and its absence derails muscle contraction. Muscle biopsies from DMD patients show an overactivation of excitation-contraction-coupling (ECC) activable calcium incursion, sarcolemmal ROS production, NHE1 activation, IL6 secretion, etc. The signalling pathways, like Akt/PBK, STAT3, p38MAPK, and ERK1/2, are also hyperactive in DMD. These pathways are responsible for post-mitotic trophic growth and metabolic adaptation, in response to exercise in healthy muscles, but cause atrophy and cell death in dystrophic muscles. We hypothesize that the metabolic background of repressed glycolysis in DMD, as opposed to excess glycolysis seen in cancers or healthy contracting muscles, changes the outcome of these 'growth pathways'. The reduced glycolysis has been considered a secondary outcome of the cytoskeletal disruptions seen in DMD. Given the cytoskeleton-crosslinking ability of the glycolytic enzymes, we hypothesize that the failure of glycogenolytic and glycolytic enzymes to congregate is the primary pathology, which then affects the subsarcolemmal cytoskeletal organization in costameres and initiates the pathophysiology associated with DMD, giving rise to the tissue-specific differences in disease progression between muscle, heart and brain. The lacunae in the regulation of the key components of the hypothesized metabolome, and the limitations of this theory are deliberated. The considerations for developing future therapies based on known pathological processes are also discussed.


Glycogenolysis , Muscular Dystrophy, Duchenne , Humans , Child , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/pathology , Costameres/metabolism , Costameres/pathology , Dystrophin/genetics , Dystrophin/metabolism , Muscles/metabolism , Muscles/pathology , Sarcolemma/metabolism , Sarcolemma/pathology , Muscle, Skeletal/metabolism
12.
Int J Mol Sci ; 24(3)2023 Jan 23.
Article En | MEDLINE | ID: mdl-36768550

Duchenne muscular dystrophy (DMD) is caused by the absence of the dystrophin protein and a properly functioning dystrophin-associated protein complex (DAPC) in muscle cells. DAPC components act as molecular scaffolds coordinating the assembly of various signaling molecules including ion channels. DMD shows a significant change in the functioning of the ion channels of the sarcolemma and intracellular organelles and, above all, the sarcoplasmic reticulum and mitochondria regulating ion homeostasis, which is necessary for the correct excitation and relaxation of muscles. This review is devoted to the analysis of current data on changes in the structure, functioning, and regulation of the activity of ion channels in striated muscles in DMD and their contribution to the disruption of muscle function and the development of pathology. We note the prospects of therapy based on targeting the channels of the sarcolemma and organelles for the correction and alleviation of pathology, and the problems that arise in the interpretation of data obtained on model dystrophin-deficient objects.


Muscular Dystrophy, Duchenne , Mice , Animals , Muscular Dystrophy, Duchenne/metabolism , Dystrophin/metabolism , Sarcolemma/metabolism , Mice, Inbred mdx , Muscle, Skeletal/metabolism , Ion Channels/metabolism , Organelles/metabolism , Homeostasis
13.
J Phys Chem B ; 127(2): 577-589, 2023 01 19.
Article En | MEDLINE | ID: mdl-36608331

Dysferlin is a 230 kD protein that plays a critical function in the active resealing of micron-sized injuries to the muscle sarcolemma by recruiting vesicles to patch the injured site via vesicle fusion. Muscular dystrophy is observed in humans when mutations disrupt this repair process or dysferlin is absent. While lipid binding by dysferlin's C2A domain (dysC2A) is considered fundamental to the membrane resealing process, the molecular mechanism of this interaction is not fully understood. By applying nonlinear surface-specific vibrational spectroscopy, we have successfully demonstrated that dysferlin's N-terminal C2A domain (dysC2A) alters its binding orientation in response to a membrane's lipid composition. These experiments reveal that dysC2A utilizes a generic electrostatic binding interaction to bind to most anionic lipid surfaces, inserting its calcium binding loops into the lipid surface while orienting its ß-sheets 30-40° from surface normal. However, at lipid surfaces, where PI(4,5)P2 is present, dysC2A tilts its ß-sheets more than 60° from surface normal to expose a polybasic face, while it binds to the PI(4,5)P2 surface. Both lipid binding mechanisms are shown to occur alongside dysC2A-induced lipid clustering. These different binding mechanisms suggest that dysC2A could provide a molecular cue to the larger dysferlin protein as to signal whether it is bound to the sarcolemma or another lipid surface.


Cell Membrane , Dysferlin , Humans , Cell Membrane/chemistry , Dysferlin/chemistry , Dysferlin/metabolism , Lipids/chemistry , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Muscle Proteins/chemistry , Muscle Proteins/metabolism , Protein Binding , Sarcolemma/chemistry
14.
Methods Mol Biol ; 2587: 495-510, 2023.
Article En | MEDLINE | ID: mdl-36401046

Duchenne muscular dystrophy (DMD) is a neuromuscular disease caused by mutations and deletions within the DMD gene, which result in a lack of dystrophin protein at the sarcolemma of skeletal muscle fibers. The absence of dystrophin fragilizes the sarcolemma and compromises its integrity during cycles of muscle contraction, which, progressively, leads to reductions in muscle mass and function. DMD is thus a progressive muscle-wasting disease that results in a loss of ambulation, cardiomyopathy , respiratory impairment, and death. Although there is presently no cure for DMD, recent advances have led to many promising treatments. One such approach entails increasing expression of a homologous protein to dystrophin, named utrophin A, which is endogenously expressed in both healthy and DMD muscle fibers. Upregulation of utrophin A all along the sarcolemma of DMD muscle fibers can, in part, compensate for the absence of dystrophin. Over the years, our laboratory has focused a significant portion of our efforts in identifying and characterizing drugs and small molecules for their ability to target utrophin A and cause its overexpression. As part of these efforts, we have recently developed a novel ELISA-based high-throughput drug screen, to identify FDA-approved drugs that increase the expression of utrophin A in muscle cells in culture as well as in dystrophic mice. Here, we describe our overall strategy to identify and characterize several FDA-approved drugs that upregulate utrophin A expression and provide details on all experimental approaches. Such strategy has the potential to lead to the rapid development of novel therapeutics for DMD.


Dystrophin , Muscular Dystrophy, Duchenne , Mice , Animals , Utrophin/genetics , Utrophin/metabolism , Utrophin/therapeutic use , Dystrophin/metabolism , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Sarcolemma , Muscle Fibers, Skeletal/metabolism
15.
Cells ; 11(20)2022 10 17.
Article En | MEDLINE | ID: mdl-36291129

The plasma membrane (sarcolemma) of skeletal muscle myofibers is susceptible to injury caused by physical and chemical stresses during normal daily movement and/or under disease conditions. These acute plasma membrane disruptions are normally compensated by an intrinsic membrane resealing process involving interactions of multiple intracellular proteins including dysferlin, annexin, caveolin, and Mitsugumin 53 (MG53)/TRIM72. There is new evidence for compromised muscle sarcolemma repair mechanisms in Amyotrophic Lateral Sclerosis (ALS). Mitochondrial dysfunction in proximity to neuromuscular junctions (NMJs) increases oxidative stress, triggering MG53 aggregation and loss of its function. Compromised membrane repair further worsens sarcolemma fragility and amplifies oxidative stress in a vicious cycle. This article is to review existing literature supporting the concept that ALS is a disease of oxidative-stress induced disruption of muscle membrane repair that compromise the integrity of the NMJs and hence augmenting muscle membrane repair mechanisms could represent a viable therapeutic strategy for ALS.


Amyotrophic Lateral Sclerosis , Regeneration , Sarcolemma , Humans , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/therapy , Annexins/metabolism , Carrier Proteins/metabolism , Caveolins/metabolism , Dysferlin/metabolism , Membrane Proteins/metabolism , Sarcolemma/metabolism , Sarcolemma/pathology
16.
Biochem Biophys Res Commun ; 628: 84-90, 2022 11 05.
Article En | MEDLINE | ID: mdl-36084555

Mutations of the caveolin 3 gene cause autosomal dominant limb-girdle muscular dystrophy (LGMD)1C. In mice, overexpression of mutant caveolin 3 leads to loss of caveolin 3 and results in myofiber hypotrophy in association with activation of neuronal nitric oxide synthase (nNOS) at the sarcolemma. Here, we show that caveolin 3 directly bound to nNOS and suppressed its phosphorylation-dependent activation at a specific residue, Ser1412 in the nicotinamide adenine dinucleotide phosphate (NADPH)-flavin adenine dinucleotide (FAD) module near the C-terminus of the reduction domain, in vitro. Constitutively active nNOS enhanced myoblast fusion, but not myogenesis, in vitro. Phosphorylation-dependent activation of nNOS occurred in muscles from caveolin 3-mutant mice and LGMD1C patients. Mating with nNOS-mutant mice exacerbated myofiber hypotrophy in the caveolin 3-mutant mice. In nNOS-mutant mice, regenerating myofibers after cardiotoxin injury became hypotrophic with reduced myoblast fusion. Administration of NO donor increased myofiber size and the number of myonuclei in the caveolin 3-mutant mice. Exercise also increased myofiber size accompanied by phosphorylation-dependent activation of nNOS in wild-type and caveolin 3-mutant mice. These data indicate that caveolin 3 inhibits phosphorylation-dependent activation of nNOS, which leads to myofiber hypertrophy via enhancing myoblast fusion. Hypertrophic signaling by nNOS phosphorylation could act in a compensatory manner in caveolin 3-deficient muscles.


Caveolin 3 , Flavin-Adenine Dinucleotide , Nitric Oxide Synthase Type I , Animals , Cardiotoxins , Caveolin 3/genetics , Caveolin 3/metabolism , Flavin-Adenine Dinucleotide/metabolism , Mice , NADP/metabolism , Nitric Oxide Synthase Type I/metabolism , Phosphorylation , Sarcolemma/metabolism
17.
Commun Biol ; 5(1): 1022, 2022 09 27.
Article En | MEDLINE | ID: mdl-36168044

Dystrophin is the central protein of the dystrophin-glycoprotein complex (DGC) in skeletal and heart muscle cells. Dystrophin connects the actin cytoskeleton to the extracellular matrix (ECM). Severing the link between the ECM and the intracellular cytoskeleton has a devastating impact on the homeostasis of skeletal muscle cells, leading to a range of muscular dystrophies. In addition, the loss of a functional DGC leads to progressive dilated cardiomyopathy and premature death. Dystrophin functions as a molecular spring and the DGC plays a critical role in maintaining the integrity of the sarcolemma. Additionally, evidence is accumulating, linking the DGC to mechanosignalling, albeit this role is still less understood. This review article aims at providing an up-to-date perspective on the DGC and its role in mechanotransduction. We first discuss the intricate relationship between muscle cell mechanics and function, before examining the recent research for a role of the dystrophin glycoprotein complex in mechanotransduction and maintaining the biomechanical integrity of muscle cells. Finally, we review the current literature to map out how DGC signalling intersects with mechanical signalling pathways to highlight potential future points of intervention, especially with a focus on cardiomyopathies.


Dystrophin , Mechanotransduction, Cellular , Glycoproteins , Muscle Fibers, Skeletal/metabolism , Sarcolemma/metabolism
18.
Cells ; 11(9)2022 04 22.
Article En | MEDLINE | ID: mdl-35563723

Duchenne muscular dystrophy (DMD) is a common X-linked degenerative muscle disorder that involves mutations in the DMD gene that frequently reduce the expression of the dystrophin protein, compromising the structural integrity of the sarcolemmal membrane and leaving it vulnerable to injury during cycles of muscle contraction and relaxation. This results in an increased frequency of sarcolemma disruptions that can compromise the barrier function of the membrane and lead to death of the myocyte. Sarcolemmal membrane repair processes can potentially compensate for increased membrane disruptions in DMD myocytes. Previous studies demonstrated that TRIM72, a muscle-enriched tripartite motif (TRIM) family protein also known as mitsugumin 53 (MG53), is a component of the cell membrane repair machinery in striated muscle. To test the importance of membrane repair in striated muscle in compensating for the membrane fragility in DMD, we crossed TRIM72/MG53 knockout mice into the mdx mouse model of DMD. These double knockout (DKO) mice showed compromised sarcolemmal membrane integrity compared to mdx mice, as measured by immunoglobulin G staining and ex vivo muscle laser microscopy wounding assays. We also found a significant decrease in muscle ex vivo contractile function as compared to mdx mice at both 6 weeks and 1.5 years of age. As the DKO mice aged, they developed more extensive fibrosis in skeletal muscles compared to mdx. Our findings indicate that TRIM72/MG53-mediated membrane repair can partially compensate for the sarcolemmal fragility associated with DMD and that the loss of membrane repair results in increased pathology in the DKO mice.


Muscular Dystrophy, Duchenne , Animals , Disease Models, Animal , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred mdx , Mice, Knockout , Muscle, Skeletal/metabolism , Sarcolemma/metabolism , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism
19.
Nat Commun ; 13(1): 2185, 2022 04 21.
Article En | MEDLINE | ID: mdl-35449169

Cardiac excitation-contraction coupling requires dyads, the nanoscopic microdomains formed adjacent to Z-lines by apposition of transverse tubules and junctional sarcoplasmic reticulum. Disruption of dyad architecture and function are common features of diseased cardiomyocytes. However, little is known about the mechanisms that modulate dyad organization during cardiac development, homeostasis, and disease. Here, we use proximity proteomics in intact, living hearts to identify proteins enriched near dyads. Among these proteins is CMYA5, an under-studied striated muscle protein that co-localizes with Z-lines, junctional sarcoplasmic reticulum proteins, and transverse tubules in mature cardiomyocytes. During cardiac development, CMYA5 positioning adjacent to Z-lines precedes junctional sarcoplasmic reticulum positioning or transverse tubule formation. CMYA5 ablation disrupts dyad architecture, dyad positioning at Z-lines, and junctional sarcoplasmic reticulum Ca2+ release, leading to cardiac dysfunction and inability to tolerate pressure overload. These data provide mechanistic insights into cardiomyopathy pathogenesis by demonstrating that CMYA5 anchors junctional sarcoplasmic reticulum to Z-lines, establishes dyad architecture, and regulates dyad Ca2+ release.


Excitation Contraction Coupling , Sarcoplasmic Reticulum , Calcium/metabolism , Muscle Proteins/metabolism , Myocytes, Cardiac/metabolism , Sarcolemma/metabolism , Sarcoplasmic Reticulum/metabolism
20.
Methods Mol Biol ; 2442: 663-683, 2022.
Article En | MEDLINE | ID: mdl-35320552

Galectin-1 is a small (14.5 kDa) multifunctional protein with cell-cell and cell-ECM adhesion due to interactions with the carbohydrate recognition domain (CRD). In two types of muscular dystrophies, this lectin protein has shown therapeutic properties, including positive regulation of skeletal muscle differentiation and regeneration. Both Duchenne and limb-girdle muscular dystrophy 2B (LGMD2B) are subtypes of muscular dystrophies characterized by deficient membrane repair, muscle weakness, and eventual loss of ambulation. This chapter explains confocal techniques such as laser injury, calcium imaging, and galectin-1 localization to examine the effects of galectin-1 on membrane repair in injured LGMD2B models.


Galectin 1 , Muscular Dystrophies, Limb-Girdle , Sarcolemma , Galectin 1/metabolism , Galectin 1/pharmacology , Galectin 1/therapeutic use , Humans , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscular Dystrophies, Limb-Girdle/drug therapy , Sarcolemma/drug effects , Sarcolemma/physiology
...