Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25.057
Filtrar
1.
J Environ Sci (China) ; 148: 13-26, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095152

RESUMEN

Bisphenol A (BPA) is an industrial pollutant that can cause immune impairment. Selenium acts as an antioxidant, as selenium deficiency often accompanies oxidative stress, resulting in organ damage. This study is the first to demonstrate that BPA and/or selenium deficiency induce pyroptosis and ferroptosis-mediated thymic injury in chicken and chicken lymphoma cell (MDCC-MSB-1) via oxidative stress-induced endoplasmic reticulum (ER) stress. We established a broiler chicken model of BPA and/or selenium deficiency exposure and collected thymus samples as research subjects after 42 days. The results demonstrated that BPA or selenium deficiency led to a decrease in antioxidant enzyme activities (T-AOC, CAT, and GSH-Px), accumulation of peroxides (H2O2 and MDA), significant upregulation of ER stress-related markers (GRP78, IER 1, PERK, EIF-2α, ATF4, and CHOP), a significant increase in iron ion levels, significant upregulation of pyroptosis-related gene (NLRP3, ASC, Caspase1, GSDMD, IL-18 and IL-1ß), significantly increase ferroptosis-related genes (TFRC, COX2) and downregulate GPX4, HO-1, FTH, NADPH. In vitro experiments conducted in MDCC-MSB-1 cells confirmed the results, demonstrating that the addition of antioxidant (NAC), ER stress inhibitor (TUDCA) and pyroptosis inhibitor (Vx765) alleviated oxidative stress, endoplasmic reticulum stress, pyroptosis, and ferroptosis. Overall, this study concludes that the combined effects of oxidative stress and ER stress mediate pyroptosis and ferroptosis in chicken thymus induced by BPA exposure and selenium deficiency.


Asunto(s)
Compuestos de Bencidrilo , Pollos , Estrés del Retículo Endoplásmico , Ferroptosis , Fenoles , Piroptosis , Especies Reactivas de Oxígeno , Selenio , Animales , Compuestos de Bencidrilo/toxicidad , Ferroptosis/efectos de los fármacos , Piroptosis/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Selenio/deficiencia , Fenoles/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Timo/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos
2.
J Environ Sci (China) ; 148: 420-436, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095177

RESUMEN

Mercury (Hg) pollution has been a global concern in recent decades, posing a significant threat to entire ecosystems and human health due to its cumulative toxicity, persistence, and transport in the atmosphere. The intense interaction between mercury and selenium has opened up a new field for studying mercury removal from industrial flue gas pollutants. Besides the advantages of good Hg° capture performance and low secondary pollution of the mineral selenium compounds, the most noteworthy is the relatively low regeneration temperature, allowing adsorbent regeneration with low energy consumption, thus reducing the utilization cost and enabling recovery of mercury resources. This paper reviews the recent progress of mineral selenium compounds in flue gas mercury removal, introduces in detail the different types of mineral selenium compounds studied in the field of mercury removal, reviews the adsorption performance of various mineral selenium compounds adsorbents on mercury and the influence of flue gas components, such as reaction temperature, air velocity, and other factors, and summarizes the adsorption mechanism of different fugitive forms of selenium species. Based on the current research progress, future studies should focus on the economic performance and the performance of different carriers and sizes of adsorbents for the removal of Hg0 and the correlation between the gas-particle flow characteristics and gas phase mass transfer with the performance of Hg0 removal in practical industrial applications. In addition, it remains a challenge to distinguish the oxidation and adsorption of Hg0 quantitatively.


Asunto(s)
Contaminantes Atmosféricos , Mercurio , Mercurio/química , Adsorción , Contaminantes Atmosféricos/química , Selenio/química , Gases/química , Compuestos de Selenio/química
3.
Front Immunol ; 15: 1392259, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39086491

RESUMEN

The treatment of wound inflammation is intricately linked to the concentration of reactive oxygen species (ROS) in the wound microenvironment. Among these ROS, H2O2 serves as a critical signaling molecule and second messenger, necessitating the urgent need for its rapid real-time quantitative detection, as well as effective clearance, in the pursuit of effective wound inflammation treatment. Here, we exploited a sophisticated 3D Cu2- x Se/GO nanostructure-based nanonzymatic H2O2 electrochemical sensor, which is further decorated with evenly distributed Pt nanoparticles (Pt NPs) through electrodeposition. The obtained Cu2- x Se/GO@Pt/SPCE sensing electrode possesses a remarkable increase in specific surface derived from the three-dimensional surface constructed by GO nanosheets. Moreover, the localized surface plasma effect of the Cu2- x Se nanospheres enhances the separation of photogenerated electron-hole pairs between the interface of the Cu2- x Se NPs and the Pt NPs. This innovation enables near-infrared light-enhanced catalysis, significantly reducing the detection limit of the Cu2- x Se/GO@Pt/SPCE sensing electrode for H2O2 (from 1.45 µM to 0.53µM) under NIR light. Furthermore, this biosensor electrode enables in-situ real-time monitoring of H2O2 released by cells. The NIR-enhanced Cu2- x Se/GO@Pt/SPCE sensing electrode provide a simple-yet-effective method to achieve a detection of ROS (H2O2、-OH) with high sensitivity and efficiency. This innovation promises to revolutionize the field of wound inflammation treatment by providing clinicians with a powerful tool for accurate and rapid assessment of ROS levels, ultimately leading to improved patient outcomes.


Asunto(s)
Cobre , Peróxido de Hidrógeno , Inflamación , Nanopartículas del Metal , Platino (Metal) , Peróxido de Hidrógeno/metabolismo , Platino (Metal)/química , Cobre/química , Nanopartículas del Metal/química , Inflamación/metabolismo , Animales , Ratones , Nanoestructuras/química , Técnicas Biosensibles/métodos , Selenio/química , Humanos , Rayos Infrarrojos , Especies Reactivas de Oxígeno/metabolismo , Células RAW 264.7
4.
Medicine (Baltimore) ; 103(31): e39118, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093739

RESUMEN

Facial aging involves a continuous sequence of complex, interrelated events that impact numerous facial tissues. The aim of the study was to elucidate the casual relationship between circulating micronutrients and risk of facial aging. A two-sample Mendelian randomization analysis was performed using genetic data from genome-wide association studies. The inverse-variance weighted method is used for causal effect estimation, and additional tools such as Mendelian randomization-Egger, weighted median, simple mode, and weighted mode were used to refine the analysis. We conducted an in-depth examination of the correlation between several micronutrient blood levels and the risk of facial aging, and identified 3 key micronutrients (selenium, carotene, and iron) that may have a significant impact on skin health. Inverse-variance weighted results indicate that selenium levels were positively correlated with the risk of facial aging (odds ratio [OR] 1.005, P = .027), while a negative causal effect of carotene (OR 0.979, P = .024) and iron (OR 0.976, P = .009) on age-related facial alterations was observed. This study offers a new and insightful perspective on the current understanding of antiaging strategies, particularly the importance of appropriate consumption of essential micronutrients to maintain healthy skin condition.


Asunto(s)
Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Micronutrientes , Selenio , Envejecimiento de la Piel , Humanos , Micronutrientes/sangre , Envejecimiento de la Piel/genética , Selenio/sangre , Cara , Carotenoides/sangre , Hierro/sangre , Envejecimiento/sangre , Envejecimiento/genética , Factores de Riesgo
5.
BMC Plant Biol ; 24(1): 745, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39098917

RESUMEN

BACKGROUND: Abiotic stress, such as salinity, affects the photosynthetic apparatus of plants. It is reported that the use of selenium nanoparticles (Se NPs), and biochemical compounds such as chitosan (CS) increase the tolerance of plants to stress conditions. Therefore, this study aimed to elucidate the potential of Se NPs, CS, and their composite (CS + Se NPs) in improving the photosynthetic apparatus of C. sinensis under salt stress in greenhouse conditions. The grafted seedlings of C. sinensis cv. Valencia after adapting to the greenhouse condition, were imposed with 0, 50, and 100 mM NaCl. After two weeks, the plants were foliar sprayed with distilled water (control), CS (0.1% w/v), Se NPs (20 mg L- 1), and CS + Se NPs (10 and 20 mg L- 1). Three months after treatment, the levels of photosynthetic pigments, leaf gas exchange, and chlorophyll fluorescence in the treated plants were evaluated. RESULTS: Under salinity stress, total chlorophyll, carotenoid, and SPAD values decreased by 31%, 48%, and 28% respectively, and Fv/Fm also decreased compared to the control, while the ratio of absorption flux (ABS), dissipated energy flux (DI0) and maximal trapping rate of PSII (TR0) to RC (a measure of PSII apparent antenna size) were increased. Under moderate (50 mM NaCl) and intense (100 mM NaCl) salinity stress, the application of CS + Se NPs significantly increased the levels of photosynthetic pigments and the Fv/Fm value compared to plants treated with distilled water. CONCLUSIONS: It may be inferred that foliar treatment with CS + Se NPs can sustain the photosynthetic ability of C. sinensis under salinity stress and minimize its deleterious effects on photosynthesis.


Asunto(s)
Quitosano , Citrus sinensis , Nanocompuestos , Fotosíntesis , Estrés Salino , Selenio , Fotosíntesis/efectos de los fármacos , Estrés Salino/efectos de los fármacos , Citrus sinensis/efectos de los fármacos , Citrus sinensis/fisiología , Clorofila/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/fisiología
6.
Int J Nanomedicine ; 19: 7851-7870, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39105098

RESUMEN

Background: Inhibiting ROS overproduction is considered a very effective strategy for the treatment of peripheral nerve injuries, and Se has a remarkable antioxidant effect; however, since the difference between the effective concentration of Se and the toxic dose is not large, we synthesized a nanomaterial that can release Se slowly so that it can be used more effectively. Methods: Se@SiO2 NPs were synthesized using a mixture of Cu2-x Se nanocrystals, and the mechanism of action of Se@SiO2 NPs was initially explored by performing sequencing, immunofluorescence staining and Western blotting of cellular experiments. The mechanism of action of Se@SiO2 NPs was further determined by performing behavioral assays after animal experiments and by sampling the material for histological staining, immunofluorescence staining, and ELISA. The effects, mechanisms and biocompatibility of Se@SiO2 NPs for peripheral nerve regeneration were determined. Results: Porous Se@SiO2 was successfully synthesized, had good particle properties, and could release Se slowly. CCK-8 experiments revealed that the optimal experimental doses were 100 µM H2O2 and 200 µg/mL Se@SiO2, and RNA-seq revealed that porous Se@SiO2 was associated with cell proliferation, apoptosis, and the PI3K/AKT pathway. WB showed that porous Se@SiO2 could increase the expression of cell proliferation antigens (PCNA and S100) and antiapoptotic proteins (Bcl-2), decrease the expression of proapoptotic proteins (Bax), and increase the expression of antioxidative stress proteins (Nrf2, HO-1, and SOD2). EdU cell proliferation and ROS fluorescence assays showed that porous Se@SiO2 promoted cell proliferation and reduced ROS levels. The therapeutic effect of LY294002 (a PI3K/AKT pathway inhibitor) was decreased significantly and its effect was lost when it was added simultaneously with porous Se@SiO2. Animal experiments revealed that the regenerated nerve fiber density, myelin thickness, axon area, gastrocnemius muscle wet-to-weight ratio, myofiber area, sciatic nerve function index (SFI), CMAP, apoptotic cell ratio, and levels of antioxidative stress proteins and anti-inflammatory factors were increased following the administration of porous Se@SiO2. The levels of oxidative stress proteins and anti-inflammatory factors were significantly greater in the Se@SiO2 group than in the PNI group, and the effect of LY294002 was decreased significantly and was lost when it was added simultaneously with porous Se@SiO2. Conclusion: Se@SiO2 NPs are promising, economical and effective Se-releasing nanomaterials that can effectively reduce ROS production, inhibit apoptosis and promote cell proliferation after nerve injury via the PI3K/AKT pathway, ultimately accelerating nerve regeneration. These findings could be used to design new, promising drugs for the treatment of peripheral nerve injury.


Asunto(s)
Proliferación Celular , Regeneración Nerviosa , Traumatismos de los Nervios Periféricos , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Selenio , Transducción de Señal , Dióxido de Silicio , Animales , Selenio/química , Selenio/farmacología , Dióxido de Silicio/química , Dióxido de Silicio/farmacología , Traumatismos de los Nervios Periféricos/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Regeneración Nerviosa/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ratas , Apoptosis/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/química , Nanopartículas/química , Masculino , Preparaciones de Acción Retardada/farmacología , Preparaciones de Acción Retardada/química , Ratas Sprague-Dawley , Estrés Oxidativo/efectos de los fármacos , Nervio Ciático/efectos de los fármacos , Nervio Ciático/lesiones , Células de Schwann/efectos de los fármacos , Células de Schwann/metabolismo
7.
Mikrochim Acta ; 191(9): 514, 2024 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-39105930

RESUMEN

A cleanroom free optimized fabrication of a low-cost facile tungsten diselenide (WSe2) combined with chitosan-based hydrogel device is reported for multifunctional applications including tactile sensing, pulse rate monitoring, respiratory rate monitoring, human body movements detection, and human electrophysiological signal detection. Chitosan being a natural biodegradable, non-toxic compound serves as a substrate to the semiconducting WSe2 electrode which is synthesized using a single step hydrothermal technique. Elaborate characterization studies are performed to confirm the morphological, structural, and electrical properties of the fabricated chitosan/WSe2 device. Chitosan/WSe2 sensor with copper contacts on each side is put directly on skin to capture human body motions. The resistivity of the sample was calculated as 26 kΩ m-1. The device behaves as an ultrasensitive pressure sensor for tactile and arterial pulse sensing with response time of 0.9 s and sensitivity of around 0.02 kPa-1. It is also capable for strain sensing with a gauge factor of 54 which is significantly higher than similar other reported electrodes. The human body movements sensing can be attributed to the piezoresistive character of WSe2 that originates from its non-centrosymmetric structure. Further, the sensor is employed for monitoring respiratory rate which measures to 13 counts/min for healthy individual and electrophysiological signals like ECG and EOG which can be used later for detecting numerous pathological conditions in humans. Electrophysiological signal sensing is carried out using a bio-signal amplifier (Bio-Amp EXG Pill) connected to Arduino. The skin-friendly, low toxic WSe2/chitosan dry electrodes pave the way for replacing wet electrodes and find numerous applications in personalized healthcare.


Asunto(s)
Quitosano , Dispositivos Electrónicos Vestibles , Quitosano/química , Humanos , Frecuencia Respiratoria , Selenio/química , Frecuencia Cardíaca/fisiología , Movimiento , Tungsteno/química , Electrodos , Monitoreo Fisiológico/instrumentación , Monitoreo Fisiológico/métodos
8.
Anal Chim Acta ; 1320: 343014, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39142785

RESUMEN

Herein, the selenium (Se) modified gold nanoparticles (Se-AuNPs) was synthesized using cerium doped carbon dots (Ce-CDs) as a reducing agent and template. As desired, Se-AuNPs displays enhanced peroxidase (POD)-like activity in the presence of Hg2+. The mechanism for the enhanced activity was attributed to the increased affinity between Se-AuNPs-Hg2+ and the substrate, in which Se and Au elements have a strong binding capacity to Hg2+, forming Hg-Se bonds and Au-Hg amalgam to generate more ·OH. This POD-like activity of Se-AuNPs-Hg2+ correlates with the colorimetric reaction by the catalytic reaction between 3,3',5,5'-tetramethylbenzidine (TMB) and H2O2. The oxidation of TMB was completely inhibited by the introduction of the reductive S2-. Based on the above findings, a strategy for the colorimetric detection of Hg2+ and S2- by Se-AuNPs was established with linear ranges of 0.33-66 µg/L and 0.625-75 µg/L, and low detection limits of 0.17 µg/L and 0.12 µg/L (3.3 δ/k), respectively. When the colorimetric probes for detection of Hg2+ and S2- was applied in environmental water samples, the recoveries were in the range of 90.3-108.0 %. This method will provide a new idea for the colorimetric detection strategy of Hg2+ due to the strong interaction between Hg and Se.


Asunto(s)
Colorimetría , Oro , Mercurio , Nanopartículas del Metal , Selenio , Colorimetría/métodos , Mercurio/análisis , Oro/química , Nanopartículas del Metal/química , Selenio/química , Límite de Detección , Contaminantes Químicos del Agua/análisis , Bencidinas/química , Peroxidasa/química , Peroxidasa/metabolismo , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/análisis
9.
Food Res Int ; 192: 114851, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39147531

RESUMEN

Processing conditions applied during food production could affect food component contents and bioaccessibility. Here, possible changes in Hg and Se total and species contents and bioaccessibility have been tracked in each stage of the production chain of processed fish-derived products. Therefore, Se:Hg molar ratio and Selenium Health Benefit Value (HBVSe) were calculated for final products and raw materials, resulting favorable in all cases, suggesting the safety of surimi-based products regarding mercury. Speciation studies revealed the presence of SeMeSeCys and SeMet in all samples. Thus, the integrity of the selenium species seems to be maintained. Moreover, in vitro gastrointestinal digestion model evidenced that Se bioaccessibility ranged between 20-39 % for all samples, while in case of Hg was between 8-37 %. Additionaly, SeMeSeCys and SeMet were also identified in the gastrointestinal extracts. Finally, no cytotoxicity was observed after exposure of Caco-2 cells to the gastrointestinal extracts.


Asunto(s)
Productos Pesqueros , Mercurio , Selenio , Células CACO-2 , Humanos , Selenio/análisis , Selenio/toxicidad , Productos Pesqueros/análisis , Mercurio/análisis , Mercurio/toxicidad , Mercurio/metabolismo , Animales , Peces , Disponibilidad Biológica , Contaminación de Alimentos , Manipulación de Alimentos/métodos , Digestión
10.
Sci Rep ; 14(1): 18557, 2024 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-39122731

RESUMEN

This study aimed to evaluate the effects of dietary supplementation of nanoparticles of Selenium (Nano-Se) on productive performance, nutrient digestibility, carcass criteria, selenium retention, blood biochemistry, and histopathological examination of broiler chicken. A total of 192 1-day-old male broiler chickens (Cobb 500) were randomly assigned to one of four treatment diets, with each diet given to six replicates of eight chicks. The birds were randomly assigned to one of four treatment groups, each of which included Nano-Se at levels of 0, 0.2, 0.3, or 0.4 mg/kg. The feeding experiment lasted 35 days. Nano-Se addition to broiler diets at 0.2 and 0.3 mg/kg enhanced body weight and body weight gain linearly compared to the control diet and 0.4 mg/kg. The apparent digestibility coefficient of ether extracts linearly increased with increasing Nano-Se levels up to 0.4 mg/kg. Increasing Nano-Se decreased serum cholesterol, triglycerides, alanine aminotransaminase, aspartate aminotransaminase, and creatinine in broiler chickens. Also, serum antioxidants showed a significant increase with increasing Nano-Se levels. As Nano-Se levels were supplemented, improvements in cooking loss, water-holding capacity, and antioxidants were observed as compared to the control. Additionally, a noticeable improvement in meat quality was observed regarding the obtained meat characters. It was preferred to use low doses of Nano-Se (0.3 mg/kg), as tissue retention of Se for both meat and liver was more comparable to the control. In conclusion, nutritional supplementation with Nano-Se increased growth performance, nutrient digestibility, selenium retention, meat quality, blood biochemistry, histological indices, and antioxidant activity of broiler chickens. Overall, the best performance of broilers was observed with Nano-Se supplementation at 0.3 mg/kg, highlighting its potential as a novel supplement for broiler diets.


Asunto(s)
Alimentación Animal , Pollos , Suplementos Dietéticos , Nanopartículas , Selenio , Animales , Pollos/crecimiento & desarrollo , Selenio/administración & dosificación , Selenio/farmacología , Alimentación Animal/análisis , Nanopartículas/química , Masculino , Antioxidantes/metabolismo , Carne/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Dieta/veterinaria
11.
PLoS One ; 19(8): e0308761, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39133684

RESUMEN

This study was conducted to investigate the effects of selenium nanoparticle (Se-NP) supplementation on the growth performance, carcass composition, antioxidant status, hepatic enzyme activities, and immunity of Cirrhinus mrigala. For this purpose, fish with an average initial weight of 7.44 ± 0.04 g were fed five experimental diets containing 0 (control), 0.25, 0.5, 1, and 2 mg kg-1 Se-NPs diets for 90 days. The analysed selenium (Se) contents of the diets were 0.35, 0.64, 0.92, 1.43, and 2.39 mg kg-1. Twenty five fish were randomly distributed in each of 5 aquarium (36 × 23.7 × 24.3 inches) in triplicate. The results showed that supplementation with Se up to 0.92 mg/kg significantly increased (p<0.05) weight gain, weight gain% (WG%), and specific growth rate (SGR) by 34%, 33%, and 16%, respectively, compared to the control diet. Dietary Se concentrations up to 0.92 mg/kg significantly increased the crude protein and crude fat and reduced (p<0.05) the moisture content as compared to the control group. Fish fed 0.92 mg kg-1 Se had significantly lower malondialdehyde (MDA) contents and higher activities of catalase, superoxide dismutase, and glutathione peroxidase in liver and serum as compared to other experimental diets. Moreover, a significant increase (p<0.05) in the level of serum immunoglobulin and lysozyme (LYZ) activity was recorded in fish fed 0.92 mg/kg Se diet. Moreover, the highest (p<0.05) values of aspartate transaminase (AST) and alanine transaminase (ALT) were recorded in fish fed 2.39 mg/kg Se level. However, serum alkaline phosphatase (ALP) activity remained unaffected by dietary treatment. Broken-line regression analysis indicated that 0.83 mg/kg Se is required for the optimum growth performance of C. mrigala.


Asunto(s)
Antioxidantes , Suplementos Dietéticos , Hígado , Selenio , Animales , Selenio/farmacología , Hígado/efectos de los fármacos , Hígado/metabolismo , Antioxidantes/metabolismo , Nanopartículas , Alimentación Animal/análisis , Dieta/veterinaria , Carpas/crecimiento & desarrollo , Carpas/metabolismo , Carpas/inmunología
12.
PLoS One ; 19(8): e0306573, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39146272

RESUMEN

BACKGROUND: There are limited epidemiological investigations of blood metal levels related to hyperlipidemia, and results indicating the association between blood lead (Pb), cadmium (Cd) and selenium (Se), and lipid biomarkers have been conflicting. METHODS: We included populations for which NHANES collected complete data. Multivariate logistic regression and subgroup analyses were conducted to ascertain the relationship between blood Pb, Cd, and Se levels and hyperlipidemia. Nonlinear relationships were characterized by smoothed curve fitting and threshold effect analysis. RESULTS: 5429 participants in all, with a mean age of 53.70 ± 16.63 years, were included; 47.1% of the subjects were male, and 3683 (67.8%) of them had hyperlipidemia. After modifying for variables with confounders in a multivariate logistic regression model, we discovered a positive correlation between blood Pb and Se levels and hyperlipidemia (Pb: OR:2.12, 95% CI:1.56-2.88; Se: OR:1.84, 95% CI:1.38-2.45). Gender, age, smoking status, alcohol use status, hypertension, diabetes, and body mass index were not significantly linked with this positive correlation, according to subgroup analysis and interaction test (P for interaction>0.05). Positive correlations between blood Pb, Cd, and Se levels and the risk of hyperlipidemia have been found using smooth curve fitting. CONCLUSIONS: This study demonstrates that higher blood levels of Pb, Cd, and selenium are linked to an increased risk of hyperlipidemia.


Asunto(s)
Cadmio , Hiperlipidemias , Plomo , Selenio , Humanos , Cadmio/sangre , Selenio/sangre , Masculino , Hiperlipidemias/sangre , Hiperlipidemias/epidemiología , Plomo/sangre , Femenino , Persona de Mediana Edad , Adulto , Anciano , Encuestas Nutricionales , Biomarcadores/sangre
13.
Sci Total Environ ; 949: 175193, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39094643

RESUMEN

Cadmium (Cd) and arsenic (As), two toxic elements to humans, are ubiquitously coexisting contaminant found in paddy fields. The accumulation of Cd and As in rice, a major food source for many people around the world, can pose a serious threat to food safety and human health. Therefore, it is crucial to be aware of these contaminants and take adequate measures to reduce the accumulation of these two elements in rice. Developing an effective method to simultaneously reduce the accumulation of Cd) and As in rice is challenging. In this study, a pot experiment was conducted to investigate the synergistic effects of selenium (Se), iron (Fe) and phosphorus (P) on the uptake, transport and accumulation of cadmium and arsenic in rice by analyzing the physical and chemical properties of the soil, the elemental concentrations and their interrelationships in the rice tissues, and the composition and morphology of the iron plaque (IP). The results showed that the combined treatments of Se, Fe and P had positive effects on reducing Cd and As accumulation in rice, reducing Cd concentrations in brown rice by 3.86-51.88 % and As concentrations by 25.37-40.81 %. The possible mechanisms for the reduction of As and Cd concentrations in rice grains were: (i) Combined application of Fe, P and Se can effectively reduce the soil available Cd and As concentration. (ii) Combined application significantly improved the formation of IP at the tillering stage and increased the crystalline iron oxides in IP, promoting the deposition of SiO2 in rice roots, thereby effectively inhibiting the uptake of Cd and As by rice roots. (iii) Interplay and interaction between elements facilitated by transporter proteins could contribute to the synergistic mitigation of Cd and As by Se, Fe and P. This study provides a valuable new approach for effective control of Cd and As concentration of rice grown in co-contaminated soil.


Asunto(s)
Arsénico , Cadmio , Hierro , Oryza , Fósforo , Selenio , Contaminantes del Suelo , Cadmio/metabolismo , Arsénico/análisis , Contaminantes del Suelo/análisis , Fósforo/análisis , Suelo/química
14.
Theranostics ; 14(9): 3565-3582, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948069

RESUMEN

Cancer therapy has moved from single agents to more mechanism-based targeted approaches. In recent years, the combination of HDAC inhibitors and other anticancer chemicals has produced exciting progress in cancer treatment. Herein, we developed a novel prodrug via the ligation of dichloroacetate to selenium-containing potent HDAC inhibitors. The effect and mechanism of this compound in the treatment of prostate cancer were also studied. Methods: The concerned prodrug SeSA-DCA was designed and synthesized under mild conditions. This compound's preclinical studies, including the pharmacokinetics, cell toxicity, and anti-tumor effect on prostate cancer cell lines, were thoroughly investigated, and its possible synergistic mechanism was also explored and discussed. Results: SeSA-DCA showed good stability in physiological conditions and could be rapidly decomposed into DCA and selenium analog of SAHA (SeSAHA) in the tumor microenvironment. CCK-8 experiments identified that SeSA-DCA could effectively inhibit the proliferation of a variety of tumor cell lines, especially in prostate cancer. In further studies, we found that SeSA-DCA could also inhibit the metastasis of prostate cancer cell lines and promote cell apoptosis. At the animal level, oral administration of SeSA-DCA led to significant tumor regression without obvious toxicity. Moreover, as a bimolecular coupling compound, SeSA-DCA exhibited vastly superior efficacy than the mixture with equimolar SeSAHA and DCA both in vitro and in vivo. Our findings provide an important theoretical basis for clinical prostate cancer treatment. Conclusions: Our in vivo and in vitro results showed that SeSA-DCA is a highly effective anti-tumor compound for PCa. It can effectively induce cell cycle arrest and growth suppression and inhibit the migration and metastasis of PCa cell lines compared with monotherapy. SeSA-DCA's ability to decrease the growth of xenografts is a little better than that of docetaxel without any apparent signs of toxicity. Our findings provide an important theoretical basis for clinical prostate cancer treatment.


Asunto(s)
Apoptosis , Puntos de Control del Ciclo Celular , Inhibidores de Histona Desacetilasas , Neoplasias de la Próstata , Fosfatasas cdc25 , Masculino , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Humanos , Animales , Apoptosis/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Inhibidores de Histona Desacetilasas/química , Línea Celular Tumoral , Puntos de Control del Ciclo Celular/efectos de los fármacos , Fosfatasas cdc25/metabolismo , Ratones , Antineoplásicos/farmacología , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Ratones Desnudos , Selenio/farmacología , Selenio/química , Selenio/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto , Profármacos/farmacología , Profármacos/química , Ratones Endogámicos BALB C
16.
BMC Vet Res ; 20(1): 295, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971753

RESUMEN

BACKGROUND: Fatty liver in dairy cows is a common metabolic disease defined by triglyceride (TG) buildup in the hepatocyte. Clinical diagnosis of fatty liver is usually done by liver biopsy, causing considerable economic losses in the dairy industry owing to the lack of more effective diagnostic methods. Therefore, this study aimed to investigate the potential utility of blood biomarkers for the diagnosis and early warning of fatty liver in dairy cows. RESULTS: A total of twenty-four lactating cows within 28 days after parturition were randomly selected as experimental animals and divided into healthy cows (liver biopsy tested, n = 12) and cows with fatty liver (liver biopsy tested, n = 12). Inductively coupled plasma mass spectrometry (ICP-MS) was used to determine the macroelements and microelements in the serum of two groups of cows. Compared to healthy cows (C), concentrations of calcium (Ca), potassium (K), magnesium (Mg), strontium (Sr), selenium (Se), manganese (Mn), boron (B) and molybdenum (Mo) were lower and copper (Cu) was higher in fatty liver cows (F). Meanwhile, the observed differences in macroelements and microelements were related to delivery time, with the greatest major disparity between C and F occurring 7 days after delivery. Multivariable analysis was used to test the correlation between nine serum macroelements, microelements and fatty liver. Based on variable importance projection and receiver operating characteristic (ROC) curve analysis, minerals Ca, Se, K, B and Mo were screened as the best diagnostic indicators of fatty liver in postpartum cows. CONCLUSIONS: Our data suggested that serum levels of Ca, K, Mg, Se, B, Mo, Mn, and Sr were lower in F than in C. The most suitable period for an early-warning identification of fatty liver in cows was 7 days after delivery, and Ca, Se, K, B and Mo were the best diagnostic indicators of fatty liver in postpartum cows.


Asunto(s)
Enfermedades de los Bovinos , Hígado Graso , Periodo Periparto , Animales , Bovinos/sangre , Femenino , Enfermedades de los Bovinos/sangre , Enfermedades de los Bovinos/diagnóstico , Hígado Graso/veterinaria , Hígado Graso/sangre , Hígado Graso/diagnóstico , Periodo Periparto/sangre , Biomarcadores/sangre , Manganeso/sangre , Oligoelementos/sangre , Molibdeno/sangre , Hígado/química , Potasio/sangre , Boro/sangre , Selenio/sangre , Calcio/sangre , Magnesio/sangre , Embarazo
17.
PeerJ ; 12: e17660, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38974411

RESUMEN

Background: The development of autism spectrum disorder (ASD) may stem from exposure to environmental pollutants such as heavy metals. The primary objective of this study is to determine the role of heavy metals of concern such as manganese (Mn), cadmium (Cd), lead (Pb), arsenic (As), and essential trace element selenium (Se) among ASD children in Kuala Lumpur, Malaysia. Method: A total of 155 preschoolers in Kuala Lumpur between the ages 3 to 6 participated in an unmatched case-control study, comprising ASD children (n = 81) recruited from an early intervention program for autism, and 74 children without autism who were recruited from public preschools. Urine samples were collected at home, delivered to the study site, and transported to the environmental lab within 24 hours. Inductively coupled plasma mass spectrometry (ICP-MS) was applied to measure the concentration of heavy metals in the samples. Data were analysed using bivariate statistical tests (Chi-square and T-test) and logistic regression models. Result: This study demonstrated that Cd, Pb, and As urine levels were significantly greater in children without autism relative to those affected with ASD (p < 0.05). No significant difference was in the levels of Se (p = 0.659) and Mn (p = 0.875) between children with ASD and the control group. The majority of children in both groups have urine As, Pb, and Cd values lower than 15.1 µg/dL, 1.0 µg/dL, and 1.0 µg/dL, respectively which are the minimal risk values for noncarcinogenic detrimental human health effect due to the heavy metal's exposure . Factors associated with having an ASD child included being a firstborn, male, and higher parental education levels (adjusted odds ratios (aOR) > 1, p < 0.05). Conclusion: Preschoolers in this study demonstrated low levels of heavy metals in their urine samples, which was relatively lower in ASD children compared to the healthy matched controls. These findings may arise from the diminished capacity to excrete heavy metals, especially among ASD children, thereby causing further accumulation of heavy metals in the body. These findings, including the factors associated with having an ASD child, may be considered by healthcare professionals involved in child development care, for early ASD detection. Further assessment of heavy metals among ASD children in the country and interventional studies to develop effective methods of addressing exposure to heavy metals will be beneficial for future reference.


Asunto(s)
Arsénico , Trastorno del Espectro Autista , Cadmio , Plomo , Manganeso , Selenio , Humanos , Trastorno del Espectro Autista/orina , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/epidemiología , Masculino , Femenino , Preescolar , Arsénico/orina , Manganeso/orina , Estudios de Casos y Controles , Selenio/orina , Cadmio/orina , Plomo/orina , Niño , Malasia/epidemiología , Metales Pesados/orina , Metales Pesados/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Contaminantes Ambientales/orina , Contaminantes Ambientales/efectos adversos
18.
BMC Plant Biol ; 24(1): 656, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987701

RESUMEN

Increased selenium (Se) content in fruits can supply Se in human body, but the effects of teas on the Se uptake in fruit trees are unknown. The effects of infusions of four teas (green, black, dark, and white) on the Se uptake of grapevine were studied to promote the Se uptake in fruit trees in this study. However, only black tea infusion increased the biomass, photosynthetic pigment content, superoxide dismutase (SOD) activity, peroxidase (POD) activity, and soluble protein content of grapevine. Except for white tea infusion, other tea infusions also increased the catalase (CAT) activity of grapevine. Furthermore, the tea infusions increased the activities of adenosine triphosphate sulfurase (ATPS) and adenosine 5'-phosphosulfate reductase (APR), and decreased the activities of serine acetyltransferase (SAT) and selenocysteine methyltransferase (SMT). Only the dark and white tea infusions increased the shoot total Se content by 86.53% and 23.32%, respectively (compared with the control), and also increased the shoot inorganic Se content and shoot organic Se content. Notably, four tea infusions decreased the organic Se proportion and increased the inorganic Se proportion in grapevine. Correlation and grey relational analyses showed that the root total Se content, ATPS activity, and ARP activity were closely associated with the shoot total Se content. The principal component and cluster analyses also showed that the ATPS activity, APR activity, root total Se content, and shoot total Se content were classified into one category. These findings show that black tea infusion can promote grapevine growth, while dark and white tea infusions can promote the Se uptake in grapevine.


Asunto(s)
Selenio , Vitis , Vitis/metabolismo , Vitis/efectos de los fármacos , Selenio/metabolismo , , Camellia sinensis/metabolismo , Camellia sinensis/efectos de los fármacos , Frutas/metabolismo , Frutas/crecimiento & desarrollo
19.
Ecotoxicol Environ Saf ; 281: 116663, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38964059

RESUMEN

Biological characteristics of pregnant women during early pregnancy make them susceptible to both poor sleep quality and metal/metalloid exposure. However, the effects of metal(loid) exposure on sleep quality in pregnant women remain unknown and unexplored. We aimed to examine the relationship between exposure to a mixture of metal(loid)s and pregnant women's sleep quality during early pregnancy. We recruited 493 pregnant women in the first trimester from prenatal clinics in Jinan, Shandong Province, China, and collected their spot urine samples. All urine specimens were assessed for eight metal(loid)s: arsenic (As), cadmium (Cd), iron (Fe), zinc (Zn), molybdenum (Mo), lead (Pb), selenium (Se), and mercury (Hg). We used the Pittsburgh Sleep Quality Index (PSQI) to assess sleep quality. Linear regression, logistic regression, generalized additive models (GAMs), quantile g-computation, and Bayesian kernel machine regression (BKMR) were applied to investigate the relationships between metal(loid) exposure and sleep quality. The results from single metal(loid) models, quantile g-computation models, and BKMR models consistently suggested that Fe was positively related to women's sleep quality. Moreover, in the quantile g-computation models, As was the most critical contributor to the negative effects of the metal(loid) mixture on sleep quality. In addition, we found significant As by Fe interaction for scores of PSQI and habitual sleep efficiency, Pb by Fe interaction for PSQI and sleep latency, and Hg by Fe interaction for PSQI, suggesting the interactive effects of As and Fe, Pb and Fe, Hg and Fe on sleep quality and specific sleep components. Our study provided the first-hand evidence of the effects of metal(loid) exposure on pregnant women's sleep quality. The underlying mechanisms need to be explored in the future.


Asunto(s)
Calidad del Sueño , Humanos , Femenino , Embarazo , Estudios Transversales , Adulto , China , Contaminantes Ambientales/orina , Contaminantes Ambientales/toxicidad , Selenio/orina , Arsénico/orina , Arsénico/toxicidad , Metales/orina , Metales/toxicidad , Metales Pesados/orina , Metales Pesados/toxicidad , Mercurio/orina , Mercurio/toxicidad , Adulto Joven , Plomo/orina , Plomo/toxicidad , Exposición Materna , Cadmio/orina , Cadmio/toxicidad , Primer Trimestre del Embarazo
20.
Medicine (Baltimore) ; 103(28): e38845, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38996172

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) encompasses a broad spectrum of diseases and stands as the second most prevalent liver disorder in the 21st century. Advanced hepatic fibrosis (AHF) is a crucial indicator of the progression of NAFLD. Selenium (Se) is an indispensable trace element for human physiology; however, excessive intake can lead to poisoning and detrimental effects. Notably, males exhibit significantly higher serum Se levels compared to females. To investigate the correlation between serum Se levels and the prevalence of NAFLD and AHF across different genders. Utilizing data from the National Health and Nutrition Examination Survey (NHANES) 2017-2020, 7271 participants were included. Through descriptive analysis, multivariable logistic regression, subgroup analysis, interaction, and restricted cubic spline regression analysis, the relationship between serum Se levels and the prevalence of NAFLD and AHF was investigated. serum Se levels were significantly higher in both male and female NAFLD groups compared to the non-NAFLD groups (Males: 187.570 vs 183.300, Z = -16.169, P < .001; Females: 184.780 vs 180.130, Z = -4.102, P < .001). After adjusting for confounders, an increase in one quartile of serum Se was associated with a 17.60% increase in NAFLD prevalence in males (OR, 1.176; 95% CI: 1.052-1.315) and a 38.50% decrease in AHF prevalence (OR, 0.615; 95% CI: 0.479-0.789). In females, each quartile increase in serum Se was associated with a 29.10% increase in NAFLD prevalence (OR,1.291;95%CI: 1.155-1.442) and a 51.60% decrease in AHF prevalence (OR, 0.484; 95% CI: 0.344-0.682). serum Se levels are positively correlated with the prevalence of NAFLD and negatively correlated with the prevalence of AHF in both males and females.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Encuestas Nutricionales , Selenio , Humanos , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Enfermedad del Hígado Graso no Alcohólico/sangre , Masculino , Selenio/sangre , Femenino , Persona de Mediana Edad , Adulto , Prevalencia , Factores Sexuales , Cirrosis Hepática/epidemiología , Cirrosis Hepática/sangre , Estudios Transversales , Anciano
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA