Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.747
1.
Parasit Vectors ; 17(1): 234, 2024 May 22.
Article En | MEDLINE | ID: mdl-38773521

BACKGROUND: Snail-borne trematodes afflict humans, livestock, and wildlife. Recognizing their zoonotic potential and possible hybridization, a One Health approach is essential for effective control. Given the dearth of knowledge on African trematodes, this study aimed to map snail and trematode diversity, focusing on (i) characterizing gastropod snail species and their trematode parasites, (ii) determining infection rates of snail species as intermediate hosts for medically, veterinary, and ecologically significant trematodes, and (iii) comparing their diversity across endemic regions. METHODS: A cross-sectional study conducted in 2021 in Chiredzi and Wedza districts in Zimbabwe, known for high human schistosomiasis prevalence, involved malacological surveys at 56 sites. Trematode infections in snails were detected through shedding experiments and multiplex rapid diagnostic polymerase chain reactions (RD-PCRs). Morphological and molecular analyses were employed to identify snail and trematode species. RESULTS: Among 3209 collected snail specimens, 11 species were identified, including schistosome and fasciolid competent snail species. We report for the first time the invasive exotic snail Tarebia granifera in Zimbabwe, which was highly abundant, mainly in Chiredzi, occurring at 29 out of 35 sites. Shedding experiments on 1303 snails revealed a 2.24% infection rate, with 15 trematode species identified through molecular genotyping. Five species were exclusive to Chiredzi: Bolbophorus sp., Schistosoma mansoni, Schistosoma mattheei, Calicophoron sp., and Uvulifer sp. Eight were exclusive to Wedza, including Trichobilharzia sp., Stephanoprora amurensis, Spirorchid sp., and Echinostoma sp. as well as an unidentified species of the Plagiorchioidea superfamily. One species, Tylodelphys mashonensis, was common to both regions. The RD-PCR screening of 976 non-shedding snails indicated a 35.7% trematode infection rate, including the presence of schistosomes (1.1%) Fasciola nyanzae (0.6%). In Chiredzi, Radix natalensis had the highest trematode infection prevalence (33.3%), while in Wedza, R. natalensis (55.4%) and Bulinus tropicus (53.2%) had the highest infection prevalence. CONCLUSIONS: Our xenomonitoring approach unveiled 15 trematode species, including nine new records in Zimbabwe. Schistosoma mansoni persists in the study region despite six mass deworming rounds. The high snail and parasite diversity, including the presence of exotic snail species that can impact endemic species and biomedically important trematodes, underscores the need for increased monitoring.


Fresh Water , Introduced Species , Snails , Trematoda , Animals , Zimbabwe/epidemiology , Snails/parasitology , Trematoda/genetics , Trematoda/classification , Trematoda/isolation & purification , Trematoda/physiology , Cross-Sectional Studies , Fresh Water/parasitology , One Health , Humans , Trematode Infections/parasitology , Trematode Infections/veterinary , Trematode Infections/epidemiology , Biodiversity , Prevalence , Schistosomiasis/epidemiology , Schistosomiasis/parasitology , Schistosomiasis/veterinary
2.
Front Immunol ; 15: 1372957, 2024.
Article En | MEDLINE | ID: mdl-38779688

Background: Schistosomiasis is a common cause of pulmonary hypertension (PH) worldwide. Type 2 inflammation contributes to the development of Schistosoma-induced PH. Specifically, interstitial macrophages (IMs) derived from monocytes play a pivotal role by producing thrombospondin-1 (TSP-1), which in turn activates TGF-ß, thereby driving the pathology of PH. Resident and recruited IM subpopulations have recently been identified. We hypothesized that in Schistosoma-PH, one IM subpopulation expresses monocyte recruitment factors, whereas recruited monocytes become a separate IM subpopulation that expresses TSP-1. Methods: Mice were intraperitoneally sensitized and then intravenously challenged with S. mansoni eggs. Flow cytometry on lungs and blood was performed on wildtype and reporter mice to identify IM subpopulations and protein expression. Single-cell RNA sequencing (scRNAseq) was performed on flow-sorted IMs from unexposed and at day 1, 3 and 7 following Schistosoma exposure to complement flow cytometry based IM characterization and identify gene expression. Results: Flow cytometry and scRNAseq both identified 3 IM subpopulations, characterized by CCR2, MHCII, and FOLR2 expression. Following Schistosoma exposure, the CCR2+ IM subpopulation expanded, suggestive of circulating monocyte recruitment. Schistosoma exposure caused increased monocyte-recruitment ligand CCL2 expression in the resident FOLR2+ IM subpopulation. In contrast, the vascular pathology-driving protein TSP-1 was greatest in the CCR2+ IM subpopulation. Conclusion: Schistosoma-induced PH involves crosstalk between IM subpopulations, with increased expression of monocyte recruitment ligands by resident FOLR2+ IMs, and the recruitment of CCR2+ IMs which express TSP-1 that activates TGF-ß and causes PH.


