RESUMEN
One of the most important problems of fish aquaculture is the high incidence of fish deformities, which are mainly skeletal. In this study, genetic parameters on gilthead seabream (Sparus aurata L.) for skeleton deformities at different ages (179, 269, 389, 539 and 689 days) and their correlations with growth traits were estimated, as were as their genotype × environment interactions (G × E) at harvesting age. A total of 4093 offspring from the mass spawning of three industrial broodstocks belonging to the PROGENSA(®) breeding programme were mixed and on-grown by different production systems in four Spanish regions: Canary Islands (tanks and cage), Andalusia (estuary), Catalonia (cage) and Murcia (cage). Parental assignment was inferred using the standardized SMsa1 microsatellite multiplex PCR. From three broodstocks, 139 breeders contributed to the spawn and a total of 297 full-sibling families (52 paternal and 53 maternal half-sibling families) were represented. Heritabilities at different ages were medium for growth traits (0.16-0.48) and vertebral deformities (0.16-0.41), and low for any type of deformity (0.07-0.26), head deformities (0.00-0.05) and lack of operculum (0.06-0.11). The genetic correlations between growth and deformity traits were medium and positive, suggesting that to avoid increasing deformities they should be taken into account in breeding programmes when growth is selected. The G × E interactions among the different facilities were weak for length and deformity and strong for growth rate during this period. These results highlight the potential for the gilthead seabream industry to reduce the prevalence of deformities by genetic improvement tools.
Asunto(s)
Huesos/anomalías , Interacción Gen-Ambiente , Genotipo , Dorada/crecimiento & desarrollo , Dorada/genética , Envejecimiento , Animales , Acuicultura/métodos , Cruzamiento , Repeticiones de Microsatélite , Carácter Cuantitativo Heredable , EspañaRESUMEN
It is widely known that ß-glucans and probiotic bacteria are good immunostimulants for fish. In the present work we have evaluated the dietary effect of ß-1,3/1,6-glucan (isolated from Laminarina digitata) and Pdp 11 (Shewanella putrefaciens, probiotic isolated from gilthead seabream skin), single or combined, on growth, humoural (seric level of total IgM antibodies and peroxidase and antiprotease activities) and cellular innate immune response (peroxidase and phagocytic activities of head-kidney leucocytes), as well as the expression of immune-related genes in gilthead seabream (Sparus aurata). Four treatment groups were established: control (non-supplemented diet), Pdp 11 (10(9) cfu g(-1)), ß-1,3/1,6-glucan (0.1%) and ß-1,3/1,6-glucan + Pdp 11 (0.1% and 10(9) cfu g(-1), respectively). Fish were sampled after 1, 2 and 4 weeks of feeding. Interestingly, all supplemented diets produced increments in the seabream growth rates, mainly the Pdp 11-suplemented diet. Overall, Pdp 11 dietary administration resulted in decreased serum IgM levels and peroxidase activity. However, the seric antiprotease activity was increased in fish fed with both supplements together. Furthermore, ß-1,3/1,6-glucan and combined diet increased phagocytic activity after 2 or 4 weeks. At gene level, IL-1ß and INFγ transcripts were always up-regulated in HK but only the interleukin reached significance after 4 weeks in the group fed with ß-glucan. On the contrary, IgM gene expression tended to be down-regulated being significant after 1 week in seabream specimens fed with ß-glucan or ß-glucan plus Pdp 11. These results suggest that ß-1,3/1,6-glucan and Pdp 11 modulate the immune response and stimulates growth of the gilthead seabream, one of the species with the highest rate of production in Mediterranean aquaculture.