Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 9.200
1.
Anal Chim Acta ; 1309: 342685, 2024 Jun 22.
Article En | MEDLINE | ID: mdl-38772667

The monitoring of heavy metal ions in ocean is crucial for environment protection and assessment of seawater quality. However, the detection of heavy metal ions in seawater with electrochemical sensors, especially for long-term monitoring, always faces challenges due to marine biofouling caused by the nonspecific adsorption of microbial and biomolecules. Herein, an electrochemical aptasensor, integrating both antifouling and antibacterial properties, was developed for the detection of Hg2+ in the ocean. In this electrochemical aptasensor, eco-friendly peptides with superior hydrophilicity served as anti-biofouling materials, preventing nonspecific adsorption on the sensing interface, while silver nanoparticles were employed to eliminate bacteria. Subsequently, a ferrocene-modified aptamer was employed for the specific recognition of Hg2+, leveraging the aptamer's ability to fold into a thymine-Hg2+-thymine (T-Hg2+-T) structure upon interaction, and bringing ferrocene nearer to the sensor surface, significantly amplifying the electrochemical response. The prepared electrochemical aptasensor significantly reduced the nonspecific adsorption in seawater while maintaining sensitive electrochemical response. Furthermore, the biosensor exhibited a linear response range of 0.01-100 nM with a detection limit of 2.30 pM, and realized the accurate monitoring of mercury ions in real marine environment. The research results offer new insights into the preparation of marine antifouling sensing devices, and it is expected that sensors with antifouling and antimicrobial capabilities will find broad applications in the monitoring of marine pollutants.


Anti-Bacterial Agents , Biofouling , Biosensing Techniques , Electrochemical Techniques , Mercury , Seawater , Mercury/analysis , Seawater/chemistry , Seawater/microbiology , Electrochemical Techniques/methods , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/pharmacology , Biosensing Techniques/methods , Biofouling/prevention & control , Aptamers, Nucleotide/chemistry , Silver/chemistry , Water Pollutants, Chemical/analysis , Metal Nanoparticles/chemistry , Limit of Detection , Ferrous Compounds/chemistry , Metallocenes
2.
Water Environ Res ; 96(5): e11037, 2024.
Article En | MEDLINE | ID: mdl-38726833

Microbial pollution of recreational waters leads to millions of skin, respiratory, and gastrointestinal illnesses globally. Fecal indicator bacteria (FIB) are monitored to assess recreational waters but may not reflect the presence of Staphylococcus aureus, a global leader in bacterial fatalities. Since many community-acquired S. aureus skin infections are associated with high recreational water usage, this study measured and modeled S. aureus, methicillin-resistant S. aureus (MRSA), and FIB (Enterococcus spp., Clostridium perfringens) concentrations in seawater and sand at six beaches in Hilo, Hawai'i, USA, over 37 sample dates from July 2016 to February 2019 using culturing techniques. Generalized linear models predicted bacterial concentrations with physicochemical and environmental data. Beach visitors were also surveyed on their preferred activities. S. aureus and FIB concentrations were roughly 6-78 times higher at beaches with freshwater discharge than at those without. Seawater concentrations of Enterococcus spp. were positively associated with MRSA but not S. aureus. Elevated S. aureus was associated with lower tidal heights, higher freshwater discharge, onsite sewage disposal system density, and turbidity. Regular monitoring of beaches with freshwater input, utilizing real-time water quality measurements with robust modeling techniques, and raising awareness among recreational water users may mitigate exposure to S. aureus, MRSA, and FIB. PRACTITIONER POINTS: Staphylococcus aureus and fecal bacteria concentrations were higher in seawater and sand at beaches with freshwater discharge. In seawater, Enterococcus spp. positively correlated with MRSA, but not S. aureus. Freshwater discharge, OSDS density, water turbidity, and tides significantly predicted bacterial concentrations in seawater and sand. Predictive bacterial models based upon physicochemical and environmental data developed in this study are readily available for user-friendly application.


Feces , Seawater , Staphylococcus aureus , Seawater/microbiology , Staphylococcus aureus/isolation & purification , Hawaii , Feces/microbiology , Bathing Beaches , Environmental Monitoring , Sand/microbiology , Water Microbiology , Enterococcus/isolation & purification , Methicillin-Resistant Staphylococcus aureus/isolation & purification
3.
Curr Microbiol ; 81(7): 178, 2024 May 17.
Article En | MEDLINE | ID: mdl-38758299

