Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.175
Filtrar
1.
Nat Cardiovasc Res ; 3(8): 907-914, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39196036

RESUMEN

Over half of patients with heart failure have a preserved ejection fraction (>50%, called HFpEF), a syndrome with substantial morbidity/mortality and few effective therapies1. Its dominant comorbidity is now obesity, which worsens disease and prognosis1-3. Myocardial data from patients with morbid obesity and HFpEF show depressed myocyte calcium-stimulated tension4 and disrupted gene expression of mitochondrial and lipid metabolic pathways5,6, abnormalities shared by human HF with a reduced EF but less so in HFpEF without severe obesity. The impact of severe obesity on human HFpEF myocardial ultrastructure remains unexplored. Here we assessed the myocardial ultrastructure in septal biopsies from patients with HFpEF using transmission electron microscopy. We observed sarcomere disruption and sarcolysis, mitochondrial swelling with cristae separation and dissolution and lipid droplet accumulation that was more prominent in the most obese patients with HFpEF and not dependent on comorbid diabetes. Myocardial proteomics revealed associated reduction in fatty acid uptake, processing and oxidation and mitochondrial respiration proteins, particularly in very obese patients with HFpEF.


Asunto(s)
Insuficiencia Cardíaca , Mitocondrias Cardíacas , Miocardio , Volumen Sistólico , Humanos , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/metabolismo , Masculino , Femenino , Anciano , Persona de Mediana Edad , Miocardio/patología , Miocardio/metabolismo , Miocardio/ultraestructura , Mitocondrias Cardíacas/ultraestructura , Mitocondrias Cardíacas/patología , Mitocondrias Cardíacas/metabolismo , Microscopía Electrónica de Transmisión , Función Ventricular Izquierda/fisiología , Sarcómeros/ultraestructura , Sarcómeros/metabolismo , Sarcómeros/patología , Biopsia , Proteómica , Obesidad/patología , Obesidad/metabolismo , Gotas Lipídicas/metabolismo , Comorbilidad
2.
Biol Open ; 13(6)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38887972

RESUMEN

Regular spatial patterns are ubiquitous forms of organization in nature. In animals, regular patterns can be found from the cellular scale to the tissue scale, and from early stages of development to adulthood. To understand the formation of these patterns, how they assemble and mature, and how they are affected by perturbations, a precise quantitative description of the patterns is essential. However, accessible tools that offer in-depth analysis without the need for computational skills are lacking for biologists. Here, we present PatternJ, a novel toolset to analyze regular one-dimensional patterns precisely and automatically. This toolset, to be used with the popular imaging processing program ImageJ/Fiji, facilitates the extraction of key geometric features within and between pattern repeats in static images and time-lapse series. We validate PatternJ with simulated data and test it on images of sarcomeres from insect muscles and contracting cardiomyocytes, actin rings in neurons, and somites from zebrafish embryos obtained using confocal fluorescence microscopy, STORM, electron microscopy, and brightfield imaging. We show that the toolset delivers subpixel feature extraction reliably even with images of low signal-to-noise ratio. PatternJ's straightforward use and functionalities make it valuable for various scientific fields requiring quantitative one-dimensional pattern analysis, including the sarcomere biology of muscles or the patterning of mammalian axons, speeding up discoveries with the bonus of high reproducibility.


Asunto(s)
Axones , Procesamiento de Imagen Asistido por Computador , Sarcómeros , Somitos , Pez Cebra , Animales , Axones/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Sarcómeros/ultraestructura , Somitos/embriología , Programas Informáticos , Algoritmos
3.
J R Soc Interface ; 21(214): 20230658, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38774960

RESUMEN

Skeletal muscle powers animal movement through interactions between the contractile proteins, actin and myosin. Structural variation contributes greatly to the variation in mechanical performance observed across muscles. In vertebrates, gross structural variation occurs in the form of changes in the muscle cross-sectional area : fibre length ratio. This results in a trade-off between force and displacement capacity, leaving work capacity unaltered. Consequently, the maximum work per unit volume-the work density-is considered constant. Invertebrate muscle also varies in muscle ultrastructure, i.e. actin and myosin filament lengths. Increasing actin and myosin filament lengths increases force capacity, but the effect on muscle fibre displacement, and thus work, capacity is unclear. We use a sliding-filament muscle model to predict the effect of actin and myosin filament lengths on these mechanical parameters for both idealized sarcomeres with fixed actin : myosin length ratios, and for real sarcomeres with known filament lengths. Increasing actin and myosin filament lengths increases stress without reducing strain capacity. A muscle with longer actin and myosin filaments can generate larger force over the same displacement and has a higher work density, so seemingly bypassing an established trade-off. However, real sarcomeres deviate from the idealized length ratio suggesting unidentified constraints or selective pressures.