Hypertension, Pulmonary , Macrophages , Animals , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/parasitology , Hypertension, Pulmonary/immunology , Hypertension, Pulmonary/pathology , Mice , Macrophages/immunology , Macrophages/parasitology , Phenotype , Schistosoma mansoni/immunology , Mice, Inbred C57BL , Schistosomiasis/immunology , Schistosomiasis/complications , Schistosomiasis/parasitology , Disease Models, Animal , Schistosomiasis mansoni/immunology , Schistosomiasis mansoni/parasitology , Schistosomiasis mansoni/complications , Schistosomiasis mansoni/pathology , Thrombospondin 1/genetics , Thrombospondin 1/metabolism , Monocytes/immunology , Receptors, CCR2/genetics , Receptors, CCR2/metabolism , Female , Schistosoma/immunology , Schistosoma/physiology , Lung/immunology , Lung/parasitology , Lung/pathology
3.
Parasitol Res ; 123(5): 225, 2024 May 29.
Article En | MEDLINE | ID: mdl-38809265

Schistosomiasis is a neglected tropical disease referring to the infection with blood parasitic trematodes of the genus Schistosoma. It impacts millions of people worldwide, primarily in low-to-middle-income countries. Patients infected with schistosomiasis often exhibit a distinct hematological profile, including anemia, eosinophilia, thrombocytopenia, and coagulopathy. Platelets, essential components of the hemostatic system, play a crucial role in the pathogenesis of schistosomiasis. Schistosomes secrete serine proteases and express ectoenzymes, such as calpain protease, alkaline phosphatase (SmAP), phosphodiesterase (SmNPP5), ATP diphosphohydrolase (SmATPDase1), serine protease Sk1, SmSP2, and Sm22.6, which can interfere with platelet normal functioning. This report provides comprehensive, up-to-date information on platelet abnormalities observed in patients with schistosomiasis, highlighting their importance in the disease progression and complications. It delves into the interactions between platelets and schistosomes, including the impact of platelet dysfunction on hemostasis and immune responses, immune-mediated platelet destruction, and the potential mechanisms by which schistosome tegumental ectoenzymes affect platelets. Furthermore, the report clarifies the relationship between platelet abnormalities and clinical manifestations such as thrombocytopenia, coagulation disorders, and the emergence of portal hypertension and gastrointestinal bleeding. Understanding the complex interplay between platelets and schistosomes is crucial for improving patient management and outcomes in schistosomiasis, particularly for those with platelet alterations. This knowledge contributes to improved diagnostic methods, innovative treatment strategies, and global efforts to control and eliminate schistosomiasis.


Blood Platelets , Schistosomiasis , Humans , Schistosomiasis/parasitology , Schistosomiasis/diagnosis , Blood Platelets/parasitology , Animals , Schistosoma/immunology , Blood Platelet Disorders
4.
Infect Dis Poverty ; 13(1): 32, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711151

The three most important genera of snails for the transmission of schistosomes are Bulinus, Biomphalaria and Oncomelania. Each of these genera, found in two distantly related families, includes species that act as the intermediate host for one of the three most widespread schistosome species infecting humans, Schistosoma haematobium, S. mansoni and S. japonicum, respectively. An important step in the fight against schistosomiasis in Asia has been taken with the publication of the article "Chromosome-level genome assembly of Oncomelania hupensis: the intermediate snail host of Schistosoma japonicum", which means that genomes for all three major genera, including species across three continents, are now available in the public domain. This includes the first genomes of African snail vectors, namely Biomphalaria sudanica, Bi. pfeifferi and Bulinus truncatus, as well as high-quality chromosome level assemblies for South American Bi. glabrata. Most importantly, the wealth of new genomic and transcriptomic data is helping to establish the specific molecular mechanisms that underly compatibility between snails and their schistosomes, which although diverse and complex, may help to identify potential targets dictating host parasite interactions that can be utilised in future transmission control strategies. This new work on Oncomelania hupensis and indeed studies on other snail vectors, which provide deep insights into the genome, will stimulate research that may well lead to new and much needed control interventions.


Disease Vectors , Genomics , Snails , Animals , Humans , Host-Parasite Interactions , Schistosomiasis/transmission , Schistosomiasis/prevention & control , Schistosomiasis/parasitology , Snails/parasitology
5.
Emerg Infect Dis ; 30(6): 1236-1239, 2024 Jun.
Article En | MEDLINE | ID: mdl-38782022

A fecal survey in Tamil Nadu, India, revealed 2 persons passed schistosome eggs, later identified as Schistosoma incognitum, a parasite of pigs, dogs, and rats. We investigated those cases and reviewed autochthonous schistosomiasis cases from India and Nepal. Whether the 2 new cases represent true infection or spurious passage is undetermined.