A novel Gram-stain-negative, strictly aerobic, short-rod-shaped, and chemo-organoheterotrophic bacterium, designated KMU-50T, was isolated from seawater gathered from Dadaepo Harbor in South Korea. The microorganism grew at 0-4.0% NaCl concentrations (w/v), pH 6.0-8.0, and 4-37 °C. The 16S rRNA gene sequence-based phylogenetic tree demonstrated that the strain KMU-50T is a novel member of the family Roseobacteraceae and were greatly related to Aliiroseovarius crassostreae CV919-312T with sequence similarity of 98.3%. C18:1 ω7c was the main fatty acid and ubiquinone-10 was the only isoprenoid quinone. The dominant polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, two unidentified phospholipids, an unidentified aminolipid, and an unidentified lipid. The genome size of strain KMU-50T was 3.60 Mbp with a DNA G+C content of 56.0%. The average nucleotide identity (ANI) and average amino acid identity (AAI) values between the genomes of strain KMU-50T and its closely related species were 76.0-81.2% and 62.2-81.5%, respectively. The digital DNA-DNA hybridization (dDDH) value of strain KMU-50T with the strain of A. crassostreae CV919-312T was 25.1%. The genome of the strain KMU-50T showed that it encoded many genes involved in the breakdown of bio-macromolecules, thus showing a high potential as a producer of industrially useful enzymes. Consequently, the strain is described as a new species in the genus Aliiroseovarius, for which the name Aliiroseovarius salicola sp. nov., is proposed with the type strain KMU-50T (= KCCM 90480T = NBRC 115482T).


Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Phospholipids , Phylogeny , RNA, Ribosomal, 16S , Rhodobacteraceae , Seawater , Seawater/microbiology , RNA, Ribosomal, 16S/genetics , Rhodobacteraceae/genetics , Rhodobacteraceae/classification , Rhodobacteraceae/isolation & purification , Rhodobacteraceae/physiology , Fatty Acids/chemistry , DNA, Bacterial/genetics , Republic of Korea , Phospholipids/analysis , Ubiquinone/chemistry , Sequence Analysis, DNA , Genome, Bacterial , Nucleic Acid Hybridization
4.
World J Microbiol Biotechnol ; 40(7): 202, 2024 May 14.
Article En | MEDLINE | ID: mdl-38743315

Currently, heavy metal-resistant (HMR) marine actinomycetes have attracted much attention worldwide due to their unique capabilities. In this study, 27 marine-derived actinomycetes were isolated from coastal beaches in the Arabian Gulf of Al-Jubail in Saudi Arabia and screened for resistance to 100 mg/L of the heavy metals Cd2+, Cr6+, Cu2+, Fe2+, Pb2+, and Ni2+ using different assay techniques. Six isolates were selected as HMRs, of which two isolates, JJB5 and JJB11, exhibited the highest maximum tolerance concentrations (200- > 300 mg/L). Both isolates were the highest among six-HMR screened for their biodegradation potential of plastics low-density polyethylene, polystyrene, and polyvinyl chloride, recording the highest weight loss (15 ± 1.22 - 65 ± 1.2%) in their thin films. They also showed the highest biodegradability of the pesticides acetamiprid, chlordane, hexachlorocyclohexane, indoxacarb and lindane, indicating promising removal capacities (95.70-100%) for acetamiprid and indoxacarb using HPLC analysis. Additionally, the cell-free filtrate (CFF) of both isolates displayed the highest antimicrobial activity among the six-HMR screened against a variety of microbial test strains, recording the highest inhibition zone diameters (13.76 ± 0.66 - 26.0 ± 1.13 mm). GC‒MS analyses of the ethyl acetate extract of their CFFs revealed the presence of diverse chemical compounds with a multitude of remarkable biological activities. Based on their spore morphology and wall-chemotype, they were assigned to the nocardioform-actinomycetes. Furthermore, their phenotypic characteristics, together with 16S rRNA gene sequencing (OR121525-OR121526), revealed them as Nocardia harenae JJB5 and Amycolatopsis marina JJB11. Our results suggest that marine HMR actinomycetes are promising candidates for various biotechnological applications.


Biodegradation, Environmental , Metals, Heavy , Microbial Sensitivity Tests , Nocardia , RNA, Ribosomal, 16S , Metals, Heavy/metabolism , RNA, Ribosomal, 16S/genetics , Nocardia/isolation & purification , Nocardia/genetics , Nocardia/metabolism , Saudi Arabia , Anti-Bacterial Agents/pharmacology , Phylogeny , Actinobacteria/metabolism , Actinobacteria/isolation & purification , Actinobacteria/genetics , Actinobacteria/classification , Water Pollutants, Chemical/metabolism , Seawater/microbiology , Pesticides/metabolism , Drug Resistance, Bacterial
5.
Article En | MEDLINE | ID: mdl-38743481

A Gram-stain-negative, yellow-pigmented, strictly aerobic, non-flagellated, motile by gliding, rod-shaped bacterium, designated strain YSD2104T, was isolated from a coastal sediment sample collected from the southeastern part of the Yellow Sea. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that strain YSD2104T was closely related to three type strains, Lutimonas vermicola IMCC1616T (97.4 %), Lutimonas saemankumensis SMK-142T (96.9 %), and Lutimonas halocynthiae RSS3-C1T (96.8 %). Strain YSD2104T has a single circular chromosome of 3.54 Mbp with a DNA G+C content of 38.3 mol%. The average nucleotide identity and digital DNA-DNA hybridization values between strain YSD2104T and the three type strains (L. vermicola IMCC1616 T, L. saemankumensis SMK-142T, and L. halocynthiae RSS3-C1T) were 74.0, 86.2 and 73.6 %, and 17.9, 30.3 and 17.8 %, respectively. Growth was observed at 20-30 °C (optimum, 30 °C), at pH 6.5-8.5 (optimum, pH 7.0), and with NaCl concentrations of 1.5-3.5 % (optimum, 2.5 %). The major carotenoid was zeaxanthin, and flexirubin-type pigment was not produced. The major respiratory quinone was menaquinone-6. The major fatty acids (>10 %) were iso-C15 : 0, iso-C15 : 1 G, iso-C17 : 0 3-OH, summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c), and summed feature 9 (iso-C17 : 1 ω9c and/or 10-methyl C16 : 0). The major polar lipids were phosphatidylethanolamine, one unidentified aminophospholipid, two unidentified aminolipids, and eight unidentified lipids. Conclusively, based on this polyphasic approach, we classified strain YSD2104T (=KCTC 102008T=JCM 36287T) as representing a novel species of the genus Lutimonas and proposed the name Lutimonas zeaxanthinifaciens sp. nov.


Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Geologic Sediments , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S , Seawater , Sequence Analysis, DNA , Vitamin K 2 , Zeaxanthins , Geologic Sediments/microbiology , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Vitamin K 2/analogs & derivatives , Vitamin K 2/analysis , Seawater/microbiology , China
6.
Article En | MEDLINE | ID: mdl-38747701

Two Gram-stain-negative strains, designed SYSU M86414T and SYSU M84420, were isolated from marine sediment samples of the South China Sea (Sansha City, Hainan Province, PR China). These strains were aerobic and could grow at pH 6.0-8.0 (optimum, pH 7.0), 4-37 °C (optimum, 28 °C), and in the presence of 0-10 % NaCl (w/v; optimum 3 %). The predominant respiratory menaquinone of strains SYSU M86414T and SYSU M84420 was MK-6. The primary cellular polar lipid was phosphatidylethanolamine. The major cellular fatty acids (>10 %) in both strains were iso-C15 : 0, iso-C15 : 1 G, and iso-C17 : 0 3-OH. The DNA G+C content of strains SYSU M86414T and SYSU M84420 were both 42.10 mol%. Phylogenetic analyses based on 16S rRNA gene sequences and core genes indicated that these novel strains belonged to the genus Flagellimonas and strain SYSU M86414T showed the highest 16S rRNA gene sequence similarity to Flagellimonas marinaquae JCM 11811T (98.83 %), followed by Flagellimonas aurea BC31-1-A7T (98.62 %), while strain SYSU M84420 had highest 16S rRNA gene sequence similarity to F. marinaquae JCM 11811T (98.76 %) and F. aurea BC31-1-A7T (98.55 %). Based on the results of polyphasic analyses, strains SYSU M86414T and SYSU M84420 should be considered to represent a novel species of the genus Flagellimonas, for which the name Flagellimonas halotolerans sp. nov. is proposed. The type strain of the proposed novel isolate is SYSU M86414T (=GDMCC 1.3806T=KCTC 102040T).


Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Geologic Sediments , Phylogeny , RNA, Ribosomal, 16S , Seawater , Sequence Analysis, DNA , Vitamin K 2 , China , RNA, Ribosomal, 16S/genetics , Geologic Sediments/microbiology , Fatty Acids/analysis , Seawater/microbiology , DNA, Bacterial/genetics , Vitamin K 2/analogs & derivatives , Vitamin K 2/analysis , Phosphatidylethanolamines , Molecular Sequence Data
7.
J Appl Microbiol ; 135(5)2024 May 01.
Article En | MEDLINE | ID: mdl-38710582

AIMS: This study aimed to evaluate the efficiency of two phages [VB_VaC_TDDLMA (phage TDD) and VB_VaC_SRILMA (phage SRI)] alone and in a cocktail to control Vibrio alginolyticus in brine shrimp before their administration in larviculture. METHODS AND RESULTS: Phages were isolated from seawater samples and characterized by host spectrum, growth parameters, adsorption rate, genomic analysis, and inactivation efficiency. Both phages belong to the Caudoviricetes class and lack known virulence or antibiotic-resistance genes. They exhibit specificity, infecting only their host, V. alginolyticus CECT 521. Preliminary experiments in a culture medium showed that phage TDD (reduction of 5.8 log CFU ml-1 after 10 h) outperformed phage SRI (reduction of 4.6 log CFU ml-1 after 6 h) and the cocktail TDD/SRI (reduction of 5.2 log CFU ml-1 after 8 h). In artificial marine water experiments with Artemia franciscana, both single phage suspensions and the phage cocktail, effectively inactivated V. alginolyticus in culture water (reduction of 4.3, 2.1, and 1.9 log CFU ml-1 for phages TDD, SRI, and the phage cocktail, respectively, after 12 h) and in A. franciscana (reduction of 51.6%, 87.3%, and 85.3% for phages TDD, SRI, and the phage cocktail, respectively, after 24 h). The two phages and the phage cocktail did not affect A. franciscana natural microbiota or other Vibrio species in the brine shrimp. CONCLUSIONS: The results suggest that phages can safely and effectively control V. alginolyticus in A. franciscana prior to its administration in larviculture.


Aquaculture , Artemia , Bacteriophages , Vibrio alginolyticus , Vibrio alginolyticus/virology , Animals , Artemia/microbiology , Artemia/virology , Animal Feed , Seawater/microbiology , Larva/microbiology
8.
Article En | MEDLINE | ID: mdl-38717925

A Gram-stain-negative, facultative aerobic, catalase- and oxidase-positive, non-motile, non-flagellated, and coccus-shaped bacterium, strain J2-16T, isolated from a marine green alga, was characterized taxonomically. Strain J2-16T grew at 20-40 °C (optimum, 30 °C), pH 6.0-10.0 (optimum, pH 7.0), and 1.0-4.0 % (w/v) NaCl (optimum, 3.0 %). Menaquinone-7 was identified as the sole respiratory quinone, and major fatty acids (>5 %) were C18 : 1 ω9c, iso-C14 : 0, C14 : 0, anteiso-C15 : 0, C18 : 0, C16 : 0, and C17 : 1 ω8c. The polar lipids of strain J2-16T consisted of phosphatidylglycerol, phosphatidylethanolamine, two unidentified phospholipids, and three unidentified lipids. The genome size of strain J2-16T was 5384 kb with a G+C content of 52.0 mol%. Phylogenetic analyses based on 16S rRNA gene and 120 protein marker sequences revealed that strain J2-16T formed a distinct phyletic lineage within the genus Coraliomargarita, closely related to Coraliomargarita sinensis WN38T and Coraliomargarita akajimensis DSM 45221T with 16S rRNA gene sequence similarities of 95.7 and 94.4 %, respectively. Average nucleotide identity and digital DNA-DNA hybridization values between strain J2-16T and Coraliomargarita species were lower than 71.2 and 20.0 %, respectively. The phenotypic, chemotaxonomic, and molecular features support that strain J2-16T represents a novel species of the genus Coraliomargarita, for which the name Coraliomargarita algicola sp. nov. is proposed. The type strain is J2-16T (=KACC 22590T=JCM 35407T).


Bacterial Typing Techniques , Base Composition , Chlorophyta , DNA, Bacterial , Fatty Acids , Phospholipids , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Vitamin K 2 , RNA, Ribosomal, 16S/genetics , Fatty Acids/chemistry , Vitamin K 2/analogs & derivatives , Vitamin K 2/analysis , DNA, Bacterial/genetics , Nucleic Acid Hybridization , Seawater/microbiology
9.
Environ Microbiol Rep ; 16(3): e13263, 2024 Jun.
Article En | MEDLINE | ID: mdl-38705733

Deep-sea methane seeps are amongst the most biologically productive environments on Earth and are often characterised by stable, low oxygen concentrations and microbial communities that couple the anaerobic oxidation of methane to sulfate reduction or iron reduction in the underlying sediment. At these sites, ferrous iron (Fe2+) can be produced by organoclastic iron reduction, methanotrophic-coupled iron reduction, or through the abiotic reduction by sulfide produced by the abundant sulfate-reducing bacteria at these sites. The prevalence of Fe2+in the anoxic sediments, as well as the availability of oxygen in the overlying water, suggests that seeps could also harbour communities of iron-oxidising microbes. However, it is unclear to what extent Fe2+ remains bioavailable and in solution given that the abiotic reaction between sulfide and ferrous iron is often assumed to scavenge all ferrous iron as insoluble iron sulfides and pyrite. Accordingly, we searched the sea floor at methane seeps along the Cascadia Margin for microaerobic, neutrophilic iron-oxidising bacteria, operating under the reasoning that if iron-oxidising bacteria could be isolated from these environments, it could indicate that porewater Fe2+ can persist is long enough for biology to outcompete pyritisation. We found that the presence of sulfate in our enrichment media muted any obvious microbially-driven iron oxidation with most iron being precipitated as iron sulfides. Transfer of enrichment cultures to sulfate-depleted media led to dynamic iron redox cycling relative to abiotic controls and sulfate-containing cultures, and demonstrated the capacity for biogenic iron (oxyhydr)oxides from a methane seep-derived community. 16S rRNA analyses revealed that removing sulfate drastically reduced the diversity of enrichment cultures and caused a general shift from a Gammaproteobacteria-domainated ecosystem to one dominated by Rhodobacteraceae (Alphaproteobacteria). Our data suggest that, in most cases, sulfur cycling may restrict the biological "ferrous wheel" in contemporary environments through a combination of the sulfur-adapted sediment-dwelling ecosystems and the abiotic reactions they influence.


Bacteria , Geologic Sediments , Iron , Methane , Oxidation-Reduction , Sulfur , Methane/metabolism , Iron/metabolism , Sulfur/metabolism , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Seawater/microbiology , Seawater/chemistry , Sulfides/metabolism , Sulfates/metabolism , RNA, Ribosomal, 16S/genetics , Phylogeny
10.
PLoS One ; 19(5): e0302000, 2024.
Article En | MEDLINE | ID: mdl-38709720

Wastewater surveillance represents an alternative approach to regulating contamination and the early detection of infectious agents and outbreaks of diseases of public health importance. This study evaluated domestic wastewater effects on recreational waters in estuarine and seawater bodies in Guayas and Santa Elena provinces in Ecuador, South America. Fecal indicator bacteria (thermotolerant coliforms) served as key indicators for evaluation. Physical, chemical, and microbiological quality markers following the Ecuadorian environmental quality standard and the discharge of effluents to the water resource were analyzed. Samples were collected from 44 coastal sites and 2 oxidation lagoons during the dry and rainy seasons of 2020 and 2021, respectively. SARS-CoV-2 RNA was detected in samples with higher E. coli concentrations using reverse transcription quantitative PCR to detect the genes N and ORF1ab. All samples analyzed for SARS-CoV-2 showed Ct ˂ 40 for at least one gene. Four samples showed at least 20 genome copies of gene N per reaction. These were at an artisanal fishing port, an estuarine area (Palmar), a recreational bay, and an oxidation lagoon. A moderate correlation was found between SARS-CoV-2 RNA, thermotolerant coliform and E. coli (p-value ≤ 0.0037), and a strong and positive correlation between thermotolerant coliform and E. coli. (p-value ≤ 0.00001), highlighting the utility of these established parameters as a proxy of the virus. Significant differences were found in the concentrations of thermotolerant coliforms between seasons (p-value = 0.016) and sites (p-value = 0.005). The highest levels of coliforms were found in the dry season (63000 MPN/100 mL) in Anconcito and during the rainy season (14000 MPN/100 mL) at Esterillo in Playas County. It is recommended that the decentralized autonomous governments of the surveyed provinces in Ecuador implement urgent corrective actions and establish medium-term mechanisms to minimize a potential contamination route. Additional parameters must be included in the monitoring, such as Enterococcus and intestinal parasites, due to their public health implications. In the oxidation lagoons, maintenance actions must be carried out, including the dissolution of sediments, an increase in water retention times, and in situ treatment of the sludge, to improve the system's performance.


COVID-19 , RNA, Viral , SARS-CoV-2 , Sewage , Water Quality , Ecuador , Sewage/virology , Sewage/microbiology , SARS-CoV-2/isolation & purification , SARS-CoV-2/genetics , RNA, Viral/genetics , RNA, Viral/isolation & purification , RNA, Viral/analysis , COVID-19/epidemiology , COVID-19/virology , Humans , Enterobacteriaceae/isolation & purification , Enterobacteriaceae/genetics , Water Microbiology , Environmental Monitoring/methods , Seawater/virology , Seawater/microbiology , Escherichia coli/genetics , Escherichia coli/isolation & purification , Wastewater/virology , Wastewater/microbiology
11.
Article En | MEDLINE | ID: mdl-38728177

Two Gram-stain-negative, rod-shaped bacteria, designated as strains KJ10-1T and KJ40-1T, were isolated from marine brown algae. Both strains were catalase-positive, oxidase-positive, and facultative aerobic. Strain KJ10-1T exhibited optimal growth at 25 °C, pH 7.0, and 3 % NaCl, whereas strain KJ40-1T showed optimal growth at 25 °C, pH 7.0, and 2 % NaCl. The respiratory quinones of strain KJ10-1T were ubiquinone-8, ubiquinone-7, menaquinone-7, and methylated menaquinone-7, while the respiratory quinone of strain KJ40-1T was only ubiquinone-8. As major fatty acids, strain KJ10-1T contained C16 : 0, C17 : 1 ω8c, iso-C15 : 0, and summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and strain KJ40-1T contained C16 : 0 and summed features 3 and 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). The major polar lipids in strain KJ10-1T were phosphatidylethanolamine, phosphatidylglycerol, and an unidentified aminolipid, whereas those in strain KJ40-1T were phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol. The DNA G+C contents of strains KJ10-1T and KJ40-1T were 42.1 and 40.8 mol%, respectively. Based on 16S rRNA gene sequences, strains KJ10-1T and KJ40-1T exhibited the closest relatedness to Shewanella saliphila MMS16-UL250T (98.6 %) and Vibrio rumoiensis S-1T (95.4 %), respectively. Phylogenetic analyses, based on both 16S rRNA and 92 housekeeping genes, showed that the strains formed distinct phylogenic lineages within the genera Shewanella and Vibrio. Digital DNA-DNA hybridization and orthologous average nucleotide identity values between strain KJ10-1T and other Shewanella species, as well as between strain KJ40-1T and other Vibrio species, were below the thresholds commonly accepted for prokaryotic species delineation. Based on the phenotypic, chemotaxonomic, and phylogenetic data, strains KJ10-1T and KJ40-1T represent novel species of the genera Shewanella and Vibrio, respectively, for which the names Shewanella phaeophyticola sp. nov. and Vibrio algarum sp. nov. are proposed, respectively. The type strains of S. phaeophyticola and V. algarum are KJ10-1T (=KACC 22589T=JCM 35409T) and KJ40-1T (=KACC 22588T=JCM 35410T), respectively.


Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Phaeophyceae , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Shewanella , Ubiquinone , Vibrio , Vitamin K 2 , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Vibrio/genetics , Vibrio/classification , Vibrio/isolation & purification , Ubiquinone/analogs & derivatives , Shewanella/genetics , Shewanella/isolation & purification , Shewanella/classification , Phaeophyceae/microbiology , Vitamin K 2/analogs & derivatives , Phospholipids , Nucleic Acid Hybridization , Seawater/microbiology
12.
Article En | MEDLINE | ID: mdl-38728208

A Gram-stain-negative and rod-shaped bacterium, designated strain CY04T, was isolated from a sediment sample collected from the Yellow Sea. CY04T exhibited the highest 16S rRNA gene sequence similarity of 98.7 % to Zongyanglinia huanghaiensis CY05T, followed by the similarities of 98.6 %, 98.0 and 98.0 % to Zongyanglinia marina DSW4-44T, Parasedimentitalea marina W43T and Parasedimentitalea psychrophila QS115T respectively. Phylogenetic analysis based on 16S rRNA gene and phylogenomic analysis based on genome sequences revealed that CY04T formed a robust cluster with Z. huanghaiensis CY05T, Z. marina DSW4-44T, P. marina W43T and P. psychrophila QS115T. Calculated digital DNA-DNA hybridisation and average nucleotide identity values between CY04T and its closely related species were 22.2-23.7 % and 79.0-81.2 % respectively. Cells of CY04T were strictly aerobic, non-motile and positive for catalase, oxidase and denitrification. CY04T harboured a set of genes encoding the enzymes involved in denitrification. Growth occurred at 10-30 °C (optimum, 20 °C), at pH 6.5-9.5 (optimum, pH 8.0) and with 1-6 % (w/v) (optimum, 2.5 %,) NaCl. The major component of the fatty acids was summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c). The isoprenoid quinone was Q-10. Results of the phenotypic, chemotaxonomic and molecular study indicate that strain CY04T represents a novel species of the genus Parasedimentitalea, for which the name Parasedimentitalea denitrificans sp. nov. is proposed. The type strain is CY04T (=MCCC 1K08635T=KCTC 62199T). It is also proposed that Zongyanglinia huanghaiensis and Zongyanglinia marina should be reclassified as Parasedimentitalea huanghaiensis comb. nov. and Parasedimentitalea maritima nom. nov. An emended description of the genus Parasedimentitalea is also proposed.


Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Denitrification , Fatty Acids , Geologic Sediments , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S , Seawater , Sequence Analysis, DNA , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Geologic Sediments/microbiology , China , Seawater/microbiology , Ubiquinone
13.
Nat Commun ; 15(1): 3715, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698041

Phages play an essential role in controlling bacterial populations. Those infecting Pelagibacterales (SAR11), the dominant bacteria in surface oceans, have been studied in silico and by cultivation attempts. However, little is known about the quantity of phage-infected cells in the environment. Using fluorescence in situ hybridization techniques, we here show pelagiphage-infected SAR11 cells across multiple global ecosystems and present evidence for tight community control of pelagiphages on the SAR11 hosts in a case study. Up to 19% of SAR11 cells were phage-infected during a phytoplankton bloom, coinciding with a ~90% reduction in SAR11 cell abundance within 5 days. Frequently, a fraction of the infected SAR11 cells were devoid of detectable ribosomes, which appear to be a yet undescribed possible stage during pelagiphage infection. We dubbed such cells zombies and propose, among other possible explanations, a mechanism in which ribosomal RNA is used as a resource for the synthesis of new phage genomes. On a global scale, we detected phage-infected SAR11 and zombie cells in the Atlantic, Pacific, and Southern Oceans. Our findings illuminate the important impact of pelagiphages on SAR11 populations and unveil the presence of ribosome-deprived zombie cells as part of the infection cycle.


Bacteriophages , Ribosomes , Ribosomes/metabolism , Bacteriophages/genetics , Bacteriophages/physiology , Phytoplankton/virology , Phytoplankton/genetics , Phytoplankton/metabolism , In Situ Hybridization, Fluorescence , Alphaproteobacteria/genetics , Alphaproteobacteria/metabolism , Ecosystem , Seawater/microbiology , Seawater/virology , Oceans and Seas
14.
Environ Microbiol Rep ; 16(3): e13264, 2024 Jun.
Article En | MEDLINE | ID: mdl-38692840

This study assessed the bacterioplankton community and its relationship with environmental variables, including total petroleum hydrocarbon (TPH) concentration, in the Yucatan shelf area of the Southern Gulf of Mexico. Beta diversity analyses based on 16S rRNA sequences indicated variations in the bacterioplankton community structure among sampling sites. PERMANOVA indicated that these variations could be mainly related to changes in depth (5 to 180 m), dissolved oxygen concentration (2.06 to 5.93 mg L-1), and chlorophyll-a concentration (0.184 to 7.65 mg m3). Moreover, SIMPER and one-way ANOVA analyses showed that the shifts in the relative abundances of Synechococcus and Prochlorococcus were related to changes in microbial community composition and chlorophyll-a values. Despite the low TPH content measured in the studied sites (0.01 to 0.86 µL L-1), putative hydrocarbon-degrading bacteria such as Alteromonas, Acinetobacter, Balneola, Erythrobacter, Oleibacter, Roseibacillus, and the MWH-UniP1 aquatic group were detected. The relatively high copy number of the alkB gene detected in the water column by qPCR and the enrichment of hydrocarbon-degrading bacteria obtained during lab crude oil tests exhibited the potential of bacterioplankton communities from the Yucatan shelf to respond to potential hydrocarbon impacts in this important area of the Gulf Mexico.


Bacteria , Hydrocarbons , RNA, Ribosomal, 16S , Seawater , Gulf of Mexico , Hydrocarbons/metabolism , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Seawater/microbiology , RNA, Ribosomal, 16S/genetics , Microbiota , Phylogeny , Petroleum/metabolism , Petroleum/microbiology , Biodegradation, Environmental , Biodiversity
15.
Article En | MEDLINE | ID: mdl-38700924

Two Gram-stain-negative, facultatively aerobic, and motile rod bacteria, designated as strains KJ51-3T and 15G1-11T, were isolated from marine algae collected in the Republic of Korea. Both strains exhibited catalase- and oxidase-positive activities. Optimum growth conditions for strain KJ51-3T were observed at 30 °C and pH 6.0-8.0, with 1.0-7.0 % (w/v) NaCl, whereas strain 15G1-11T exhibited optimal growth at 30 °C, pH 7.0, and 1.0-5.0 % NaCl. Major fatty acids detected in both strains included C16 : 0, C10 : 0 3-OH and summed features 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). As for polar lipids, strain KJ51-3T contained phosphatidylethanolamine (PE), phosphatidylglycerol (PG), diphosphatidylglycerol, and two unidentified phospholipids, whereas strain 15G1-11T had PE, PG, and an unidentified aminolipid. Ubiquinone-8 was the predominant respiratory quinone in both strains, with minor detection of ubiquinone-9 in strain KJ51-3T. The genomic DNA G+C contents were 44.0 mol% for strain KJ51-3T and 40.5 mol% for strain 15G1-11T. Phylogenetic analyses based on both 16S rRNA gene and genome sequences placed strains KJ51-3T and 15G1-11T into distinct lineages within the genus Marinomonas, most closely related to Marinomonas arctica 328T (98.6 %) and Marinomonas algicola SM1966T (98.3 %), respectively. Strains KJ51-3T and 15G1-11T exhibited a 94.6 % 16S rRNA gene sequence similarity and a 70.7 % average nucleotide identity (ANI), with ANI values of 91.9 and 79.3 % between them and M. arctica 328T and M. algicola SM1966T, respectively, indicating that they represent novel species. In summary, based on their phenotypic, chemotaxonomic, and phylogenetic properties, strains KJ51-3T and 15G1-11T are proposed to represent novel species within the genus Marinomonas, for which the names Marinomonas rhodophyticola sp. nov. (KJ51-3T=KACC 22756T=JCM 35591T) and Marinomonas phaeophyticola sp. nov. (15G1-11T=KACC 22593T=JCM 35412T) are respectively proposed.


Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Marinomonas , Phospholipids , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Ubiquinone , RNA, Ribosomal, 16S/genetics , Fatty Acids/chemistry , DNA, Bacterial/genetics , Marinomonas/genetics , Marinomonas/isolation & purification , Marinomonas/classification , Republic of Korea , Seawater/microbiology
16.
Sci Rep ; 14(1): 10601, 2024 05 08.
Article En | MEDLINE | ID: mdl-38719921

A plant parasite associated with the white haze disease in apples, the Basidiomycota Gjaerumia minor, has been found in most samples of the global bathypelagic ocean. An analysis of environmental 18S rDNA sequences on 12 vertical profiles of the Malaspina 2010 expedition shows that the relative abundance of this cultured species increases with depth while its distribution is remarkably different between the deep waters of the Pacific and Atlantic oceans, being present in higher concentrations in the former. This is evident from sequence analysis and a microscopic survey with a species-specific newly designed TSA-FISH probe. Several hints point to the hypothesis that G. minor is transported to the deep ocean attached to particles, and the absence of G. minor in bathypelagic Atlantic waters could then be explained by the absence of this organism in surface waters of the equatorial Atlantic. The good correlation of G. minor biomass with Apparent Oxygen Utilization, recalcitrant carbon and free-living prokaryotic biomass in South Pacific waters, together with the identification of the observed cells as yeasts and not as resting spores (teliospores), point to the possibility that once arrived at deep layers this species keeps on growing and thriving.


Basidiomycota , Pacific Ocean , Basidiomycota/genetics , Basidiomycota/isolation & purification , Basidiomycota/classification , RNA, Ribosomal, 18S/genetics , Seawater/microbiology , Phylogeny , Atlantic Ocean , DNA, Ribosomal/genetics , DNA, Fungal/genetics
17.
Sci Adv ; 10(21): eadj1539, 2024 May 24.
Article En | MEDLINE | ID: mdl-38781331

Microbial associations and interactions drive and regulate nutrient fluxes in the ocean. However, physical contact between cells of marine cyanobacteria has not been studied thus far. Here, we show a mechanism of direct interaction between the marine cyanobacteria Prochlorococcus and Synechococcus, the intercellular membrane nanotubes. We present evidence of inter- and intra-genus exchange of cytoplasmic material between neighboring and distant cells of cyanobacteria mediated by nanotubes. We visualized and measured these structures in xenic and axenic cultures and in natural samples. We show that nanotubes are produced between living cells, suggesting that this is a relevant system of exchange material in vivo. The discovery of nanotubes acting as exchange bridges in the most abundant photosynthetic organisms in the ocean may have important implications for their interactions with other organisms and their population dynamics.


Nanotubes , Prochlorococcus , Synechococcus , Synechococcus/metabolism , Nanotubes/chemistry , Prochlorococcus/metabolism , Cyanobacteria/metabolism , Aquatic Organisms , Seawater/microbiology
18.
Sci Adv ; 10(21): eadj8184, 2024 May 24.
Article En | MEDLINE | ID: mdl-38781332

Sinking particles are a critical conduit for the transport of surface microbes to the ocean's interior. Vertical connectivity of phylogenetic composition has been shown; however, the functional vertical connectivity of microbial communities has not yet been explored in detail. We investigated protein and taxa profiles of both free-living and particle-attached microbial communities from the surface to 3000 m depth using a combined metaproteomic and 16S rRNA amplicon sequencing approach. A clear compositional and functional vertical connectivity of microbial communities was observed throughout the water column with Oceanospirillales, Alteromonadales, and Rhodobacterales as key taxa. The surface-derived particle-associated microbes increased the expression of proteins involved in basic metabolism, organic matter processing, and environmental stress response in deep waters. This study highlights the functional vertical connectivity between surface and deep-sea microbial communities via sinking particles and reveals that a considerable proportion of the deep-sea microbes might originate from surface waters and have a major impact on the biogeochemical cycles in the deep sea.


Microbiota , Oceans and Seas , Phylogeny , RNA, Ribosomal, 16S , Seawater , RNA, Ribosomal, 16S/genetics , Seawater/microbiology , Bacteria/genetics , Bacteria/classification
19.
Nat Commun ; 15(1): 4365, 2024 May 22.
Article En | MEDLINE | ID: mdl-38778052

Biotic-abiotic hybrid photocatalytic system is an innovative strategy to capture solar energy. Diversifying solar energy conversion products and balancing photoelectron generation and transduction are critical to unravel the potential of hybrid photocatalysis. Here, we harvest solar energy in a dual mode for Cu2-xSe nanoparticles biomineralization and seawater desalination by integrating the merits of Shewanella oneidensis MR-1 and biogenic nanoparticles. Photoelectrons generated by extracellular Se0 nanoparticles power Cu2-xSe synthesis through two pathways that either cross the outer membrane to activate periplasmic Cu(II) reduction or are directly delivered into the extracellular space for Cu(I) evolution. Meanwhile, photoelectrons drive periplasmic Cu(II) reduction by reversing MtrABC complexes in S. oneidensis. Moreover, the unique photothermal feature of the as-prepared Cu2-xSe nanoparticles, the natural hydrophilicity, and the linking properties of bacterium offer a convenient way to tailor photothermal membranes for solar water production. This study provides a paradigm for balancing the source and sink of photoelectrons and diversifying solar energy conversion products in biotic-abiotic hybrid platforms.


Biomineralization , Copper , Seawater , Shewanella , Solar Energy , Shewanella/metabolism , Copper/chemistry , Copper/metabolism , Seawater/microbiology , Seawater/chemistry , Salinity , Water Purification/methods , Nanoparticles/chemistry , Catalysis/radiation effects
20.
Article En | MEDLINE | ID: mdl-38787363

A Gram-negative, rod-shaped, non-motile and strictly aerobic strain, designated NBU2979T, was isolated from a coastal mudflat located on Meishan Island in the East China Sea. Strain NBU2979T grew optimally at 32 °C, with 2.0 % NaCl (w/v) and at pH 7.0-7.5. The predominant fatty acid (>10 %) was iso-C15 : 0. The major polar lipids included phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, phosphatidyldimethylethanolamine, phosphatidylcholine, an unidentified glycolipid, two unidentified aminophospholipids, an unidentified phospholipid and an unidentified lipid. The only respiratory quinone was ubiquinone-8. Comparative analysis of 16S rRNA gene sequences showed that strain NBU2979T exhibited highest similarity to Marinicella sediminis F2T (98.0 %), Marinicella marina S1101T (97.5 %), Marinicella litoralis KMM 3900T (96.6 %), Marinicella rhabdoformis 3539T (95.5 %), Marinicella pacifica sw153T (95.2 %) and Marinicella gelatinilytica S6413T (94.9 %). Phylogenetic analyses indicated that strain NBU2979T clustered with the genus Marinicella and was closely related to strain M. sediminis F2T. The average nucleotide identity and digital DNA-DNA hybridization values between strain NBU2979T and related species of genus Marinicella were well below the threshold limit for prokaryotic species delineation. The DNA G+C content of strain NBU2979T was 51.6 mol%. Based on its phenotypic, chemotaxonomic and genotypic data, strain NBU2979T (=KCTC 82911T=MCCC 1K06402T) is considered to be a representative of a novel species in the genus Marinicella, for which the name Marinicella meishanensis sp. nov. is proposed.


Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Geologic Sediments , Nucleic Acid Hybridization , Phospholipids , Phylogeny , RNA, Ribosomal, 16S , Seawater , Sequence Analysis, DNA , Ubiquinone , China , RNA, Ribosomal, 16S/genetics , Fatty Acids/chemistry , Geologic Sediments/microbiology , DNA, Bacterial/genetics , Seawater/microbiology , Ubiquinone/analogs & derivatives , Phospholipids/chemistry , Islands , Molecular Sequence Data
...