Asunto(s)
Modelos Biológicos , Músculo Esquelético , Miosinas , Animales , Músculo Esquelético/fisiología , Músculo Esquelético/ultraestructura , Músculo Esquelético/metabolismo , Miosinas/metabolismo , Contracción Muscular/fisiología , Actinas/metabolismo , Sarcómeros/metabolismo , Sarcómeros/ultraestructura , Sarcómeros/fisiología , Fenómenos Biomecánicos
4.
PLoS One ; 19(4): e0300348, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38687705

RESUMEN

The sarcomere is the fundamental contractile unit in skeletal muscle, and the regularity of its structure is critical for function. Emerging data demonstrates that nanoscale changes to the regularity of sarcomere structure can affect the overall function of the protein dense ~2µm sarcomere. Further, sarcomere structure is implicated in many clinical conditions of muscle weakness. However, our understanding of how sarcomere structure changes in disease, especially at the nanoscale, has been limited in part due to the inability to robustly detect and measure at sub-sarcomere resolution. We optimized several methodological steps and developed a robust pipeline to analyze sarcomere structure using structured illumination super-resolution microscopy in conjunction with commercially-available and fluorescently-conjugated Variable Heavy-Chain only fragment secondary antibodies (nanobodies), and achieved a significant increase in resolution of z-disc width (353nm vs. 62nm) compared to confocal microscopy. The combination of these methods provides a unique approach to probe sarcomere protein localization at the nanoscale and may prove advantageous for analysis of other cellular structures.


Asunto(s)
Sarcómeros , Anticuerpos de Dominio Único , Sarcómeros/metabolismo , Sarcómeros/ultraestructura , Anticuerpos de Dominio Único/química , Animales , Microscopía Fluorescente/métodos , Ratones , Microscopía Confocal/métodos
5.
Nature ; 623(7988): 863-871, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37914933

RESUMEN

The thick filament is a key component of sarcomeres, the basic units of striated muscle1. Alterations in thick filament proteins are associated with familial hypertrophic cardiomyopathy and other heart and muscle diseases2. Despite the central importance of the thick filament, its molecular organization remains unclear. Here we present the molecular architecture of native cardiac sarcomeres in the relaxed state, determined by cryo-electron tomography. Our reconstruction of the thick filament reveals the three-dimensional organization of myosin, titin and myosin-binding protein C (MyBP-C). The arrangement of myosin molecules is dependent on their position along the filament, suggesting specialized capacities in terms of strain susceptibility and force generation. Three pairs of titin-α and titin-ß chains run axially along the filament, intertwining with myosin tails and probably orchestrating the length-dependent activation of the sarcomere. Notably, whereas the three titin-α chains run along the entire length of the thick filament, titin-ß chains do not. The structure also demonstrates that MyBP-C bridges thin and thick filaments, with its carboxy-terminal region binding to the myosin tails and directly stabilizing the OFF state of the myosin heads in an unforeseen manner. These results provide a foundation for future research investigating muscle disorders involving sarcomeric components.


Asunto(s)
Miosinas Cardíacas , Miocardio , Sarcómeros , Conectina/química , Conectina/metabolismo , Conectina/ultraestructura , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Miocardio/química , Miocardio/citología , Miocardio/ultraestructura , Sarcómeros/química , Sarcómeros/metabolismo , Sarcómeros/ultraestructura , Miosinas Cardíacas/química , Miosinas Cardíacas/metabolismo , Miosinas Cardíacas/ultraestructura
6.
Ann Anat ; 249: 152096, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37011827