Feces , Schistosoma , Schistosomiasis , Animals , India/epidemiology , Humans , Schistosoma/isolation & purification , Schistosomiasis/epidemiology , Schistosomiasis/parasitology , Feces/parasitology , Male , Female , Dogs , Adult , Swine , Rats/parasitology , Nepal/epidemiology , Middle Aged , Asia, Southern
6.
Micron ; 183: 103658, 2024 Aug.
Article En | MEDLINE | ID: mdl-38788484

Schistosomiasis represents a serious public health problem, a disease for which the circulating cathodic antigen (CCA) is a relevant biomarker. Quantum dots (QDs) are advantageous fluorescent nanoparticles that can be used as specific nanoprobes. In this study, a nanotool based on QDs and anti-CCA antibodies was developed, which, in association with fluorescence microscopy, was applied to trace and evaluate the CCA profile in schistosomiasis-infected tissue samples. Kidney and liver tissues from mice at different disease phases were used as models. QDs and the conjugates were characterized by absorption and emission spectroscopies. Microscopy analyses were used to map and assess CCA accumulation in infected tissue slices in respect to non-infected control samples. The fluorescent microplate assay (FMA) and Zeta potential (ζ) analyses indicated an effective conjugation, which was corroborated by the absence of labeling in non-infected tissue slices (which lack CCA) after incubation with the nanoprobe. Infected liver and kidney tissues exhibited notable staining by the QDs-anti-CCA conjugate. The CCA accumulation increased as follows: 30 < 60 = 120 days post-infection, with 30, 60, and 120 days corresponding to the pre-patent, acute, and beginning of chronic disease phases, respectively. Therefore, this innovative approach, combining imaging acquisition with the sensitivity and specificity of the QDs-anti-CCA conjugate, demonstrated efficiency in locating and comparatively evaluating CCA deposition in biological samples, thereby opening new possibilities for schistosomiasis research.


Antigens, Helminth , Kidney , Liver , Microscopy, Fluorescence , Quantum Dots , Animals , Antigens, Helminth/immunology , Antigens, Helminth/analysis , Mice , Liver/parasitology , Kidney/parasitology , Microscopy, Fluorescence/methods , Schistosomiasis/diagnosis , Schistosomiasis/parasitology , Female
7.
Article Zh | MEDLINE | ID: mdl-38604687

OBJECTIVE: To understand the current status of capacity building in schistosomiasis control institutes in schistosomiasis-endemic provinces (municipality, autonomous region) of China. METHODS: The responsibilities and construction requirements of various schistosomiasis control institutions were surveyed by expert discussions, and field interviews and visits during the period between May and June, 2023, and the questionnaire for capacity maintenance and consolidation in schistosomiasis control institutions was designed. An online questionnaire survey was conducted in county-, municipal-, and provincial-level institutions that undertook schistosomiasis control and surveillance activities through the Wenjuanxing program. The distribution of schistosomiasis control institutions, the status of institutions, departments and staff undertaking schistosomiasis control activities and the translation of scientific researches on schistosomiasis control in China were analyzed. The laboratories accredited by China National Accreditation Service for Conformity Assessment (CNAS) were considered to be capable for testing associated with schistosomiasis control, and the testing capability of schistosomiasis control institutions was analyzed. RESULTS: A total of 486 valid questionnaires were recovered from 486 schistosomiasis control institutions in 12 endemic provinces (municipality, autonomous region) of China, including 12 provincial-level institutions (2.5%), 77 municipal-level institutions (15.8%) and 397 county-level institutions (81.7%). Of all schistosomiasis control institutions, 376 (77.4%) were centers for disease control and prevention or public health centers, 102 (21.0%) were institutions for schistosomiasis, endemic disease and parasitic disease control, and 8 (1.6%) were hospitals, healthcare centers or others. There were 37 713 active employees in the 486 schistosomiasis control institutions, including 5 675 employees related to schistosomiasis control, and the proportions of employees associated with schistosomiasis control among all active employees were 5.9% (231/3 897), 5.5% (566/10 134), and 20.6% (4 878/23 682) in provincial-, municipal-, and county-level institutions, respectively. There were 3 826 full-time employees working in schistosomiasis control activities, with 30.5% (1 166/3 826), 34.6% (1 324) and 34.9% (1 336/3 826) at ages of 40 years and below, 41 to 50 years and over 50 years, and there were 1 571 (41.0%) full-time schistosomiasis control employees with duration of schistosomiasis control activities for over 25 years, and 1 358 (35.5%) employees with junior professional titles and 1 290 with intermediate professional titles (35.5%), while 712 (18.6%) full-time employees working in schistosomiasis control activities had no professional titles. The three core schistosomiasis control activities included snail control (26.3%, 374/1 420), epidemics surveillance and management (25.4%, 361/1 420) and health education (18.8%, 267/1 420) in schistosomiasis control institutions. The Kato-Katz method, miracidium hatching test with nylon gauzes, and indirect haemagglutination assay (IHA) were the most commonly used techniques for detection of schistosomiasis, and there were less than 50% laboratories that had capabilities or experimental conditions for performing enzyme-linked immunosorbent assay (ELISA), dipstick dye immunoassay (DDIA), dot immunogold filtration assay (DIG-FA), loop-mediated isothermal amplification (LAMP) and polymerase chain reaction (PCR) assays. During the period from 2018 to 2022, schistosomiasis control institutions had undertaken a total of 211 research projects for schistosomiasis control, with a total funding of 18.596 million RMB, published 619 articles, participated in formulation of 13 schistosomiasis control-related criteria, and applied for 113 schistosomiasis control-related patents, including 101 that were granted, and commercialized 4 scientific research outcomes. CONCLUSIONS: The proportion of independent specialized schistosomiasis control institutions is low in schistosomiasis control institutions in China, which suffers from problems of unsatisfactory laboratory testing capabilities, aging of staff and a high proportion of low-level professional titles. More investment into and intensified schistosomiasis control activities and improved capability building and talent cultivation in schistosomiasis control institutions are recommended to provide a powerful support for high-quality elimination of schistosomiasis in China.


Capacity Building , Schistosomiasis , Humans , Cross-Sectional Studies , Schistosomiasis/epidemiology , Schistosomiasis/prevention & control , Schistosomiasis/parasitology , Laboratories , China/epidemiology
8.
PLoS Negl Trop Dis ; 18(3): e0012009, 2024 Mar.
Article En | MEDLINE | ID: mdl-38512811

Schistosomiasis is the second most widespread parasitic disease affecting humans. A key component of today's infection control measures is the diagnosis and monitoring of infection, informing individual- and community-level treatment. However, newly acquired infections and/or low parasite burden are still difficult to diagnose reliably. Furthermore, even though the pathological consequence of schistosome egg sequestration in host tissues is well described, the evidence linking egg burden to morbidity is increasingly challenged, making it inadequate for pathology monitoring. In the last decades, omics-based instruments and methods have been developed, adjusted, and applied in parasitic research. In particular, the profiling of the most reliable determinants of phenotypes, metabolites by metabolomics, emerged as a powerful boost in the understanding of basic interactions within the human host during infection. As such, the fine detection of host metabolites produced upon exposure to parasites such as Schistosoma spp. and the ensuing progression of the disease are believed to enable the identification of Schistosoma spp. potential biomarkers of infection and associated pathology. However, attempts to provide such a comprehensive understanding of the alterations of the human metabolome during schistosomiasis are rare, limited in their design when performed, and mostly inconclusive. In this review, we aimed to briefly summarize the most robust advances in knowledge on the changes in host metabolic profile during Schistosoma infections and provide recommendations for approaches to optimize the identification of metabolomic signatures of human schistosomiasis.


Schistosoma , Schistosomiasis , Animals , Humans , Schistosoma/genetics , Schistosomiasis/parasitology , Metabolome , Biomarkers , Morbidity
9.
Sci Rep ; 14(1): 5974, 2024 03 12.
Article En | MEDLINE | ID: mdl-38472267

Schistosomiasis is a major Neglected Tropical Disease, caused by the infection with blood flukes in the genus Schistosoma. To complete the life cycle, the parasite undergoes asexual and sexual reproduction within an intermediate snail host and a definitive mammalian host, respectively. The intra-molluscan phase provides a critical amplification step that ensures a successful transmission. However, the cellular and molecular mechanisms underlying the development of the intra-molluscan stages remain poorly understood. Here, single cell suspensions from S. mansoni mother sporocysts were produced and sequenced using the droplet-based 10X Genomics Chromium platform. Six cell clusters comprising two tegument, muscle, neuron, parenchyma and stem/germinal cell clusters were identified and validated by in situ hybridisation. Gene Ontology term analysis predicted key biological processes for each of the clusters, including three stem/germinal sub-clusters. Furthermore, putative transcription factors predicted for stem/germinal and tegument clusters may play key roles during parasite development and interaction with the intermediate host.


Parasites , Schistosomiasis mansoni , Schistosomiasis , Animals , Gene Expression Profiling , Mammals/genetics , Mollusca/genetics , Parasites/genetics , Schistosoma mansoni/genetics , Schistosomiasis/parasitology , Schistosomiasis mansoni/parasitology
10.
PLoS Negl Trop Dis ; 18(2): e0011966, 2024 Feb.
Article En | MEDLINE | ID: mdl-38381759

Schistosomiasis is one of the most devastating human diseases worldwide. The disease is caused by six species of Schistosoma blood fluke; five of which cause intestinal granulomatous inflammation and bleeding. The current diagnostic method is inaccurate and delayed, hence, biomarker identification using metabolomics has been applied. However, previous studies only investigated infection caused by one Schistosoma spp., leaving a gap in the use of biomarkers for other species. No study focused on understanding the progression of intestinal disease. Therefore, we aimed to identify early gut biomarkers of infection with three Schistosoma spp. and progression of intestinal pathology. We infected 3 groups of mice, 3 mice each, with Schistosoma mansoni, Schistosoma japonicum or Schistosoma mekongi and collected their feces before and 1, 2, 4 and 8 weeks after infection. Metabolites in feces were extracted and identified using mass spectrometer-based metabolomics. Metabolites were annotated and analyzed with XCMS bioinformatics tool and Metaboanalyst platform. From >36,000 features in all conditions, multivariate analysis found a distinct pattern at each time point for all species. Pathway analysis reported alteration of several lipid metabolism pathways as infection progressed. Disturbance of the glycosaminoglycan degradation pathway was found with the presence of parasite eggs, indicating involvement of this pathway in disease progression. Biomarkers were discovered using a combination of variable importance for projection score cut-off and receiver operating characteristic curve analysis. Five molecules met our criteria and were present in all three species: 25-hydroxyvitamin D2, 1α-hydroxy-2ß-(3-hydroxypropoxy) vitamin D3, Ganoderic acid Md, unidentified feature with m/z 455.3483, and unidentified feature with m/z 456.3516. These molecules were proposed as trans-genus biomarkers of early schistosomiasis. Our findings provide evidence for disease progression in intestinal schistosomiasis and potential biomarkers, which could be beneficial for early detection of this disease.


Schistosoma japonicum , Schistosomiasis mansoni , Schistosomiasis , Mice , Humans , Animals , Schistosomiasis mansoni/diagnosis , Schistosomiasis/diagnosis , Schistosomiasis/parasitology , Biomarkers , Early Diagnosis , Disease Progression
11.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 35(6): 638-640, 2024 Feb 01.
Article Zh | MEDLINE | ID: mdl-38413026

To evaluate the implementation of Survey of oncomelanid snails (WS/T 563-2017) in schistosomiasis-endemic foci, two schistosomiasis-endemic counties were selected from two provinces of Sichuan and Anhui. Professional staff working in province-, city-, county- and township-level disease control and prevention institutions, parasitic disease control institutions or medical institutions were recruited, and the understanding, use and implementation of Survey of oncomelanid snails (WS/T 563-2017) were investigated using questionnaires and interviews. The awareness, use, proportion of propagation and implementation and correct rate of answering questions pertaining to Survey of oncomelanid snails (WS/T 563-2017) were analyzed. A total of 270 questionnaires were allocated, and 269 were recovered, including 254 valid questionnaires. The overall awareness of Survey of oncomelanid snails (WS/T 563-2017) was 84.64% (215/254), and propagation and implementation of Survey of oncomelanid snails (WS/T 563-2017) was not performed in 23.28% (17/73) of the survey institutions following implementation of Survey of oncomelanid snails (WS/T 563-2017), with meeting training and allocation of propagation materials as the main type of propagation and implementation. Among 254 respondents, 77.16% (196/254) were familiar with the standard, 66.14% (168/254) understood the conditions for use of the standard during snail surveys, and 96.85% (246/254) had the approach for identifying snails. In addition, there were 41.73% (106/254), 50.78% (129/254) and 7.48% (19/254) of respondents that considered the operability of Survey of oncomelanid snails (WS/T 563-2017) was very good, good and general, respectively. The findings demonstrate that the issue and implementation of Survey of oncomelanid snails (WS/T 563-2017) has filled the gap for the standardization of snail control techniques, and which plays an importang guiding role in the national schistosomiasis control program.


Schistosomiasis , Humans , Schistosomiasis/epidemiology , Schistosomiasis/prevention & control , Schistosomiasis/parasitology , Surveys and Questionnaires , Cities , China/epidemiology
12.
Clin Microbiol Rev ; 37(1): e0009823, 2024 03 14.
Article En | MEDLINE | ID: mdl-38319102

Schistosomiasis is a neglected tropical disease caused by the helminth Schistosoma spp. and has the second highest global impact of all parasites. Schistosoma are transmitted through contact with contaminated fresh water predominantly in Africa, Asia, the Middle East, and South America. Due to the widespread prevalence of Schistosoma, co-infection with other infectious agents is common but often poorly described. Herein, we review recent literature describing the impact of Schistosoma co-infection between species and Schistosoma co-infection with blood-borne protozoa, soil-transmitted helminths, various intestinal protozoa, Mycobacterium, Salmonella, various urinary tract infection-causing agents, and viral pathogens. In each case, disease severity and, of particular interest, the immune landscape, are altered as a consequence of co-infection. Understanding the impact of schistosomiasis co-infections will be important when considering treatment strategies and vaccine development moving forward.


Coinfection , Helminthiasis , Schistosomiasis , Humans , Coinfection/epidemiology , Coinfection/parasitology , Schistosomiasis/complications , Schistosomiasis/epidemiology , Schistosomiasis/parasitology , Africa , Soil/parasitology , Prevalence , Helminthiasis/complications , Helminthiasis/epidemiology , Helminthiasis/parasitology
13.
PLoS Pathog ; 20(1): e1011949, 2024 Jan.
Article En | MEDLINE | ID: mdl-38285715

Schistosomes are flatworm parasites that undergo a complex life cycle involving two hosts. The regulation of the parasite's developmental processes relies on both coding RNAs and non-coding RNAs. However, the roles of non-coding RNAs, including long non-coding RNAs (lncRNAs) in schistosomes remain largely unexplored. Here we conduct advanced RNA sequencing on male and female S. japonicum during their pairing and reproductive development, resulting in the identification of nearly 8,000 lncRNAs. This extensive dataset enables us to construct a comprehensive co-expression network of lncRNAs and mRNAs, shedding light on their interactions during the crucial reproductive stages within the mammalian host. Importantly, we have also revealed a specific lncRNA, LNC3385, which appears to play a critical role in the survival and reproduction of the parasite. These findings not only enhance our understanding of the dynamic nature of lncRNAs during the reproductive phase of schistosomes but also highlight LNC3385 as a potential therapeutic target for combating schistosomiasis.


Parasites , RNA, Long Noncoding , Schistosoma japonicum , Schistosomiasis , Animals , Male , Female , Schistosoma japonicum/genetics , RNA, Long Noncoding/genetics , RNA, Antisense/genetics , Schistosomiasis/parasitology , Parasites/genetics , Mammals
14.
Parasitol Int ; 98: 102827, 2024 Feb.
Article En | MEDLINE | ID: mdl-38030120

Schistosomiasis is a parasitic infection caused by Schistosoma japonicum. It remains a principal local health issue in the Philippines, demonstrating endemicity in 28 provinces and afflicting thousands of Filipino individuals annually. Despite this, no clear distribution maps for the disease have been comprehensively reported. Therefore, species distribution modeling (SDM) employing the MaxEnt algorithm and GIS application techniques was utilized to denote the potential risk of schistosomiasis in the country. With a high AUC score of 0.846, the SDM yielded a favorable and reliable correlative map illustrating a predicted schistosomal temporal distribution concentrated primarily on the country's eastern portion with a more pronounced wet than dry season. The precipitation of the driest quarter was determined to be the most significant contributing factor among the bioclimatic variables evaluated. This suggests a possible increase in adaptations concerning the rainfall and thermal tolerances of the parasites' vectors. Moreover, socioeconomic status between Philippine regions revealed an inverse proportion with the number of schistosomiasis cases. This study also discussed the potential role of climate change on the range shifts and the potential risk of parasite infection in the Philippines.


Schistosoma japonicum , Schistosomiasis , Animals , Philippines/epidemiology , Schistosomiasis/epidemiology , Schistosomiasis/parasitology
15.
Parasit Vectors ; 16(1): 453, 2023 Dec 13.
Article En | MEDLINE | ID: mdl-38093363

Schistosomiasis, the second largest parasitic disease in the world after malaria, poses a significant threat to human health and causes public health issues. The disease primarily affects populations in economically underdeveloped tropical regions, earning it the title of "neglected tropical disease". Schistosomiasis is difficult to eradicate globally if medication alone is used. One of the essential elements of thorough schistosomiasis prevention and control is the management and disruption of the life cycle of intermediate host snails. The key approach to controlling the transmission of schistosomiasis is to control the intermediate hosts of the schistosome to disrupt its life cycle. We believe that approaching it from the perspective of the intermediate host's immunity could be an environmentally friendly and potentially effective method. Currently, globally significant intermediate host snails for schistosomes include Oncomelania hupensis, Biomphalaria glabrata, and Bulinus truncatus. The immune interaction research between B. glabrata and Schistosoma mansoni has a history of several decades, and the complete genome sequencing of both B. glabrata and B. truncatus has been accomplished. We have summarized the immune-related factors and research progress primarily studied in B. glabrata and B. truncatus and compared them with several humoral immune factors that O. hupensis research focuses on: macrophage migration inhibitory factor (MIF), Toll-like receptors (TLRs), and thioredoxin (Trx). We believe that continued exploration of the immune interactions between O. hupensis and Schistosoma japonicum is valuable. This comparative analysis can provide some direction and clues for further in-depth research. Comparative immunological studies between them not only expand our understanding of the immune defense responses of snails that act as intermediaries for schistosomes but also facilitate the development of more comprehensive and integrated strategies for schistosomiasis prevention and control. Furthermore, it offers an excellent opportunity to study the immune system of gastropods and their co-evolution with pathogenic organisms.


Biomphalaria , Schistosoma japonicum , Schistosomiasis , Animals , Humans , Schistosoma japonicum/genetics , Schistosomiasis/parasitology , Biomphalaria/parasitology , Bulinus , Schistosoma mansoni
16.
Parasitol Res ; 123(1): 72, 2023 Dec 27.
Article En | MEDLINE | ID: mdl-38148420

Probiotics contribute to the integrity of the intestinal mucosa and preventing dysbiosis caused by opportunistic pathogens, such as intestinal helminths. Bacillus cereus GM obtained from Biovicerin® was cultured to obtain spores for in vivo evaluation on experimental schistosomiasis. The assay was performed for 90 days, where all animals were infected with 50 cercariae of Schistosoma mansoni on the 15th day. Three experimental groups were formed, as follows: G1-saline solution from the 1st until the 90th day; G2-B. cereus GM (105 spores in 300 µL of sterile saline) from the 1st until the 90th day; and G3-B. cereus GM 35th day (onset of oviposition) until the 90th day. G2 showed a significant reduction of 43.4% of total worms, 48.8% of female worms and 42.5% of eggs in the liver tissue. In G3, the reduction was 25.2%, 29.1%, and 44% of the total number of worms, female worms, and eggs in the liver tissue, respectively. G2 and G3 showed a 25% (p < 0.001) and 22% (p < 0.001) reduction in AST levels, respectively, but ALT levels did not change. ALP levels were reduced by 23% (p < 0.001) in the G2 group, but not in the G3. The average volume of granulomas reduced (p < 0.0001) 65.2% and 46.3% in the liver tissue and 83.0% and 53.2% in the intestine, respectively, in groups G2 and G3. Th1 profile cytokine (IFN-γ, TNF-α, and IL-6) and IL-17 were significantly increased (p < 0.001) stimulated with B. cereus GM in groups G2 and G3. IL-4 showed significant values when the stimulus was mediated by ConA. By modulating the immune response, B. cereus GM reduced the burden of worms, improved some markers of liver function, and reduced the granulomatous inflammatory reaction in mice infected with S. mansoni, especially when administered before infection.


Probiotics , Schistosomiasis mansoni , Schistosomiasis , Female , Animals , Mice , Schistosomiasis mansoni/parasitology , Bacillus cereus , Schistosoma mansoni , Schistosomiasis/parasitology , Liver/parasitology
17.
Infect Dis Poverty ; 12(1): 104, 2023 Nov 28.
Article En | MEDLINE | ID: mdl-38017557

BACKGROUND: Schistosoma mekongi is a human blood fluke causing schistosomiasis that threatens approximately 1.5 million humans in the world. Nonetheless, the limited available S. mekongi genomic resources have hindered understanding of its biology and parasite-host interactions for disease management and pathogen control. The aim of our study was to integrate multiple technologies to construct a high-quality chromosome-level assembly of the S. mekongi genome. METHODS: The reference genome for S. mekongi was generated through integrating Illumina, PacBio sequencing, 10 × Genomics linked-read sequencing, and high-throughput chromosome conformation capture (Hi-C) methods. In this study, we conducted de novo assembly, alignment, and gene prediction to assemble and annotate the genome. Comparative genomics allowed us to compare genomes across different species, shedding light on conserved regions and evolutionary relationships. Additionally, our transcriptomic analysis focused on genes associated with parasite-snail interactions in S. mekongi infection. We employed gene ontology (GO) enrichment analysis for functional annotation of these genes. RESULTS: In the present study, the S. mekongi genome was both assembled into 8 pseudochromosomes with a length of 404 Mb, with contig N50 and scaffold N50 lengths of 1168 kb and 46,759 kb, respectively. We detected that 43% of the genome consists of repeat sequences and predicted 9103 protein-coding genes. We also focused on proteases, particularly leishmanolysin-like metalloproteases (M8), which are crucial in the invasion of hosts by 12 flatworm species. Through phylogenetic analysis, it was discovered that the M8 gene exhibits lineage-specific amplification among the genus Schistosoma. Lineage-specific expansion of M8 was observed in blood flukes. Additionally, the results of the RNA-seq revealed that a mass of genes related to metabolic and biosynthetic processes were up-regulated, which might be beneficial for cercaria production. CONCLUSIONS: This study delivers a high-quality, chromosome-scale reference genome of S. mekongi, enhancing our understanding of the divergence and evolution of Schistosoma. The molecular research conducted here also plays a pivotal role in drug discovery and vaccine development. Furthermore, our work greatly advances the understanding of host-parasite interactions, providing crucial insights for schistosomiasis intervention strategies.


Schistosomiasis , Trematoda , Animals , Humans , Phylogeny , Public Health , Schistosoma/genetics , Schistosomiasis/parasitology , Chromosomes/genetics
18.
Infect Dis Poverty ; 12(1): 108, 2023 Nov 29.
Article En | MEDLINE | ID: mdl-38017569

BACKGROUND: Urbanization greatly affects the natural and social environment of human existence and may have a multifactoral impact on parasitic diseases. Schistosomiasis, a common parasitic disease transmitted by the snail Oncomelania hupensis, is mainly found in areas with population aggregations along rivers and lakes where snails live. Previous studies have suggested that factors related to urbanization may influence the infection risk of schistosomiasis, but this association remains unclear. This study aimed to analyse the effect of urbanization on schistosomiasis infection risk from a spatial and temporal perspective in the endemic areas along the Yangtze River Basin in China. METHODS: County-level schistosomiasis surveillance data and natural environmental factor data covering the whole Anhui Province were collected. The urbanization level was characterized based on night-time light data from the Defense Meteorological Satellite Program Operational Linescan System (DMSP-OLS) and the National Polar-Orbiting Partnership's Visible Infrared Imaging Radiometer Suite (NPP-VIIRS). The geographically and temporally weighted regression model (GTWR) was used to quantify the influence of urbanization on schistosomiasis infection risk with the other potential risk factors controlled. The regression coefficient of urbanization was tested for significance (α = 0.05), and the influence of urbanization on schistosomiasis infection risk was analysed over time and across space based on significant regression coefficients. Variables studied included climate, soil, vegetation, hydrology and topography. RESULTS: The mean regression coefficient for urbanization (0.167) is second only to the leached soil area (0.300), which shows that the urbanization is the most important influence factors for schistosomiasis infection risk besides leached soil area. The other important variables are distance to the nearest water source (0.165), mean minimum temperature (0.130), broadleaf forest area (0.105), amount of precipitation (0.073), surface temperature (0.066), soil bulk density (0.037) and grassland area (0.031). The influence of urbanization on schistosomiasis infection risk showed a decreasing trend year by year. During the study period, the significant coefficient of urbanization level increased from - 0.205 to - 0.131. CONCLUSIONS: The influence of urbanization on schistosomiasis infection has spatio-temporal heterogeneous. The urbanization does reduce the risk of schistosomiasis infection to some extend, but the strength of this influence decreases with increasing urbanization. Additionally, the effect of urbanization on schistosomiasis infection risk was greater than previous reported natural environmental factors. This study provides scientific basis for understanding the influence of urbanization on schistosomiasis, and also provides the feasible research methods for other similar studies to answer the issue about the impact of urbanization on disease risk.


Schistosomiasis , Urbanization , Animals , Humans , Schistosomiasis/epidemiology , Schistosomiasis/parasitology , Snails/parasitology , Rivers/parasitology , China/epidemiology , Soil
19.
Molecules ; 28(19)2023 Sep 26.
Article En | MEDLINE | ID: mdl-37836650

It is estimated that 250 million people worldwide are affected by schistosomiasis. Disease transmission is related to the poor sanitation and hygiene habits that affect residents of impoverished regions in tropical and subtropical countries. The main species responsible for causing disease in humans are Schistosoma Mansoni, S. japonicum, and S. haematobium, each with different geographic distributions. Praziquantel is the drug predominantly used to treat this disease, which offers low effectiveness against immature and juvenile parasite forms. In addition, reports of drug resistance prompt the development of novel therapeutic approaches. Natural products represent an important source of new compounds, especially those obtained from plant sources. This review compiles data from several in vitro and in vivo studies evaluating various compounds and essential oils derived from plants with cercaricidal and molluscicidal activities against both juvenile and adult forms of the parasite. Finally, this review provides an important discussion on recent advances in molecular and computational tools deemed fundamental for more rapid and effective screening of new compounds, allowing for the optimization of time and resources.


Anthelmintics , Biological Products , Schistosomiasis , Humans , Animals , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Schistosoma haematobium , Biological Products/pharmacology , Biological Products/therapeutic use , Schistosomiasis/drug therapy , Schistosomiasis/parasitology , Praziquantel/pharmacology , Schistosoma mansoni
20.
PLoS Pathog ; 19(7): e1011018, 2023 07.
Article En | MEDLINE | ID: mdl-37428793

Human schistosomiasis is a neglected tropical disease caused by Schistosoma mansoni, S. haematobium, and S. japonicum. Praziquantel (PZQ) is the method of choice for treatment. Due to constant selection pressure, there is an urgent need for new therapies for schistosomiasis. Previous treatment of S. mansoni included the use of oxamniquine (OXA), a drug that is activated by a schistosome sulfotransferase (SULT). Guided by data from X-ray crystallography and Schistosoma killing assays more than 350 OXA derivatives were designed, synthesized, and tested. We were able to identify CIDD-0150610 and CIDD-0150303 as potent derivatives in vitro that kill (100%) of all three Schistosoma species at a final concentration of 71.5 µM. We evaluated the efficacy of the best OXA derivates in an in vivo model after treatment with a single dose of 100 mg/kg by oral gavage. The highest rate of worm burden reduction was achieved by CIDD -150303 (81.8%) against S. mansoni, CIDD-0149830 (80.2%) against S. haematobium and CIDD-066790 (86.7%) against S. japonicum. We have also evaluated the ability of the derivatives to kill immature stages since PZQ does not kill immature schistosomes. CIDD-0150303 demonstrated (100%) killing for all life stages at a final concentration of 143 µM in vitro and effective reduction in worm burden in vivo against S. mansoni. To understand how OXA derivatives fit in the SULT binding pocket, X-ray crystal structures of CIDD-0150303 and CIDD-0150610 demonstrate that the SULT active site will accommodate further modifications to our most active compounds as we fine tune them to increase favorable pharmacokinetic properties. Treatment with a single dose of 100 mg/kg by oral gavage with co-dose of PZQ + CIDD-0150303 reduced the worm burden of PZQ resistant parasites in an animal model by 90.8%. Therefore, we conclude that CIDD-0150303, CIDD-0149830 and CIDD-066790 are novel drugs that overcome some of PZQ limitations, and CIDD-0150303 can be used with PZQ in combination therapy.


Anthelmintics , Schistosomiasis mansoni , Schistosomiasis , Animals , Humans , Praziquantel/pharmacology , Praziquantel/chemistry , Oxamniquine/pharmacology , Schistosomiasis/drug therapy , Schistosomiasis/parasitology , Schistosoma mansoni , Combined Modality Therapy , Neglected Diseases/drug therapy , Schistosomiasis mansoni/drug therapy , Schistosomiasis mansoni/parasitology
...