Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 168
1.
Anal Chem ; 96(14): 5589-5597, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38556723

Sebum lipids are composed of nonpolar lipids, and they pose challenges for mass spectrometry-based analysis due to low ionization efficiency and the existence of numerous isomers and isobars. To address these challenges, we have developed ethyl 2-oxo-2-(pyridine-3-yacetate as a charge-tagging Paternò-Büchi reagent and Michler's ketone as a highly efficient photocatalyst, achieving ∼90% conversion for C═C derivatization under 440 nm LED irradiation. This derivatization, when coupled with electrospray ionization-tandem mass spectrometry, boosts the detection of sebum lipids and pinpoints C═C location in a chain-specific fashion. Identification and quantitation of isomers are readily achieved for wax esters, a class of underexplored sebum lipids, which have C═C bonds distributed in fatty alcohol and fatty acyl chains. A shotgun analysis workflow has been developed by pairing the offline PB derivatization with cyclic ion mobility spectrometry-mass spectrometry. Besides the dominant n-10 C═C location in unsaturated wax esters, profiling of low abundance isomers, including the rarely reported n-7 and n-13 locations, is greatly enhanced due to separations of C═C diagnostic ions by ion mobility. Over 900 distinct lipid structures from human sebum lipid extract have been profiled at the chain-specific C═C level, including wax esters (500), glycerolipids (393), and cholesterol esters (22), far more exceeding previous reports. Overall, we have developed a fast and comprehensive lipidomic profiling tool for sebum samples, a type of noninvasive biofluids holding potential for the discovery of disease markers in distal organs.


Lipids , Sebum , Humans , Lipids/analysis , Sebum/chemistry , Ion Mobility Spectrometry , Lipidomics , Spectrometry, Mass, Electrospray Ionization/methods , Ions
2.
PeerJ ; 11: e16680, 2023.
Article En | MEDLINE | ID: mdl-38144187

Diseases vary among and within species but the causes of this variation can be unclear. Immune responses are an important driver of disease variation, but mechanisms on how the body resists pathogen establishment before activation of immune responses are understudied. Skin surfaces of mammals are the first line of defense against abiotic stressors and pathogens, and skin attributes such as pH, microbiomes, and lipids influence disease outcomes. Sebaceous glands produce sebum composed of multiple types of lipids with species-specific compositions. Sebum affects skin barrier function by contributing to minimizing water loss, supporting thermoregulation, protecting against pathogens, and preventing UV-induced damage. Sebum also affects skin microbiome composition both via its antimicrobial properties, and by providing potential nutrient sources. Intra- and interspecific variation in sebum composition influences skin disease outcomes in humans and domestic mammal species but is not well-characterized in wildlife. We synthesized knowledge on sebum function in mammals in relation to skin diseases and the skin microbiome. We found that sebum composition was described for only 29 live, wild mammalian species. Sebum is important in dermatophilosis, various forms of dermatitis, demodicosis, and potentially white-nose syndrome. Sebum composition likely affects disease susceptibility, as lipid components can have antimicrobial functions against specific pathogens. It is unclear why sebum composition is species-specific, but both phylogeny and environmental effects may drive differences. Our review illustrates the role of mammal sebum function and influence on skin microbes in the context of skin diseases, providing a baseline for future studies to elucidate mechanisms of disease resistance beyond immune responses.


Anti-Infective Agents , Microbiota , Skin Diseases , Humans , Animals , Sebum/chemistry , Mammals , Lipids/analysis , Anti-Infective Agents/analysis
3.
Environ Sci Pollut Res Int ; 30(37): 86762-86772, 2023 Aug.
Article En | MEDLINE | ID: mdl-37414993

Even if dermal exposure to metal(loid)s from contaminated soils has received less attention than oral and inhalation exposure, the human health risk can be significant for some contaminants and exposure scenarios. The purpose of this study was to assess the influence of sebum proportion (1% v/v and 3% v/v) in two synthetic sweat formulations (EN 1811, pH 6.5 (sweat A) and NIHS 96-10, pH 4.7 (sweat B)) on As, Cr, Cu, Ni, Pb, and Zn dermal bioaccessibility and on subsequent diffusion through synthetic skin. A Franz cell with a Strat-M® membrane was used to quantify permeation parameters of bioaccessible metal(loid)s. Sebum's presence in synthetic sweat formulations significantly modified bioaccessibility percentages for As, Cr, and Cu. However, sebum proportion in both sweats did not influence the bioaccessibility of Pb and Zn. Some metal(loid)s, namely As and Cu, permeated the synthetic skin membrane during permeation tests when sebum was added to sweat while no permeation was observed without sebum in sweat formulations. Depending on sweat formulation, the addition of sebum (1% v/v) increased or decreased the Cr permeation coefficients (Kp). In all cases, bioaccessible Cr was no longer permeable when extracted with 3% sebum. Ni transdermal permeation was not influenced by the presence of sebum, and no permeation was observed for Pb and Zn. Further studies on the speciation of metal(loid)s in bioaccessible extracts in the presence of sebum are recommended.


Metals, Heavy , Soil Pollutants , Humans , Sweat/chemistry , Environmental Monitoring , Lead , Sebum/chemistry , Soil Pollutants/analysis , Soil , Metals, Heavy/analysis , Risk Assessment
4.
Int J Mol Sci ; 24(3)2023 Jan 31.
Article En | MEDLINE | ID: mdl-36768998

Due to its high instability and rapid degradation under adverse conditions, tetracycline hydrochloride (TC) can cause difficulties in the development of an effective but stable formulation for the topical treatment of acne. The aim of the following work was to propose a hydrogel formulation that would ensure the stability of the antibiotic contained in it. Additionally, an important property of the prepared formulations was the activity of the alcoholamines contained in them against the components of the model sebum. This feature may help effectively cleanse the hair follicles in the accumulated sebum layer. A series of formulations with varying proportions of anionic polymer and alcoholamine and containing different polymers have been developed. The stability of tetracycline hydrochloride contained in the hydrogels was evaluated for 28 days by HPLC analysis. Formulations containing a large excess of TRIS alcoholamine led to the rapid degradation of TC from an initial concentration of about 10 µg/mL to about 1 µg/mL after 28 days. At the same time, these formulations showed the highest activity against artificial sebum components. Thanks to appropriately selected proportions of the components, it was possible to develop a formulation that assured the stability of tetracycline for ca. one month, while maintaining formulation activity against the components of model sebum.


Sebum , Tetracycline , Tetracycline/pharmacology , Tetracycline/metabolism , Sebum/chemistry , Sebum/metabolism , Hydrogels/metabolism , Anti-Bacterial Agents/metabolism , Skin , Polymers/metabolism
5.
Skin Pharmacol Physiol ; 36(1): 38-50, 2023.
Article En | MEDLINE | ID: mdl-36572004

INTRODUCTION: Proteins, such as cytokines and chemokines, are present in varying concentrations in a range of biofluids, with an important signalling role in maintaining homeostasis. Commercial tapes have been employed to non-invasively collect these potential biomarkers in sebum from the skin surface to examine their concentrations in conditions including acne, atopic dermatitis, and pressure ulcers. However, the identification of robust biomarker candidates is limited by the low abundance of specific proteins extracted by current methodologies. Therefore, this study was designed to develop an optimized extraction method for potential inflammatory biomarkers in sebum collected with Sebutapes. METHODS: Commercial tapes (Sebutapes) coated with synthetic sebum were used to systematically evaluate the effects of chemical and mechanical stimuli on extraction efficiency. Varying concentrations of high- and low-abundance biomarkers (IL-1α, IL-6, IL-8, INF-γ, TNF-α, and IL-1RA) were used to spike the synthetic sebum samples. Methodological variables included different surfactants, mechanical stimuli, and buffer volume. Extraction efficiency was estimated using immunoassay kits from the extracted buffer. RESULTS: The results revealed that the use of a surfactant, i.e., ß-dodecyl maltoside, in addition to the mechanical stimuli, namely, sonication and centrifugation, resulted in an increased recovery of cytokines, ranging from 80% for high-abundant cytokines, such as IL-1α and IL-1RA, and up to 50% for low-abundance cytokines, including TNF-α, IL-6 and IL-8. Compared to previous methods, the new extraction protocol resulted in between a 1.5-2.0-fold increase in extraction efficiency. CONCLUSION: The study revealed that there was a high degree of variability in the extraction efficiency of different cytokines. However, improved efficiency was achieved across all cytokines with selective surfactants and mechanical stimuli. The optimised protocol will provide means to detect low levels of potential biomarkers from skin surface, enabling the evaluation of local changes in pro- and anti-inflammatory cytokines present in different skin conditions.


Biomarkers , Liquid-Liquid Extraction , Sebum , Biomarkers/chemistry , Biomarkers/metabolism , Cytokines/metabolism , Interleukin 1 Receptor Antagonist Protein/metabolism , Interleukin-6/metabolism , Interleukin-8/metabolism , Sebum/chemistry , Sebum/metabolism , Surface-Active Agents , Tumor Necrosis Factor-alpha , Liquid-Liquid Extraction/methods
6.
Allergy ; 78(6): 1524-1537, 2023 06.
Article En | MEDLINE | ID: mdl-36308463

BACKGROUND: Lipids are the major components of skin barrier, mainly produced by keratinocytes and sebaceous glands. Previous studies on barrier dysfunction of atopic dermatitis (AD) mainly focus on the lipids from keratinocytes, whereas the role of sebaceous gland-derived lipids in AD has long been underrecognized. METHODS: The sebum secreted on the skin surface of AD patients was measured using the Delfin Sebum Scale. Sebum was collected using Sebutape patches and subjected for liquid chromatography tandem-mass spectrometry (LC-MS/MS) analysis. Multivariate data analysis was applied to explore the relationship among the lipidome, clinical features, and sebaceous gland-related molecules. RESULTS: The amount of sebum secreted from sebaceous glands was decreased in AD patients and was negatively correlated with the barrier function and disease severity. LC-MS/MS revealed the lipidome of sebum, which clustered distinctly between AD patients and healthy individuals. Among the differential lipid subclasses, triglycerides (TG) were exclusively decreased in AD patients and correlated with disease severity. The first principal component scores of AD patients, which represented the main signature of the lipidome, were positively correlated with the SCORAD scores and were significantly different across the patient groups with differential clinical symptoms such as skin dryness and pruritus. Further analysis on the previously published transcriptome data revealed aberrant expression of lipid metabolism-related genes in non-lesional skin of AD patients, which was associated with skin inflammation and barrier dysfunction and mainly derived from inner root sheath keratinocytes and sebaceous gland cells. CONCLUSION: Atopic dermatitis patients demonstrated a deviated lipidome of sebum and aberrant lipid metabolism in sebaceous glands, indicating a possible role of lipids from sebaceous glands in the pathogenesis of AD.


Dermatitis, Atopic , Sebum , Humans , Sebum/chemistry , Sebum/metabolism , Dermatitis, Atopic/metabolism , Chromatography, Liquid , Lipidomics , Tandem Mass Spectrometry , Lipids
7.
Anal Chim Acta ; 1233: 340506, 2022 Nov 15.
Article En | MEDLINE | ID: mdl-36283785

Sebum from sebaceous glands is a rich source of volatile organic compounds (VOCs) that can readily be sampled non-invasively from the surface of skin. The VOC profiles of sebum can then be used to obtain information regarding different medical conditions including diabetes and Parkinson's Disease. However, the effects of sampling approaches and environmental factors on sebum VOC profiles are not established and the confident attribution of VOCs to disease states needs to be free of extraneous influences such as sampling materials and preparatory conditions. Here, we investigated a more standardised skin swab sampling approach for profiling sebum VOCs from healthy human subjects using thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). Using a standard GC-MS method for the chemical analysis of sebum swabs, a surprisingly high number of VOCs originate from 'blank' medical swab material alone (up to 74 VOCs) and from the ambient environment (up to 29 VOCs) based on control experiments. We found that heat-treatment of medical swabs prior to GC-MS reduced the number of VOCs detected from 'blank' swabs and improved the reproducibility of VOC profiling, however significant VOC absorption can still occur from environmental exposure to ambient air. VOCs identified in 'blank' swabs consisted predominantly of hydrocarbons, esters, and silicon-based compounds and depended strongly on the material used (cotton and polyester-rayon). Environmental VOCs found to absorb to swabs from the ambient air during sampling included 1-butylheptyl-benzene and hexadecanoic acid methyl ester as well as exogenous VOCs such as isopropyl palmitate and isopropyl myristate. In contrast, sebum VOCs consisted primarily of esters, alcohols, ketones, and aldehydes. 23 and 18 VOCs were identified in sebum collected using polyester-rayon and cotton-based medical swabs, respectively, with 14 VOCs common to both swabs. The effect of subject bathing prior to sebum sampling had minimal impact on the VOC profiles. However, individual differences owing to external factors such as skin type, diet, and exercise will likely influence sebum production. This study highlights the importance of using rigorous controls in sebum sampling, and recommendations are provided for future research involving sebum VOC analysis. For example, the use of sebum sample replicates across multiple days, and the use of control swabs during sample collection is required to confirm the origin and reliability of sebum VOCs. It is anticipated that these recommendations in conjunction with a library of well-established VOCs from medical swabs will further strengthen biomarker identification resulting from sebum VOC analysis.


Air Pollutants , Volatile Organic Compounds , Humans , Volatile Organic Compounds/analysis , Air Pollutants/analysis , Reproducibility of Results , Benzene , Environmental Monitoring/methods , Sebum/chemistry , Palmitic Acid , Silicon , Gas Chromatography-Mass Spectrometry , Hydrocarbons , Aldehydes/analysis , Biomarkers/analysis , Esters/analysis , Ketones/analysis , Polyesters
8.
Sci Rep ; 11(1): 16591, 2021 08 16.
Article En | MEDLINE | ID: mdl-34400712

Lipidomics is advantageous in the study of sebum perturbations occurring in acne. An extended evaluation of the sebum lipid profiles in acne-prone sebaceous areas is lacking in dark skin. Yet, there is a void space in understanding how the building blocks of sebum lipids, i.e. individual fatty acids (FAs), are intertwined with acne-prone skin. We aimed to determine the sebum lipidome in facial areas of adolescents with and without acne in Nigeria. A cross-sectional analytical study was conducted in 60 adolescents/young adults divided in 30 acne patients (15F, 15M) and 30 age and sex-matched controls. Sebum samples obtained from foreheads and cheeks were analysed separately by gas chromatography-mass spectrometry (GCMS) and thin layer chromatography (HPTLC). Distributions of sebum components were investigated with multivariate ANOVA-simultaneous component analysis (ASCA). Sebum incretion in acne was paralleled by significantly higher abundance of triglycerides, wax esters, and squalene together with monounsaturated FAs (MUFAs), and straight chain saturated FAs (SFAs), especially those with odd-carbon chain, i.e. C13:0, C15:0, and C17:0. Profiling weight/weight percentage of individual components revealed that, in acne, the free FAs (FFAs) array was shifted towards higher relative abundance of the SFAs C15:0, C16:0, and C17:0 and lower percentage of the anteiso-branched FFAs with 12, 14, 16, and 18 carbons. In acne patients, MUFAs and PUFAs were quantitatively increased and decreased on foreheads and cheeks, respectively. Relative abundance of fatty alcohols was decreased in acne independent on the site. The results indicated that acne associates with site-specific derangement of the pathways regulating the balance among odd straight-chain and branched-chain SFAs, MUFAs, which included sapienate (C16:1n-10), PUFAs, and squalene.


Acne Vulgaris/metabolism , Face , Lipidomics , Lipids/analysis , Sebum/chemistry , Adolescent , Black People , Cheek , Cross-Sectional Studies , Fatty Acids/analysis , Fatty Alcohols/analysis , Female , Forehead , Humans , Male , Nigeria , Severity of Illness Index , Skin Pigmentation , Young Adult
9.
Nutrients ; 13(4)2021 Apr 19.
Article En | MEDLINE | ID: mdl-33921829

Lactobacillus plantarum CJLP55 has anti-pathogenic bacterial and anti-inflammatory activities in vitro. We investigated the dietary effect of CJLP55 supplement in patients with acne vulgaris, a prevalent inflammatory skin condition. Subjects ingested CJLP55 or placebo (n = 14 per group) supplements for 12 weeks in this double-blind, placebo-controlled randomized study. Acne lesion count and grade, skin sebum, hydration, pH and surface lipids were assessed. Metagenomic DNA analysis was performed on urine extracellular vesicles (EV), which indirectly reflect systemic bacterial flora. Compared to the placebo supplement, CJLP55 supplement improved acne lesion count and grade, decreased sebum triglycerides (TG), and increased hydration and ceramide 2, the major ceramide species that maintains the epidermal lipid barrier for hydration. In addition, CJLP55 supplement decreased the prevalence of Proteobacteria and increased Firmicutes, which were correlated with decreased TG, the major skin surface lipid of sebum origin. CJLP55 supplement further decreased the Bacteroidetes:Firmicutes ratio, a relevant marker of bacterial dysbiosis. No differences in skin pH, other skin surface lipids or urine bacterial EV phylum were noted between CJLP55 and placebo supplements. Dietary Lactobacillus plantarum CJLP55 was beneficial to clinical state, skin sebum, and hydration and urine bacterial EV phylum flora in patients with acne vulgaris.


Acne Vulgaris/microbiology , Acne Vulgaris/therapy , Dietary Supplements , Extracellular Vesicles/microbiology , Lactobacillus plantarum , Double-Blind Method , Dysbiosis/microbiology , Dysbiosis/therapy , Female , Humans , Hydrogen-Ion Concentration , Male , Sebum/chemistry , Skin/chemistry , Skin/microbiology , Treatment Outcome , Triglycerides/metabolism , Urine/microbiology , Young Adult
10.
Metabolomics ; 17(2): 22, 2021 02 06.
Article En | MEDLINE | ID: mdl-33547979

INTRODUCTION: The metabolomic profile is an essential tool for understanding the physiological processes of biological samples and their changes. In addition, it makes it possible to find new substances with industrial applications or use as drugs. As GC-MS is a very common tool for obtaining the metabolomic profile, a simple and fast method for sample preparation is required. OBJECTIVES: The aim of this research was to develop a direct derivatization method for GC-MS to simplify the sample preparation process and apply it to a wide range of samples for non-targeted metabolomic analysis purposes. METHODS: One pot combined esterification of carboxylic acids with methanol and silylation of the hydroxyl groups was achieved using a molar excess of chlorotrimethylsilane with respect to methanol in the presence of pyridine. RESULTS: The metabolome profile obtained from different samples, such as bilberry and cherry cuticles, olive leaves, P. aeruginosa and E. coli bacteria, A. niger fungi and human sebum from the ceruminous gland, shows that the procedure allows the identification of a wide variety of metabolites. Aliphatic fatty acids, hydroxyfatty acids, phenolic and other aromatic compounds, fatty alcohols, fatty aldehydes dimethylacetals, hydrocarbons, terpenoids, sterols and carbohydrates were identified at different MSI levels using their mass spectra. CONCLUSION: The metabolomic profile of different biological samples can be easily obtained by GC-MS using an efficient simultaneous esterification-silylation reaction. The derivatization method can be carried out in a short time in the same injection vial with a small amount of reagents.


Gas Chromatography-Mass Spectrometry/methods , Metabolomics/methods , Aldehydes/analysis , Bacteria , Carbohydrates/analysis , Fatty Acids/analysis , Fatty Alcohols/analysis , Fungi , Humans , Hydrocarbons/analysis , Hydroxybenzoates/analysis , Mass Spectrometry , Metabolome , Methanol , Olea/chemistry , Plant Leaves/chemistry , Plants , Pyridines , Sebum/chemistry , Sterols/analysis , Terpenes/analysis , Trimethylsilyl Compounds , Vaccinium myrtillus/chemistry
11.
J Dermatolog Treat ; 32(1): 3-10, 2021 Feb.
Article En | MEDLINE | ID: mdl-31211609

Introduction: Dermocosmetics are increasingly being recognized as an integral part of acne management. Dermocosmetics may minimize the side effects of acne medications, provide synergistic effects by improving the efficacy of other treatments, and limit exposure to environmental factors such as ultraviolet radiation. We aimed to provide an overview of the active ingredients and different types of preparations used in dermocosmetics for acne, and highlight supporting evidence for their use in clinical practice.Methods: A literature search for selected key words was performed using PubMed. Additional papers were identified based on author expertize.Results and discussion: The different types of active ingredients in dermocosmetics for acne can be classified as: sebum-controlling, antimicrobial, anti-inflammatory, anti-oxidant and/or keratolytic. Such agents may modulate the pathogenic pathways in acne. Dermocosmetics can be formulated as emulsions/creams, cleansers or camouflaging make-up. Dermocosmetics are useful treatment adjuncts for acne and have been shown to improve the clinical signs of acne, reduce transepidermal water loss and modify sebum production. Dermocosmetics have also been associated with reducing side effects of pharmacological treatments, high levels of patient satisfaction and increased adherence to treatment regimens. Together this evidence supports the use of dermocosmetics in clinical practice.


Acne Vulgaris/drug therapy , Cosmetics/therapeutic use , Acne Vulgaris/radiotherapy , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/therapeutic use , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Antioxidants/chemistry , Cosmetics/chemistry , Emulsions/chemistry , Humans , Keratolytic Agents/chemistry , Keratolytic Agents/therapeutic use , Sebum/chemistry , Ultraviolet Rays
12.
Arch Dermatol Res ; 313(2): 71-77, 2021 Mar.
Article En | MEDLINE | ID: mdl-32270323

Excess amounts of skin surface oil can lead to adverse psychological consequences. Grease-spot photometry-based techniques measure sebum production rate. However, besides being tedious, these measurements are influenced by contact area, applied pressure, and time of application. Image analysis of polarized images has the potential to provide objective, quantitative information of skin oiliness. This study was designed to set up an imaging device for capturing and enhancing the changes in skin surface oiliness and to clinically and quantitatively, (via image analysis), evaluate varying levels of skin surface oiliness. Mineral oil was used to simulate skin surface oil. 40.5 µL of the mineral oil was applied within a two inch square area of interest on facial skin in twelve steps, from 1 to 40.5 µL, at 40% increments. The results indicate a strong correlation between the quantitative skin surface oiliness measurements and the clinical assessments. This sensitive technique has the potential to be utilized in future studies to evaluate product efficacies in reducing skin oiliness.


Image Processing, Computer-Assisted/methods , Oils/analysis , Photography/methods , Skin/diagnostic imaging , Acne Vulgaris/diagnosis , Acne Vulgaris/etiology , Acne Vulgaris/prevention & control , Face , Feasibility Studies , Healthy Volunteers , Humans , Oils/metabolism , Sebum/chemistry , Sebum/metabolism , Skin/chemistry , Skin/metabolism , Skin Care/methods , Treatment Outcome
13.
Molecules ; 25(6)2020 Mar 21.
Article En | MEDLINE | ID: mdl-32245215

For many years, an increasing number of diagnosed atopy and skin problems have been observed. For people affected by the problem of atopy, the selection of skin care products, including cosmetics, is extremely important. Cleansing cosmetics, due to their ability to cause skin irritations and disturb the hydrolipidic barrier, can increase problems with atopic skin. New solutions to reduce the effects of these products on the skin are very important. In this work, the effect of ectoine on the properties of anionic surfactants was analyzed. Based on model systems, analysis of the effect of ectoine on the irritating effect of four anionic surfactants and their ability to solubilize model sebum was performed. Antioxidant activity was also evaluated, and cytotoxic studies were performed on cell cultures. It was shown that the addition of ectoine to the anionic surfactant solutions improves its safety of use. After introducing ectoine to the surfactant solution, a decrease of irritant potential (about 20%) and a decrease in the ability to solubilize of model sebum (about 10-20%) was noted. Addition of ectoine to surfactant solutions also reduced their cytotoxicity by up to 60%. The obtained results indicate that ectoine may be a modern ingredient that improves the safety of cleansing cosmetics.


Amino Acids, Diamino/administration & dosage , Cosmetics/adverse effects , Skin/drug effects , Surface-Active Agents/chemistry , Amino Acids, Diamino/adverse effects , Amino Acids, Diamino/chemistry , Anions/chemistry , Antioxidants/pharmacology , Cell Survival/drug effects , Cells, Cultured , Cosmetics/chemistry , Fibroblasts/drug effects , Humans , Irritants/chemistry , Keratinocytes/drug effects , Sebum/chemistry , Sebum/drug effects , Skin Diseases/chemically induced , Surface-Active Agents/administration & dosage , Surface-Active Agents/adverse effects , Toxicity Tests
14.
Colloids Surf B Biointerfaces ; 190: 110928, 2020 Jun.
Article En | MEDLINE | ID: mdl-32179416

The skin is an effective barrier against the external elements being the stratum corneum, with its lipid matrix surrounding the corneocytes, considered the major player responsible for its low permeability. The use of computational models to study the transdermal delivery of compounds have a huge potential to improve this research area, but requires reliable models of the skin components. In this work, we developed molecular dynamics models with a coarse-grained resolution, of the stratum corneum lipid matrix and the sebum. We developed the lipid matrix model with unusual lipid packing configuration as some recent works support. The simulation results show that this configuration is stable and may help to explain the low permeability of stratum corneum. The sebum simulations showed that this oily skin product can also play a significant role in the transdermal delivery of drugs.


Ceramides/chemistry , Molecular Dynamics Simulation , Sebum/chemistry , Humans
15.
PLoS Genet ; 16(2): e1008628, 2020 02.
Article En | MEDLINE | ID: mdl-32101538

Skin lesions, cataracts, and congenital anomalies have been frequently associated with inherited deficiencies in enzymes that synthesize cholesterol. Lanosterol synthase (LSS) converts (S)-2,3-epoxysqualene to lanosterol in the cholesterol biosynthesis pathway. Biallelic mutations in LSS have been reported in families with congenital cataracts and, very recently, have been reported in cases of hypotrichosis. However, it remains to be clarified whether these phenotypes are caused by LSS enzymatic deficiencies in each tissue, and disruption of LSS enzymatic activity in vivo has not yet been validated. We identified two patients with novel biallelic LSS mutations who exhibited congenital hypotrichosis and midline anomalies but did not have cataracts. We showed that the blockade of the LSS enzyme reaction occurred in the patients by measuring the (S)-2,3-epoxysqualene/lanosterol ratio in the forehead sebum, which would be a good biomarker for the diagnosis of LSS deficiency. Epidermis-specific Lss knockout mice showed neonatal lethality due to dehydration, indicating that LSS could be involved in skin barrier integrity. Tamoxifen-induced knockout of Lss in the epidermis caused hypotrichosis in adult mice. Lens-specific Lss knockout mice had cataracts. These results confirmed that LSS deficiency causes hypotrichosis and cataracts due to loss-of-function mutations in LSS in each tissue. These mouse models will lead to the elucidation of the pathophysiological mechanisms associated with disrupted LSS and to the development of therapeutic treatments for LSS deficiency.


Cataract/genetics , Epidermis/pathology , Hypotrichosis/genetics , Intramolecular Transferases/genetics , Lens, Crystalline/pathology , Adolescent , Animals , Cataract/congenital , Cataract/pathology , Cholesterol/metabolism , DNA Mutational Analysis , Disease Models, Animal , Epidermis/enzymology , Holistic Health , Humans , Hypotrichosis/congenital , Hypotrichosis/pathology , Intramolecular Transferases/metabolism , Lanosterol/analysis , Lanosterol/metabolism , Lens, Crystalline/enzymology , Male , Mice , Mice, Knockout , Mutation , Pedigree , Sebum/chemistry , Exome Sequencing
16.
Biol Rev Camb Philos Soc ; 95(3): 592-624, 2020 06.
Article En | MEDLINE | ID: mdl-31970855

The nervous system communicates with peripheral tissues through nerve fibres and the systemic release of hypothalamic and pituitary neurohormones. Communication between the nervous system and the largest human organ, skin, has traditionally received little attention. In particular, the neuro-regulation of sebaceous glands (SGs), a major skin appendage, is rarely considered. Yet, it is clear that the SG is under stringent pituitary control, and forms a fascinating, clinically relevant peripheral target organ in which to study the neuroendocrine and neural regulation of epithelia. Sebum, the major secretory product of the SG, is composed of a complex mixture of lipids resulting from the holocrine secretion of specialised epithelial cells (sebocytes). It is indicative of a role of the neuroendocrine system in SG function that excess circulating levels of growth hormone, thyroxine or prolactin result in increased sebum production (seborrhoea). Conversely, growth hormone deficiency, hypothyroidism, and adrenal insufficiency result in reduced sebum production and dry skin. Furthermore, the androgen sensitivity of SGs appears to be under neuroendocrine control, as hypophysectomy (removal of the pituitary) renders SGs largely insensitive to stimulation by testosterone, which is crucial for maintaining SG homeostasis. However, several neurohormones, such as adrenocorticotropic hormone and α-melanocyte-stimulating hormone, can stimulate sebum production independently of either the testes or the adrenal glands, further underscoring the importance of neuroendocrine control in SG biology. Moreover, sebocytes synthesise several neurohormones and express their receptors, suggestive of the presence of neuro-autocrine mechanisms of sebocyte modulation. Aside from the neuroendocrine system, it is conceivable that secretion of neuropeptides and neurotransmitters from cutaneous nerve endings may also act on sebocytes or their progenitors, given that the skin is richly innervated. However, to date, the neural controls of SG development and function remain poorly investigated and incompletely understood. Botulinum toxin-mediated or facial paresis-associated reduction of human sebum secretion suggests that cutaneous nerve-derived substances modulate lipid and inflammatory cytokine synthesis by sebocytes, possibly implicating the nervous system in acne pathogenesis. Additionally, evidence suggests that cutaneous denervation in mice alters the expression of key regulators of SG homeostasis. In this review, we examine the current evidence regarding neuroendocrine and neurobiological regulation of human SG function in physiology and pathology. We further call attention to this line of research as an instructive model for probing and therapeutically manipulating the mechanistic links between the nervous system and mammalian skin.


Brain/physiology , Sebaceous Glands/innervation , Sebaceous Glands/metabolism , Skin Physiological Phenomena , Skin/pathology , Animals , Dopamine/metabolism , Growth Hormone/metabolism , Humans , Hypothalamo-Hypophyseal System/physiology , Neurosecretory Systems/physiology , Peripheral Nervous System/physiology , Prolactin/metabolism , Sebaceous Glands/anatomy & histology , Sebaceous Glands/cytology , Sebum/chemistry , Sebum/metabolism , Somatomedins/metabolism , Stem Cells , Thyroid Gland/physiology
17.
Skin Res Technol ; 26(1): 50-60, 2020 Jan.
Article En | MEDLINE | ID: mdl-31373064

BACKGROUND: Generally considered as a major risk factor for various respiratory diseases, air pollution can also have a significant impact on the skin. To date, there is a plethora of cosmetics products with "anti-pollution" claims. However, these claims have not been fully substantiated with robust scientific evidence and currently there is no standardized method in place for validating the anti-pollution efficacy of cosmetics products. MATERIALS AND METHODS: This article discusses an innovative Controlled Pollution Exposure System (CPES) which allows quantified administration of pollutants on the skin and analysis of their direct impact. Using CPES, human subjects were exposed to ambient dust and ozone and sebum were sampled and analyzed for biomarkers. RESULTS: Following exposure of human subjects' skin to either ambient dust(100-450 µg/cm3 ) or ozone(100-1000 ppb), analysis of sebum revealed a significant decrease in squalene concentration, and significant increases in squalene monohydroperoxide and malondialdehyde concentration. CONCLUSION: The findings demonstrate cutaneous oxidative stress induced by ambient dust and ozone. The findings also demonstrate the efficacy of CPES to accurately measure the direct effect of controlled gaseous and particulate pollutants on human skin and indicate that squalene, squalene monohydroperoxide and malondialdehyde may serve as potent biomarkers for evaluating potential anti-pollution claims of cosmetics products.


Environmental Exposure/analysis , Environmental Pollutants/toxicity , Environmental Science , Skin , Cosmetics , Dust , Environmental Science/instrumentation , Environmental Science/methods , Humans , Malondialdehyde/analysis , Oxidative Stress/drug effects , Ozone/toxicity , Reactive Oxygen Species/analysis , Sebum/chemistry , Skin/chemistry , Skin/drug effects , Skin/metabolism , Squalene/analysis
18.
Mycopathologia ; 184(5): 625-636, 2019 Oct.
Article En | MEDLINE | ID: mdl-31529298

Pseudogymnoascus destructans is the causative agent of a fungal infection of bats known as white-nose syndrome (WNS). Since its discovery in 2006, it has been responsible for precipitous declines of several species of cave-dwelling North American bats. While numerous advancements in the understanding of the disease processes underlying WNS have been made in recent years, there are still many aspects of WNS, particularly with respect to pathogen virulence, that remain unknown. In this preliminary investigation, we sought to further elucidate the disease cycle by concentrating on the pathogen, with specific focus on its ability to utilize lipids that compose bat wing sebum and are found in wing membranes, as a substrate for energy and growth. In vitro growth experiments were conducted with the three most common fatty acids that comprise bat sebum: oleic, palmitic, and stearic acids. None of the fatty acids were observed to contribute a significant difference in mean growth from controls grown on SDA, although morphological differences were observed in several instances. Additionally, as an accompaniment to the growth experiments, bat wing explants from Perimyotis subflavus and Eptesicus fuscus were fluorescently stained to visualize the difference in distribution of 16- and 18-carbon chain fatty acids in the wing membrane. Which substrates contribute to the growth of P. destructans is important to understanding the progressive impact P. destructans has on bat health through the course of the disease cycle.


Ascomycota/growth & development , Ascomycota/metabolism , Fatty Acids/metabolism , Lipolysis , Sebum/chemistry , Animals , Chiroptera , Female , Male , Sebum/microbiology , Wings, Animal/chemistry , Wings, Animal/microbiology
19.
Br Poult Sci ; 60(6): 659-665, 2019 Dec.
Article En | MEDLINE | ID: mdl-31509442

1. Adipocyte fatty acid binding protein (A-FABP) plays a key role in fatty acid uptake and intracellular transport. The objective of the present study was to identify and characterise the A-FABP gene in Xupu goose.2. The full-length cDNA of goose A-FABP gene was cloned from the liver tissue using reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). The distribution of the goose A-FABP in different tissues was determined by quantitative real-time PCR (qRT-PCR).3. The results showed that the full-length cDNA sequence of goose A-FABP was 657 bp, containing a 5'-UTR of 52 bp, a 3'-UTR of 206 bp and an open reading frame (ORF) of 399 bp, which encoded a polypeptide of 132 amino acids (AA).4. The AA sequence of goose A-FABP showed 76.52%, 75.00%, 93.18% and 99.24% identities with previously described homologues from humans (Homo sapiens), mouse (Mus musculus), chicken (Gallus gallus), and duck (Anas platyrhynchos), respectively, and phylogenetic analysis revealed a close relationship among them. The transcript of Xupu goose A-FABP was ubiquitously expressed in all tested tissues, and showed a high-level expression in abdominal fat, sebum and liver.5. A significant positive correlation was identified between A-FABP mRNA abundance in the three adipose tissues and liver weight, ratio of liver to body weight, TG content, and VLDL concentration in the plasma of Xupu goose. A significant negative correlation was observed between the mRNA level of A-FABP and HDL concentration in the plasma of Xupu goose.6. These findings provide a foundation for further research on the function and mechanism of A-FABP in the fat deposition process.


DNA, Complementary/chemistry , Fatty Acid-Binding Proteins/genetics , Geese/genetics , Abdominal Fat/chemistry , Adipocytes/metabolism , Amino Acid Sequence , Animals , Base Sequence , China , Cloning, Molecular , DNA, Complementary/biosynthesis , Fatty Acid-Binding Proteins/chemistry , Fatty Acid-Binding Proteins/metabolism , Geese/classification , Geese/metabolism , Gene Expression Profiling/veterinary , Liver/chemistry , Male , Phylogeny , RNA, Messenger/analysis , RNA, Messenger/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Sebum/chemistry , Sequence Alignment/veterinary
20.
Arch Dermatol Res ; 311(7): 563-571, 2019 Sep.
Article En | MEDLINE | ID: mdl-31127384

When anti-acne alternatives from dietary and plant sources are ingested, systemic alterations of interleukin (IL)-4, IL-10, IL-12 and interferon (IFN)-γ, individually or simultaneously, are induced at a 0.1-10.0-fold (×) range of normal physiological concentrations (1×). However, little is known about the effects of these cytokines on excess sebum, a pathophysiological factor of acne development. In this study, human sebocytes were treated with 0.1-10.0× of IL-4, IL-10, IL-12 and IFN-γ for 3 or 5 days to elucidate the effects on lipid content. Treatment with individual cytokines decreased the lipid content at specific concentrations rather than in a concentration-dependent manner. Specifically, 5.0× of IL-4, 5.0× of IFN-γ (5.0IFN), and 0.5×, 5.0× and 10.0× of IL-10 for 3 days, and 0.5× of IL-4 (0.5IL4) for 5 days decreased lipid content to 87.6-93.0% of the control. Treatment with other concentrations of IL-4, IL-10 and IFN-γ, and 0.1-10.0× of IL-12 did not alter lipid content. Combined treatment with 0.5IL4, 5.0IFN and 0.5× of IL-10 for 3 or 5 days decreased the lipid content more than each individual treatment. However, this effect was more evident after 3 days, in parallel with decreased levels of triglycerides, cholesterol esters and free fatty acids, the major lipid compositions of sebocytes, and decreased protein expression of fatty acid synthase (FAS) and mature sterol response element-binding protein-1 (SREBP-1), the lipogenesis-related factors, without altered cell proliferation. We demonstrated that suppressed IL-4 and IL-10 with enhanced IFN-γ synergistically decreased lipid content and protein expression of FAS and mature SREBP-1 in human sebocytes.


Fatty Acid Synthases/metabolism , Sebaceous Glands/metabolism , Sebum/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism , Acne Vulgaris/diet therapy , Acne Vulgaris/immunology , Acne Vulgaris/pathology , Cell Line , Cell Proliferation , Humans , Interferon-gamma/immunology , Interferon-gamma/metabolism , Interleukin-10/immunology , Interleukin-10/metabolism , Interleukin-4/immunology , Interleukin-4/metabolism , Lipids/analysis , Lipogenesis/immunology , Primary Cell Culture , Sebaceous Glands/cytology , Sebaceous Glands/immunology , Sebum/chemistry , Sebum/immunology
...