RESUMEN

BACKGROUND: The force a muscle exerts is partly determined by anatomical parameters, such as its physiological cross-section. The temporal muscle is structurally heterogeneous. To the authors' knowledge, the ultrastructure of this muscle has been poorly specifically studied. METHODS: Five adult Wistar rats weighting 350-400 g were used as temporal muscle donors. Tissues were specifically processed and studied under transmission electron microscope. RESULTS: On ultrathin cuts, the general ultrastructural pattern of striated muscles was observed. Moreover, pennate sarcomeres were identified, sharing a one-end insertion on the same Z-disc. Bipennate morphologies resulted when two neighbor sarcomeres, attached on different neighbor Z-discs and separated at that end by a triad, converged to the same Z-disc at the opposite ends, thus building a thicker myofibril distinctively flanked by triads. Tripennate morphologies were identified when sarcomeres from three different Z-discs converged to the same Z-disc at the opposite ends. CONCLUSIONS: These results support recent evidence of sarcomeres branching gathered in mice. Adequate identification of the sites of excitation-contraction coupling should be on both sides of a myofibril, on bidimensional ultrathin cuts, to avoid false positive results due to putative longitudinal folds of myofibrils.


Asunto(s)
Miofibrillas , Músculo Temporal , Animales , Ratas , Ratones , Miofibrillas/ultraestructura , Ratas Wistar , Sarcómeros/ultraestructura , Músculo Esquelético , Contracción Muscular
7.
Soft Matter ; 18(16): 3226-3233, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35388379

RESUMEN

Muscle cells with sarcomeric structure exhibit highly non trivial passive mechanical response. The difficulty of its continuum modeling is due to the presence of long-range interactions transmitted by extended protein skeleton. To build a rheological model for muscle 'material', we use a stochastic micromodel, and derive a linear response theory for a half-sarcomere, which can be extended to the whole fibre. Instead of the first order rheological equation, anticipated by Hill on the phenomenological grounds, we obtain a novel second order equation which shows that tension depends not only on its current length and the velocity of stretching, but also on its acceleration. Expressing the model in terms of elementary rheological elements, we show that one contribution to the visco-elastic properties of the fibre originates in cross-bridges, while the other can be linked to inert elements which move in the sarcoplasm. We apply this model to explain the striking qualitative difference between the relaxation in experiments involving perturbation of length vs. those involving perturbation of force, and we use the values of the microscopic parameters for frog muscles to show that the model is in excellent quantitative agreement with physiological experiments.


Asunto(s)
Contracción Muscular , Músculo Esquelético , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Sarcómeros/fisiología , Sarcómeros/ultraestructura , Viscosidad
8.
Science ; 375(6582): eabn1934, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35175800

RESUMEN

In skeletal muscle, nebulin stabilizes and regulates the length of thin filaments, but the underlying mechanism remains nebulous. In this work, we used cryo-electron tomography and subtomogram averaging to reveal structures of native nebulin bound to thin filaments within intact sarcomeres. This in situ reconstruction provided high-resolution details of the interaction between nebulin and actin, demonstrating the stabilizing role of nebulin. Myosin bound to the thin filaments exhibited different conformations of the neck domain, highlighting its inherent structural variability in muscle. Unexpectedly, nebulin did not interact with myosin or tropomyosin, but it did interact with a troponin T linker through two potential binding motifs on nebulin, explaining its regulatory role. Our structures support the role of nebulin as a thin filament "molecular ruler" and provide a molecular basis for studying nemaline myopathies.


Asunto(s)
Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Miofibrillas/ultraestructura , Actinas/química , Actinas/metabolismo , Animales , Tomografía con Microscopio Electrónico , Humanos , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Proteínas Musculares/genética , Mutación , Miocardio/química , Miocardio/metabolismo , Miocardio/ultraestructura , Miofibrillas/química , Miofibrillas/metabolismo , Miopatías Nemalínicas/genética , Miopatías Nemalínicas/metabolismo , Miosinas/química , Miosinas/metabolismo , Conformación Proteica , Estructura Secundaria de Proteína , Músculos Psoas/química , Músculos Psoas/metabolismo , Músculos Psoas/ultraestructura , Sarcómeros/química , Sarcómeros/metabolismo , Sarcómeros/ultraestructura
10.
Cells ; 10(8)2021 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-34440693

RESUMEN

With the advent of super-resolution microscopy, we gained a powerful toolbox to bridge the gap between the cellular- and molecular-level analysis of living organisms. Although nanoscopy is broadly applicable, classical model organisms, such as fruit flies, worms and mice, remained the leading subjects because combining the strength of sophisticated genetics, biochemistry and electrophysiology with the unparalleled resolution provided by super-resolution imaging appears as one of the most efficient approaches to understanding the basic cell biological questions and the molecular complexity of life. Here, we summarize the major nanoscopic techniques and illustrate how these approaches were used in Drosophila model systems to revisit a series of well-known cell biological phenomena. These investigations clearly demonstrate that instead of simply achieving an improvement in image quality, nanoscopy goes far beyond with its immense potential to discover novel structural and mechanistic aspects. With the examples of synaptic active zones, centrosomes and sarcomeres, we will explain the instrumental role of super-resolution imaging pioneered in Drosophila in understanding fundamental subcellular constituents.


Asunto(s)
Drosophila/ultraestructura , Microscopía Fluorescente/métodos , Modelos Biológicos , Imagen Individual de Molécula/métodos , Animales , Centrosoma/metabolismo , Centrosoma/ultraestructura , Drosophila/metabolismo , Sarcómeros/metabolismo , Sarcómeros/ultraestructura
11.
JCI Insight ; 6(19)2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34437302

RESUMEN

Myosin binding protein-C slow (sMyBP-C) comprises a subfamily of cytoskeletal proteins encoded by MYBPC1 that is expressed in skeletal muscles where it contributes to myosin thick filament stabilization and actomyosin cross-bridge regulation. Recently, our group described the causal association of dominant missense pathogenic variants in MYBPC1 with an early-onset myopathy characterized by generalized muscle weakness, hypotonia, dysmorphia, skeletal deformities, and myogenic tremor, occurring in the absence of neuropathy. To mechanistically interrogate the etiologies of this MYBPC1-associated myopathy in vivo, we generated a knock-in mouse model carrying the E248K pathogenic variant. Using a battery of phenotypic, behavioral, and physiological measurements spanning neonatal to young adult life, we found that heterozygous E248K mice faithfully recapitulated the onset and progression of generalized myopathy, tremor occurrence, and skeletal deformities seen in human carriers. Moreover, using a combination of biochemical, ultrastructural, and contractile assessments at the level of the tissue, cell, and myofilaments, we show that the loss-of-function phenotype observed in mutant muscles is primarily driven by disordered and misaligned sarcomeres containing fragmented and out-of-register internal membranes that result in reduced force production and tremor initiation. Collectively, our findings provide mechanistic insights underscoring the E248K-disease pathogenesis and offer a relevant preclinical model for therapeutic discovery.


Asunto(s)
Proteínas Portadoras/genética , Hipotonía Muscular/genética , Debilidad Muscular/genética , Músculo Esquelético/fisiopatología , Enfermedades Musculares/genética , Sarcómeros/genética , Temblor/genética , Animales , Femenino , Técnicas de Sustitución del Gen , Heterocigoto , Masculino , Ratones , Hipotonía Muscular/fisiopatología , Debilidad Muscular/fisiopatología , Músculo Esquelético/ultraestructura , Enfermedades Musculares/fisiopatología , Mutación Missense , Pletismografía Total , Músculos Respiratorios/fisiopatología , Sarcómeros/metabolismo , Sarcómeros/fisiología , Sarcómeros/ultraestructura , Temblor/fisiopatología
12.
Virology ; 562: 190-196, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34365094

RESUMEN

Preserving morphological features that are important for cell function and structure is a critical parameter for in vitro experiments with rat cardiomyocytes. Lentiviral vectors are commonly used as gene transfer tool because of its high flexibility, efficiency to deliver expression cassettes and versatility of transducing quiescent cells. The tropism of the recombinant viral particle can be determined depending on the virus envelope, which shows a specific binding to cell surface receptors on the target cell. The combination of promoter arrangement and viral envelope must be optimized to achieve a greater transduction efficiency and a higher transgene expression. In this study we explored the optimization of promoters and heterologous envelopes to transduce primary culture of neonatal rat ventricular myocytes. Our results suggest a robust expression driven by the cytomegalovirus promoter, and high efficiency transduction mediated by VSV-G envelope with no apparent compromising ultrastructural features of genetically modified cells.


Asunto(s)
Lentivirus/genética , Miocitos Cardíacos/citología , Transducción Genética/métodos , Animales , Animales Recién Nacidos , Células Cultivadas , Citomegalovirus/genética , Expresión Génica , Vectores Genéticos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Glicoproteínas de Membrana/genética , Miocitos Cardíacos/metabolismo , Regiones Promotoras Genéticas , Ratas , Sarcómeros/ultraestructura , Transgenes , Proteínas del Envoltorio Viral/genética , Pseudotipado Viral
13.
Int J Mol Sci ; 22(13)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209663

RESUMEN

The myotendinous junction (MTJ) is the muscle-tendon interface and constitutes an integrated mechanical unit to force transmission. Joint immobilization promotes muscle atrophy via disuse, while physical exercise can be used as an adaptative stimulus. In this study, we aimed to investigate the components of the MTJ and their adaptations and the associated elements triggered with aquatic training after joint immobilization. Forty-four male Wistar rats were divided into sedentary (SD), aquatic training (AT), immobilization (IM), and immobilization/aquatic training (IMAT) groups. The samples were processed to measure fiber area, nuclear fractal dimension, MTJ nuclear density, identification of telocytes, sarcomeres, and MTJ perimeter length. In the AT group, the maintenance of ultrastructure and elements in the MTJ region were observed; the IM group presented muscle atrophy effects with reduced MTJ perimeter; the IMAT group demonstrated that aquatic training after joint immobilization promotes benefits in the muscle fiber area and fractal dimension, in the MTJ region shows longer sarcomeres and MTJ perimeter. We identified the presence of telocytes in the MTJ region in all experimental groups. We concluded that aquatic training is an effective rehabilitation method after joint immobilization due to reduced muscle atrophy and regeneration effects on MTJ in rats.


Asunto(s)
Adaptación Fisiológica , Inmovilización , Articulaciones , Condicionamiento Físico Animal , Esfuerzo Físico , Tendones/fisiología , Animales , Masculino , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/ultraestructura , Ratas , Sarcómeros/ultraestructura , Tendones/citología , Tendones/ultraestructura
14.
Nat Commun ; 12(1): 4086, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34215727

RESUMEN

Sarcomeres, the basic contractile units of striated muscle, produce the forces driving muscular contraction through cross-bridge interactions between actin-containing thin filaments and myosin II-based thick filaments. Until now, direct visualization of the molecular architecture underlying sarcomere contractility has remained elusive. Here, we use in situ cryo-electron tomography to unveil sarcomere contraction in frozen-hydrated neonatal rat cardiomyocytes. We show that the hexagonal lattice of the thick filaments is already established at the neonatal stage, with an excess of thin filaments outside the trigonal positions. Structural assessment of actin polarity by subtomogram averaging reveals that thin filaments in the fully activated state form overlapping arrays of opposite polarity in the center of the sarcomere. Our approach provides direct evidence for thin filament sliding during muscle contraction and may serve as a basis for structural understanding of thin filament activation and actomyosin interactions inside unperturbed cellular environments.


Asunto(s)
Actinas/metabolismo , Contracción Muscular/fisiología , Miocitos Cardíacos/fisiología , Sarcómeros/fisiología , Citoesqueleto de Actina , Animales , Masculino , Ratones Endogámicos C57BL , Músculo Esquelético/química , Músculo Estriado , Miocitos Cardíacos/ultraestructura , Miofibrillas , Ratas , Ratas Wistar , Sarcómeros/ultraestructura
15.
Arch Biochem Biophys ; 706: 108923, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34029559

RESUMEN

A highly organized and densely packed lattice of molecular machinery within the sarcomeres of muscle cells powers contraction. Although many of the proteins that drive contraction have been studied extensively, the mechanical impact of fluid shearing within the lattice of molecular machinery has received minimal attention. It was recently proposed that fluid flow augments substrate transport in the sarcomere, however, this analysis used analytical models of fluid flow in the molecular machinery that could not capture its full complexity. By building a finite element model of the sarcomere, we estimate the explicit flow field, and contrast it with analytical models. Our results demonstrate that viscous drag forces on sliding filaments are surprisingly small in contrast to the forces generated by single myosin molecular motors. This model also indicates that the energetic cost of fluid flow through viscous shearing with lattice proteins is likely minimal. The model also highlights a steep velocity gradient between sliding filaments and demonstrates that the maximal radial fluid velocity occurs near the tips of the filaments. To our knowledge, this is the first computational analysis of fluid flow within the highly structured sarcomere.


Asunto(s)
Análisis de Elementos Finitos , Modelos Biológicos , Miosinas/fisiología , Sarcómeros/fisiología , Animales , Fenómenos Biomecánicos , Simulación por Computador , Humanos , Contracción Muscular/fisiología , Miosinas/ultraestructura , Reología , Sarcómeros/ultraestructura , Termodinámica , Viscosidad
16.
Cell ; 184(8): 2135-2150.e13, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33765442

RESUMEN

Sarcomeres are force-generating and load-bearing devices of muscles. A precise molecular picture of how sarcomeres are built underpins understanding their role in health and disease. Here, we determine the molecular architecture of native vertebrate skeletal sarcomeres by electron cryo-tomography. Our reconstruction reveals molecular details of the three-dimensional organization and interaction of actin and myosin in the A-band, I-band, and Z-disc and demonstrates that α-actinin cross-links antiparallel actin filaments by forming doublets with 6-nm spacing. Structures of myosin, tropomyosin, and actin at ~10 Å further reveal two conformations of the "double-head" myosin, where the flexible orientation of the lever arm and light chains enable myosin not only to interact with the same actin filament, but also to split between two actin filaments. Our results provide unexpected insights into the fundamental organization of vertebrate skeletal muscle and serve as a strong foundation for future investigations of muscle diseases.


Asunto(s)
Músculo Esquelético/metabolismo , Sarcómeros/química , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Actinina/química , Actinina/metabolismo , Actomiosina/química , Actomiosina/metabolismo , Animales , Microscopía por Crioelectrón , Femenino , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Unión Proteica , Sarcómeros/metabolismo , Sarcómeros/ultraestructura , Tropomiosina/química , Tropomiosina/metabolismo
17.
J Cell Mol Med ; 25(3): 1661-1676, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33452765

RESUMEN

Myomesin-1 (encoded by MYOM1 gene) is expressed in almost all cross-striated muscles, whose family (together with myomesin-2 and myomesin-3) helps to cross-link adjacent myosin to form the M-line in myofibrils. However, little is known about its biological function, causal relationship and mechanisms underlying the MYOM1-related myopathies (especially in the heart). Regrettably, there is no MYMO1 knockout model for its study so far. A better and further understanding of MYOM1 biology is urgently needed. Here, we used CRISPR/Cas9 gene-editing technology to establish an MYOM1 knockout human embryonic stem cell line (MYOM1-/- hESC), which was then differentiated into myomesin-1 deficient cardiomyocytes (MYOM1-/- hESC-CMs) in vitro. We found that myomesin-1 plays an important role in sarcomere assembly, contractility regulation and cardiomyocytes development. Moreover, myomesin-1-deficient hESC-CMs can recapitulate myocardial atrophy phenotype in vitro. Based on this model, not only the biological function of MYOM1, but also the aetiology, pathogenesis, and potential treatments of myocardial atrophy caused by myomesin-1 deficiency can be studied.


Asunto(s)
Calcio/metabolismo , Conectina/deficiencia , Susceptibilidad a Enfermedades , Atrofia Muscular/etiología , Atrofia Muscular/metabolismo , Miocitos Cardíacos/metabolismo , Alelos , Diferenciación Celular/genética , Línea Celular , Células Madre Embrionarias/metabolismo , Edición Génica , Perfilación de la Expresión Génica , Técnicas de Inactivación de Genes , Predisposición Genética a la Enfermedad , Humanos , Imagen Molecular , Atrofia Muscular/patología , Miocitos Cardíacos/patología , Miocitos Cardíacos/ultraestructura , Fenotipo , Sarcómeros/metabolismo , Sarcómeros/ultraestructura
18.
Meat Sci ; 171: 108280, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32861910

RESUMEN

The aim of this study was to determine the influence of cutting methods on the fiber structure and quality attributes of the cooked pork loin muscle. The culinary portions were cut perpendicularly (D, diagonal) or along the muscle fibers (P, parallel). The samples were heated to 72 °C in water bath (85 °C or 95 °C), steam (100 °C), or oven (125 °C or 150 °C). The P samples had a significantly smaller cooking loss (2-4.5%), greater water-holding capacity (3-5%), and lower shear force (0.35-2.2 N) than D samples except for the 100P, whose cooking loss was higher (by 1.9%) than the 100D. Heat-induced structural changes in the muscle, sarcomere shortening, and destruction of the perimysium and endomysium were affected by the cutting methods and cooking conditions. The findings justify the advisability of cutting individual culinary portions from pork loin muscle in parallel to the muscle fibers in order to increase raw meat efficiency.


Asunto(s)
Culinaria/métodos , Músculo Esquelético , Carne de Cerdo/análisis , Animales , Sarcómeros/ultraestructura , Resistencia al Corte , Sus scrofa , Agua/química
19.
Dev Biol ; 469: 12-25, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32980309

RESUMEN

The sarcomere is the basic contractile unit of muscle, composed of repeated sets of actin thin filaments and myosin thick filaments. During muscle development, sarcomeres grow in size to accommodate the growth and function of muscle fibers. Failure in regulating sarcomere size results in muscle dysfunction; yet, it is unclear how the size and uniformity of sarcomeres are controlled. Here we show that the formin Diaphanous is critical for the growth and maintenance of sarcomere size: Dia sets sarcomere length and width through regulation of the number and length of the actin thin filaments in the Drosophila flight muscle. To regulate thin filament length and sarcomere size, Dia interacts with the Gelsolin superfamily member Flightless I (FliI). We suggest that these actin regulators, by controlling actin dynamics and turnover, generate uniformly sized sarcomeres tuned for the muscle contractions required for flight.


Asunto(s)
Proteínas de Drosophila/fisiología , Forminas/fisiología , Gelsolina/fisiología , Sarcómeros/ultraestructura , Animales , Drosophila/genética , Drosophila/fisiología , Drosophila/ultraestructura , Proteínas de Drosophila/genética , Vuelo Animal , Forminas/genética , Técnicas de Silenciamiento del Gen , Músculos/ultraestructura
20.
Biochem Biophys Res Commun ; 533(4): 818-823, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-32993963

RESUMEN

Muscle operates across a wide range of sarcomere lengths. Inorganic phosphate (Pi) diminishes force output of striated muscle, with greater influence at short relative to long sarcomere lengths in fast skeletal and cardiac muscle fibres. The purpose of this study was to fill a gap in the literature regarding the length-dependent effects of Pi on contractile function of slow skeletal muscle fibres. Permeabilized slow skeletal muscle fibres from rabbit soleus were assessed at average sarcomere lengths of 2.0, 2.4, or 2.8 µm, with and without 20 mM Pi added to activating solutions (22±1 °C). The magnitude of Pi-induced reductions in peak force (43 ± 7% at 2.0 µm, 38 ± 7% at 2.4 µm, and 31 ± 8% at 2.8 µm) and peak stiffness (41 ± 9% at 2.0 µm, 36 ± 8% at 2.4 µm, and 26 ± 9% at 2.8 µm) were length dependent. Peak stiffness was less affected by Pi than peak force. Pi diminished the Ca2+-sensitivity of the force-pCa and stiffness-pCa relationships to a greater extent at 2.8 µm than 2.0 µm. Comparable results were obtained from a cooperative model of Ca2+ and myosin binding to regulated actin. In conclusion, Pi is more detrimental to the peak force output of slow skeletal muscle fibres held at short relative to long sarcomere lengths, whereas Pi has a greater effect on the Ca2+-sensitivity of force production at long relative to short sarcomere lengths. Stiffness data suggest that Pi-induced reductions in force are primarily due to fewer bound cross-bridges, with a lesser contribution attributable to lower average force per cross-bridge.


Asunto(s)
Contracción Muscular , Fibras Musculares de Contracción Lenta/fisiología , Fosfatos/fisiología , Animales , Calcio/metabolismo , Fibras Musculares de Contracción Lenta/ultraestructura , Conejos , Sarcómeros/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA