Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Clin Invest ; 131(11)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34060490

RESUMEN

Worse outcomes occur in aged compared with young populations after infections with respiratory viruses, including pathogenic coronaviruses (SARS-CoV, MERS-CoV, and SARS-CoV-2), and are associated with a suboptimal lung milieu ("inflammaging"). We previously showed that a single inducible phospholipase, PLA2G2D, is associated with a proresolving/antiinflammatory response in the lungs, and increases with age. Survival was increased in naive Pla2g2d-/- mice infected with SARS-CoV resulting from augmented respiratory dendritic cell (rDC) activation and enhanced priming of virus-specific T cells. Here, in contrast, we show that intranasal immunization provided no additional protection in middle-aged Pla2g2d-/- mice infected with any of the 3 pathogenic human coronaviruses because virtually no virus-specific antibodies or follicular helper CD4+ T (Tfh) cells were produced. Using MERS-CoV-infected mice, we found that these effects did not result from T or B cell intrinsic factors. Rather, they resulted from enhanced, and ultimately, pathogenic rDC activation, as manifested most prominently by enhanced IL-1ß expression. Wild-type rDC transfer to Pla2g2d-/- mice in conjunction with partial IL-1ß blockade reversed this defect and resulted in increased virus-specific antibody and Tfh responses. Together, these results indicate that PLA2G2D has an unexpected role in the lungs, serving as an important modulator of rDC activation, with protective and pathogenic effects in respiratory coronavirus infections and immunization, respectively.


Asunto(s)
Anticuerpos Antivirales/inmunología , Formación de Anticuerpos , COVID-19/inmunología , Fosfolipasas A2 Grupo II/inmunología , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , SARS-CoV-2/inmunología , Síndrome Respiratorio Agudo Grave/inmunología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Animales , COVID-19/enzimología , COVID-19/genética , Chlorocebus aethiops , Fosfolipasas A2 Grupo II/deficiencia , Ratones , Ratones Noqueados , Síndrome Respiratorio Agudo Grave/enzimología , Síndrome Respiratorio Agudo Grave/genética , Células Vero
2.
Infection ; 48(5): 665-669, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32737833

RESUMEN

Novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) became pandemic by the end of March 2020. In contrast to the 2002-2003 SARS-CoV outbreak, which had a higher pathogenicity and lead to higher mortality rates, SARSCoV-2 infection appears to be much more contagious. Moreover, many SARS-CoV-2 infected patients are reported to develop low-titer neutralizing antibody and usually suffer prolonged illness, suggesting a more effective SARS-CoV-2 immune surveillance evasion than SARS-CoV. This paper summarizes the current state of art about the differences and similarities between the pathogenesis of the two coronaviruses, focusing on receptor binding domain, host cell entry and protease activation. Such differences may provide insight into possible intervention strategies to fight the pandemic.


Asunto(s)
Betacoronavirus/patogenicidad , Infecciones por Coronavirus/epidemiología , Pandemias , Neumonía Viral/epidemiología , Síndrome Respiratorio Agudo Grave/epidemiología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , Glicoproteína de la Espiga del Coronavirus/inmunología , Enzima Convertidora de Angiotensina 2 , Anticuerpos Antivirales/biosíntesis , Betacoronavirus/inmunología , COVID-19 , Catepsinas/genética , Catepsinas/inmunología , Infecciones por Coronavirus/enzimología , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/patología , Activación Enzimática/inmunología , Humanos , Evasión Inmune , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/inmunología , Neumonía Viral/enzimología , Neumonía Viral/inmunología , Neumonía Viral/patología , Unión Proteica , Dominios Proteicos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , SARS-CoV-2 , Serina Endopeptidasas/genética , Serina Endopeptidasas/inmunología , Síndrome Respiratorio Agudo Grave/enzimología , Síndrome Respiratorio Agudo Grave/inmunología , Síndrome Respiratorio Agudo Grave/patología , Índice de Severidad de la Enfermedad , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Internalización del Virus , Replicación Viral
3.
SEMERGEN, Soc. Esp. Med. Rural Gen. (Ed. Impr.) ; 46(supl.1): 55-61, ago. 2020. tab, graf
Artículo en Español | IBECS | ID: ibc-192615

RESUMEN

La pandemia por COVID-19 ha provocado un desajuste en todos los sistemas de salud. La mayoría de los países habían olvidado cómo comportarse ante una epidemia de estas características sin disponer de los recursos adecuados. Es preciso realizar un balance de todo lo sucedido, instruir a la población y generar un nuevo conocimiento que nos permita afrontar nuevas epidemias


The COVID-19 pandemic has caused a mismatch in all health systems. Most countries had forgotten how to behave in the face of such an epidemic without adequate resources. We need to take stock of everything that has happened, instruct the population and generate a new knowledge that allows us to face new epidemics


Asunto(s)
Humanos , Infecciones por Coronavirus/epidemiología , Síndrome Respiratorio Agudo Grave/enzimología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , Pandemias/prevención & control , Pandemias/estadística & datos numéricos , Control de Enfermedades Transmisibles/tendencias , 34661/métodos , Capacidad de Reacción/organización & administración
4.
Mol Syst Biol ; 16(7): e9841, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32715628

RESUMEN

Infection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) leads to coronavirus disease 2019 (COVID-19), which poses an unprecedented worldwide health crisis, and has been declared a pandemic by the World Health Organization (WHO) on March 11, 2020. The angiotensin converting enzyme 2 (ACE2) has been suggested to be the key protein used by SARS-CoV-2 for host cell entry. In their recent work, Lindskog and colleagues (Hikmet et al, 2020) report that ACE2 is expressed at very low protein levels-if at all-in respiratory epithelial cells. Severe COVID-19, however, is characterized by acute respiratory distress syndrome and extensive damage to the alveoli in the lung parenchyma. Then, what is the role of the airway epithelium in the early stages of COVID-19, and which cells need to be studied to characterize the biological mechanisms responsible for the progression to severe disease after initial infection by the novel coronavirus?


Asunto(s)
Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/virología , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/metabolismo , Neumonía Viral/virología , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/virología , Síndrome Respiratorio Agudo Grave/metabolismo , Síndrome Respiratorio Agudo Grave/virología , Enzima Convertidora de Angiotensina 2 , Betacoronavirus , COVID-19 , Conjuntiva/metabolismo , Infecciones por Coronavirus/enzimología , Interacciones Microbiota-Huesped/genética , Humanos , Especificidad de Órganos , Pandemias , Peptidil-Dipeptidasa A/genética , Neumonía Viral/enzimología , SARS-CoV-2 , Síndrome Respiratorio Agudo Grave/enzimología , Glicoproteína de la Espiga del Coronavirus/metabolismo
5.
Leukemia ; 34(7): 1805-1815, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32518419

RESUMEN

A subgroup of patients with severe COVID-19 suffers from progression to acute respiratory distress syndrome and multiorgan failure. These patients present with progressive hyperinflammation governed by proinflammatory cytokines. An interdisciplinary COVID-19 work flow was established to detect patients with imminent or full blown hyperinflammation. Using a newly developed COVID-19 Inflammation Score (CIS), patients were prospectively stratified for targeted inhibition of cytokine signalling by the Janus Kinase 1/2 inhibitor ruxolitinib (Rux). Patients were treated with efficacy/toxicity guided step up dosing up to 14 days. Retrospective analysis of CIS reduction and clinical outcome was performed. Out of 105 patients treated between March 30th and April 15th, 2020, 14 patients with a CIS ≥ 10 out of 16 points received Rux over a median of 9 days with a median cumulative dose of 135 mg. A total of 12/14 patients achieved significant reduction of CIS by ≥25% on day 7 with sustained clinical improvement in 11/14 patients without short term red flag warnings of Rux-induced toxicity. Rux treatment for COVID-19 in patients with hyperinflammation is shown to be safe with signals of efficacy in this pilot case series for CRS-intervention to prevent or overcome multiorgan failure. A multicenter phase-II clinical trial has been initiated (NCT04338958).


Asunto(s)
Antiinflamatorios/uso terapéutico , Infecciones por Coronavirus/tratamiento farmacológico , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Janus Quinasa 1/antagonistas & inhibidores , Janus Quinasa 2/antagonistas & inhibidores , Neumonía Viral/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirazoles/uso terapéutico , Síndrome Respiratorio Agudo Grave/tratamiento farmacológico , Adulto , Anciano , Anciano de 80 o más Años , Betacoronavirus/efectos de los fármacos , Betacoronavirus/inmunología , Betacoronavirus/patogenicidad , COVID-19 , Ensayos Clínicos como Asunto , Infecciones por Coronavirus/enzimología , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Síndrome de Liberación de Citoquinas/enzimología , Síndrome de Liberación de Citoquinas/inmunología , Síndrome de Liberación de Citoquinas/virología , Citocinas/antagonistas & inhibidores , Citocinas/genética , Citocinas/inmunología , Esquema de Medicación , Femenino , Regulación de la Expresión Génica , Humanos , Inmunidad Innata/efectos de los fármacos , Inflamación , Janus Quinasa 1/genética , Janus Quinasa 1/inmunología , Janus Quinasa 2/genética , Janus Quinasa 2/inmunología , Masculino , Persona de Mediana Edad , Nitrilos , Pandemias , Seguridad del Paciente , Neumonía Viral/enzimología , Neumonía Viral/inmunología , Neumonía Viral/virología , Pirimidinas , Estudios Retrospectivos , SARS-CoV-2 , Síndrome Respiratorio Agudo Grave/enzimología , Síndrome Respiratorio Agudo Grave/inmunología , Síndrome Respiratorio Agudo Grave/virología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Linfocitos T/virología , Resultado del Tratamiento
6.
FASEB J ; 34(5): 6017-6026, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32306452

RESUMEN

Human angiotensin-converting enzyme 2 (ACE2) facilitates cellular entry of severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 as their common receptor. During infection, ACE2-expressing tissues become direct targets, resulting in serious pathological changes and progressive multiple organ failure or even death in severe cases. However, as an essential component of renin-angiotensin system (RAS), ACE2 confers protective effects in physiological circumstance, including maintaining cardiovascular homeostasis, fluid, and electrolyte balance. The absence of protective role of ACE2 leads to dysregulated RAS and thus acute changes under multiple pathological scenarios including SARS. This potentially shared mechanism may also be the molecular explanation for pathogenesis driven by SARS-CoV-2. We reasonably speculate several potential directions of clinical management including host-directed therapies aiming to restore dysregulated RAS caused by ACE2 deficiency. Enriched knowledge of ACE2 learned from SARS and COVID-19 outbreaks can provide, despite their inherent tragedy, informative clues for emerging pandemic preparedness.


Asunto(s)
Betacoronavirus/fisiología , Infecciones por Coronavirus/enzimología , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/enzimología , Síndrome Respiratorio Agudo Grave/enzimología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , Internalización del Virus , Enzima Convertidora de Angiotensina 2 , COVID-19 , Sistemas de Liberación de Medicamentos , Humanos , Pandemias , Peptidil-Dipeptidasa A/deficiencia , SARS-CoV-2
8.
J Biol Chem ; 291(17): 9218-32, 2016 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-26953343

RESUMEN

Ebola virus infection can cause severe hemorrhagic fever with a high mortality in humans. The outbreaks of Ebola viruses in 2014 represented the most serious Ebola epidemics in history and greatly threatened public health worldwide. The development of additional effective anti-Ebola therapeutic agents is therefore quite urgent. In this study, via high throughput screening of Food and Drug Administration-approved drugs, we identified that teicoplanin, a glycopeptide antibiotic, potently prevents the entry of Ebola envelope pseudotyped viruses into the cytoplasm. Furthermore, teicoplanin also has an inhibitory effect on transcription- and replication-competent virus-like particles, with an IC50 as low as 330 nm Comparative analysis further demonstrated that teicoplanin is able to block the entry of Middle East respiratory syndrome (MERS) and severe acute respiratory syndrome (SARS) envelope pseudotyped viruses as well. Teicoplanin derivatives such as dalbavancin, oritavancin, and telavancin can also inhibit the entry of Ebola, MERS, and SARS viruses. Mechanistic studies showed that teicoplanin blocks Ebola virus entry by specifically inhibiting the activity of cathepsin L, opening a novel avenue for the development of additional glycopeptides as potential inhibitors of cathepsin L-dependent viruses. Notably, given that teicoplanin has routinely been used in the clinic with low toxicity, our work provides a promising prospect for the prophylaxis and treatment of Ebola, MERS, and SARS virus infection.


Asunto(s)
Antibacterianos/farmacología , Catepsina L/antagonistas & inhibidores , Ebolavirus/metabolismo , Endosomas/enzimología , Lisosomas/enzimología , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , Teicoplanina/farmacocinética , Internalización del Virus/efectos de los fármacos , Catepsina L/metabolismo , Ebolavirus/genética , Endosomas/genética , Endosomas/virología , Células HeLa , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Fiebre Hemorrágica Ebola/enzimología , Fiebre Hemorrágica Ebola/epidemiología , Humanos , Lisosomas/genética , Lisosomas/virología , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Síndrome Respiratorio Agudo Grave/tratamiento farmacológico , Síndrome Respiratorio Agudo Grave/enzimología , Síndrome Respiratorio Agudo Grave/epidemiología
9.
J Virol ; 88(2): 1293-307, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24227843

RESUMEN

The type II transmembrane serine proteases TMPRSS2 and HAT can cleave and activate the spike protein (S) of the severe acute respiratory syndrome coronavirus (SARS-CoV) for membrane fusion. In addition, these proteases cleave the viral receptor, the carboxypeptidase angiotensin-converting enzyme 2 (ACE2), and it was proposed that ACE2 cleavage augments viral infectivity. However, no mechanistic insights into this process were obtained and the relevance of ACE2 cleavage for SARS-CoV S protein (SARS-S) activation has not been determined. Here, we show that arginine and lysine residues within ACE2 amino acids 697 to 716 are essential for cleavage by TMPRSS2 and HAT and that ACE2 processing is required for augmentation of SARS-S-driven entry by these proteases. In contrast, ACE2 cleavage was dispensable for activation of the viral S protein. Expression of TMPRSS2 increased cellular uptake of soluble SARS-S, suggesting that protease-dependent augmentation of viral entry might be due to increased uptake of virions into target cells. Finally, TMPRSS2 was found to compete with the metalloprotease ADAM17 for ACE2 processing, but only cleavage by TMPRSS2 resulted in augmented SARS-S-driven entry. Collectively, our results in conjunction with those of previous studies indicate that TMPRSS2 and potentially related proteases promote SARS-CoV entry by two separate mechanisms: ACE2 cleavage, which might promote viral uptake, and SARS-S cleavage, which activates the S protein for membrane fusion. These observations have interesting implications for the development of novel therapeutics. In addition, they should spur efforts to determine whether receptor cleavage promotes entry of other coronaviruses, which use peptidases as entry receptors.


Asunto(s)
Proteínas ADAM/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Serina Endopeptidasas/metabolismo , Síndrome Respiratorio Agudo Grave/enzimología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus , Proteínas ADAM/genética , Proteína ADAM17 , Secuencias de Aminoácidos , Enzima Convertidora de Angiotensina 2 , Línea Celular , Humanos , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/genética , Procesamiento Proteico-Postraduccional , Proteolisis , Receptores Virales/genética , Receptores Virales/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Serina Endopeptidasas/genética , Síndrome Respiratorio Agudo Grave/genética , Síndrome Respiratorio Agudo Grave/metabolismo , Síndrome Respiratorio Agudo Grave/virología , Glicoproteína de la Espiga del Coronavirus/genética
10.
Bioorg Med Chem ; 20(19): 5928-35, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-22884354

RESUMEN

In the search for anti-SARS-CoV, tanshinones derived from Salvia miltiorrhiza were found to be specific and selective inhibitors for the SARS-CoV 3CL(pro) and PL(pro), viral cysteine proteases. A literature search for studies involving the seven isolated tanshinone hits showed that at present, none have been identified as coronaviral protease inhibitors. We have identified that all of the isolated tanshinones are good inhibitors of both cysteine proteases. However, their activity was slightly affected by subtle changes in structure and targeting enzymes. All isolated compounds (1-7) act as time dependent inhibitors of PL(pro), but no improved inhibition was observed following preincubation with the 3CL(pro). In a detail kinetic mechanism study, all of the tanshinones except rosmariquinone (7) were identified as noncompetitive enzyme isomerization inhibitors. However, rosmariquinone (7) showed a different kinetic mechanism through mixed-type simple reversible slow-binding inhibition. Furthermore, tanshinone I (5) exhibited the most potent nanomolar level inhibitory activity toward deubiquitinating (IC(50)=0.7 µM). Additionally, the inhibition is selective because these compounds do not exert significant inhibitory effects against other proteases including chymotrysin, papain, and HIV protease. These findings provide potential inhibitors for SARS-CoV viral infection and replication.


Asunto(s)
Abietanos/química , Abietanos/farmacología , Inhibidores de Cisteína Proteinasa/química , Inhibidores de Cisteína Proteinasa/farmacología , Salvia miltiorrhiza/química , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/enzimología , Abietanos/aislamiento & purificación , Inhibidores de Cisteína Proteinasa/aislamiento & purificación , Humanos , Cinética , Unión Proteica , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/efectos de los fármacos , Síndrome Respiratorio Agudo Grave/tratamiento farmacológico , Síndrome Respiratorio Agudo Grave/enzimología , Ubiquitinación/efectos de los fármacos
11.
PLoS One ; 7(4): e35876, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22558251

RESUMEN

The type II transmembrane serine proteases TMPRSS2 and HAT activate influenza viruses and the SARS-coronavirus (TMPRSS2) in cell culture and may play an important role in viral spread and pathogenesis in the infected host. However, it is at present largely unclear to what extent these proteases are expressed in viral target cells in human tissues. Here, we show that both HAT and TMPRSS2 are coexpressed with 2,6-linked sialic acids, the major receptor determinant of human influenza viruses, throughout the human respiratory tract. Similarly, coexpression of ACE2, the SARS-coronavirus receptor, and TMPRSS2 was frequently found in the upper and lower aerodigestive tract, with the exception of the vocal folds, epiglottis and trachea. Finally, activation of influenza virus was conserved between human, avian and porcine TMPRSS2, suggesting that this protease might activate influenza virus in reservoir-, intermediate- and human hosts. In sum, our results show that TMPRSS2 and HAT are expressed by important influenza and SARS-coronavirus target cells and could thus support viral spread in the human host.


Asunto(s)
Reservorios de Enfermedades/veterinaria , Tracto Gastrointestinal/enzimología , Gripe Humana/enzimología , Sistema Respiratorio/enzimología , Serina Endopeptidasas/genética , Síndrome Respiratorio Agudo Grave/enzimología , Enzima Convertidora de Angiotensina 2 , Animales , Aves , Línea Celular , Reservorios de Enfermedades/virología , Activación Enzimática , Tracto Gastrointestinal/virología , Expresión Génica , Humanos , Gripe Humana/genética , Gripe Humana/transmisión , Gripe Humana/virología , Orthomyxoviridae/fisiología , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Receptores Virales/genética , Receptores Virales/metabolismo , Sistema Respiratorio/virología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , Serina Endopeptidasas/metabolismo , Síndrome Respiratorio Agudo Grave/genética , Síndrome Respiratorio Agudo Grave/transmisión , Síndrome Respiratorio Agudo Grave/virología , Ácidos Siálicos/metabolismo , Porcinos
12.
Curr Comput Aided Drug Des ; 6(1): 1-23, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20370692

RESUMEN

Cysteine proteases are implicated in a variety of human physiological processes and also form an essential component of the life cycle of a number of pathogenic protozoa and viruses. The present review highlights the drug design approaches utilized to understand the mechanism of inhibition and discovery of inhibitors against protozoal cysteine protease, falcipain (a cysteine protease of P. falciparum which causes malaria), and viral cysteine protease, SARS-CoV M(pro) (a cysteine protease of severe acute respiratory syndrome corona virus). The article describes rational approaches for the design of inhibitors and focuses on a variety of structure as well as ligand-based modeling strategies adopted for the discovery of the inhibitors. Also, the key features of ligand recognition against these targets are accentuated. Although no apparent similarities exist between viral and protozoal cysteine proteases discussed here, the goal is to provide examples of rational drug design approaches adopted to design inhibitors against these proteases. The current review would be of interest to scientists engaged in the development of drug design strategies to target the cysteine proteases present in mammals and other lower order organisms.


Asunto(s)
Biología Computacional/métodos , Inhibidores de Cisteína Proteinasa/química , Descubrimiento de Drogas/métodos , Malaria/tratamiento farmacológico , Malaria/enzimología , Síndrome Respiratorio Agudo Grave/tratamiento farmacológico , Síndrome Respiratorio Agudo Grave/enzimología , Animales , Inhibidores de Cisteína Proteinasa/uso terapéutico , Humanos
13.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 25(9): 777-9, 2009 Sep.
Artículo en Chino | MEDLINE | ID: mdl-19737459

RESUMEN

AIM: Severe acute respiratory syndrome coronavirus (SARS-CoV) is the etiological agent of SARS, an emerging disease characterized by atypical pneumonia. Using a yeast two-hybrid screen with the nucleocapsid (N)protein of SARS-CoV as a bait, the N protein was found to interact with MAP19, a non-enzymatic protein of MASP(mannan-associated serine protease). The interaction between SARS-CoV N and MAP19 would be further tested in cells in this article. METHODS: The interaction between SARS-CoV N and MAP19 was demonstrated by immuno- coprecipitation, and the amount of MAP19 influenced by SARS-CoV N was investgated by Western blot. RESULTS: The interaction between SARS-CoV N and MAP19 was already demonstrated by immuno-coprecipitation. SARS-CoV N greatly increased the amount of MAP19. CONCLUSION: SARS-CoV N can bind with MAP19 in cells. Our study may be conductive to further research into the molecular mechanism of action between SARS-CoV N and MAP19.


Asunto(s)
Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismo , Proteínas de la Nucleocápside/metabolismo , Síndrome Respiratorio Agudo Grave/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , Línea Celular , Proteínas de la Nucleocápside de Coronavirus , Humanos , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/genética , Proteínas de la Nucleocápside/genética , Unión Proteica , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Síndrome Respiratorio Agudo Grave/enzimología , Síndrome Respiratorio Agudo Grave/virología
14.
Am J Physiol Lung Cell Mol Physiol ; 297(1): L84-96, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19411314

RESUMEN

Angiotensin-converting enzyme 2 (ACE2) is a terminal carboxypeptidase and the receptor for the SARS and NL63 coronaviruses (CoV). Loss of ACE2 function is implicated in severe acute respiratory syndrome (SARS) pathogenesis, but little is known about ACE2 biogenesis and activity in the airways. We report that ACE2 is shed from human airway epithelia, a site of SARS-CoV infection. The regulation of ACE2 release was investigated in polarized human airway epithelia. Constitutive generation of soluble ACE2 was inhibited by DPC 333, implicating a disintegrin and metalloprotease 17 (ADAM17). Phorbol ester, ionomycin, endotoxin, and IL-1beta and TNFalpha acutely induced ACE2 release, further supporting that ADAM17 and ADAM10 regulate ACE2 cleavage. Soluble ACE2 was enzymatically active and partially inhibited virus entry into target cells. We determined that the ACE2 cleavage site resides between amino acid 716 and the putative transmembrane domain starting at amino acid 741. To reveal structural determinants underlying ACE2 release, several mutant and chimeric ACE2 proteins were engineered. Neither the juxtamembrane stalk region, transmembrane domain, nor the cytosolic domain was needed for constitutive ACE2 release. Interestingly, a point mutation in the ACE2 ectodomain, L584A, markedly attenuated shedding. The resultant ACE2-L584A mutant trafficked to the cell membrane and facilitated SARS-CoV entry into target cells, suggesting that the ACE2 ectodomain regulates its release and that residue L584 might be part of a putative sheddase "recognition motif." Thus ACE2 must be cell associated to serve as a CoV receptor and soluble ACE2 might play a role in modifying inflammatory processes at the airway mucosal surface.


Asunto(s)
Células Epiteliales/enzimología , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/metabolismo , Sistema Respiratorio/citología , Enzima Convertidora de Angiotensina 2 , Línea Celular , Membrana Celular/metabolismo , Polaridad Celular , Activación Enzimática , Células Epiteliales/citología , Humanos , Modelos Moleculares , Proteínas Mutantes/metabolismo , Estructura Terciaria de Proteína , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , Síndrome Respiratorio Agudo Grave/enzimología , Síndrome Respiratorio Agudo Grave/virología , Solubilidad , Internalización del Virus
15.
J Biol Chem ; 284(12): 7646-55, 2009 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-19144641

RESUMEN

Human coxsackievirus (CV) belongs to the picornavirus family, which consists of over 200 medically relevant viruses. In picornavirus, a chymotrypsin-like protease (3C(pro)) is required for viral replication by processing the polyproteins, and thus it is regarded as an antiviral drug target. A 3C-like protease (3CL(pro)) also exists in human coronaviruses (CoV) such as 229E and the one causing severe acute respiratory syndrome (SARS). To combat SARS, we previously had developed peptidomimetic and zinc-coordinating inhibitors of 3CL(pro). As shown in the present study, some of these compounds were also found to be active against 3C(pro) of CV strain B3 (CVB3). Several crystal structures of 3C(pro) from CVB3 and 3CL(pro) from CoV-229E and SARS-CoV in complex with the inhibitors were solved. The zinc-coordinating inhibitor is tetrahedrally coordinated to the His(40)-Cys(147) catalytic dyad of CVB3 3C(pro). The presence of specific binding pockets for the residues of peptidomimetic inhibitors explains the binding specificity. Our results provide a structural basis for inhibitor optimization and development of potential drugs for antiviral therapies.


Asunto(s)
Materiales Biomiméticos/química , Cisteína Endopeptidasas/química , Inhibidores de Cisteína Proteinasa/química , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/enzimología , Proteínas Virales/química , Zinc/química , Sitios de Unión , Materiales Biomiméticos/uso terapéutico , Proteasas 3C de Coronavirus , Inhibidores de Cisteína Proteinasa/uso terapéutico , Humanos , Estructura Terciaria de Proteína , Síndrome Respiratorio Agudo Grave/tratamiento farmacológico , Síndrome Respiratorio Agudo Grave/enzimología , Relación Estructura-Actividad , Proteínas Virales/antagonistas & inhibidores
16.
Virology ; 381(1): 89-97, 2008 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-18801550

RESUMEN

Angiotensin converting enzyme 2 (ACE2) is the receptor that severe acute respiratory syndrome coronavirus (SARS-CoV) utilizes for target cell entry and, therefore, plays an important role in SARS pathogenesis. Since Chinese rhesus (rh) macaques do not usually develop SARS after SARS-CoV infection, it has been suggested that rh-ACE2 probably does not support viral entry efficiently. To determine the role of rh-ACE2 in early lung pathogenesis in vivo, we studied eleven Chinese rhesus monkeys experimentally infected with a pathogenic SARS-CoV(PUMC01) strain. Rh-ACE2 genes were amplified from all animals by reverse transcription polymerase chain reaction, and their function was studied in vitro using a pseudovirus entry assay. Many natural non-synonymous (NS) changes were found in rh-ACE2 genes. Compared to human (hu) ACE2, thirty-eight consensus NS changes were found in rh-ACE2. Since these changes do not interact with the receptor binding domain of SARS-CoV, rh-ACE2 in general is as effective as human homolog in supporting viral entry. Rh-ACE2, however, is more polymorphic than hu-ACE2. Additional sporadic NS substitutions in clone Rh11-7 reduced the level of rh-ACE2 protein expression and did not support viral entry effectively. Further mutagenesis analysis showed that a natural mutation Y217N dramatically alters ACE2 expression and entry efficiency. Moreover, introduction of the Y217N mutation into hu-ACE2 caused the down-regulation of expression and reduced viral entry efficiency. These results indicate that the Y217N mutation plays a role in modulating SARS-CoV infection. Our results provide insights for understanding the role of rh-ACE2 in SARS lung pathogenesis in a non-human primate model.


Asunto(s)
Macaca mulatta/virología , Peptidil-Dipeptidasa A/metabolismo , Síndrome Respiratorio Agudo Grave/enzimología , Síndrome Respiratorio Agudo Grave/virología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , Internalización del Virus , Secuencia de Aminoácidos , Enzima Convertidora de Angiotensina 2 , Animales , Línea Celular , Femenino , Regulación Enzimológica de la Expresión Génica , Humanos , Pulmón/enzimología , Pulmón/patología , Pulmón/virología , Masculino , Datos de Secuencia Molecular , Mutación , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Síndrome Respiratorio Agudo Grave/patología
17.
Vet Pathol ; 45(4): 551-62, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18587105

RESUMEN

The pathology of severe acute respiratory syndrome-coronavirus (SARS-CoV) infection in cats and ferrets is poorly described, and the distribution of angiotensin-converting enzyme 2 (ACE2), a receptor for SARS-CoV, in the respiratory tracts of these species is unknown. We observed SARS-CoV antigen expression and lesions in the respiratory tracts of 4 cats and 4 ferrets at 4 days postinoculation and ACE2 expression in the respiratory tracts of 3 cats and 3 ferrets without infection. All infected cats and ferrets had diffuse alveolar damage associated with SARS-CoV antigen expression. A novel SARS-CoV-associated lesion was tracheo-bronchoadenitis in cats. SARS-CoV antigen expression occurred mainly in type I and II pneumocytes and serous cells of tracheo-bronchial submucosal glands of cats and in type II pneumocytes of ferrets. ACE2 expression occurred mainly in type I and II pneumocytes, tracheo-bronchial goblet cells, serous epithelial cells of tracheo-bronchial submucosal glands in cats, and type II pneumocytes and serous epithelial cells of tracheo-bronchial submucosal glands in ferrets. In conclusion, the pathology of SARS-CoV infection in cats and ferrets resembles that in humans except that syncytia and hyaline membranes were not observed. The identification of tracheo-bronchoadenitis in cats has potential implications for SARS pathogenesis and SARS-CoV excretion. Finally, these results show the importance of ACE2 expression for SARS-CoV infection in vivo: whereas ACE2 expression in type I and II pneumocytes in cats corresponded to SARS-CoV antigen expression in both cell types, expression of both ACE2 and SARS-CoV antigen in ferrets was limited mainly to type II pneumocytes.


Asunto(s)
Gatos/virología , Modelos Animales de Enfermedad , Hurones/virología , Infecciones del Sistema Respiratorio/virología , Síndrome Respiratorio Agudo Grave/virología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/crecimiento & desarrollo , Enzima Convertidora de Angiotensina 2 , Animales , Antígenos Virales/metabolismo , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Peptidil-Dipeptidasa A/metabolismo , Infecciones del Sistema Respiratorio/enzimología , Infecciones del Sistema Respiratorio/patología , Síndrome Respiratorio Agudo Grave/enzimología , Síndrome Respiratorio Agudo Grave/patología , Organismos Libres de Patógenos Específicos
18.
Cell Mol Life Sci ; 64(15): 2006-12, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17558469

RESUMEN

Angiotensin-converting enzyme (ACE) and ACE2 are highly homologous metalloproteases that provide essential catalytic functions in the renin-angiotensin system (RAS). Angiotensin II is one key effector peptide of the RAS, inducing vasoconstriction and exerting multiple biological functions. ACE cleaves angiotensin I to generate angiotensin II, whereas ACE2 reduces angiotensin II levels. Accumulating evidence has demonstrated a physiological and pathological role of ACE2 in the cardiovascular systems. Intriguingly, the SARS coronavirus, the cause of severe acute respiratory syndrome (SARS), utilizes ACE2 as an essential receptor for cell fusion and in vivo infections. Moreover, recent studies have demonstrated that ACE2 protects murine lungs from acute lung injury as well as SARS-Spike protein-mediated lung injury, suggesting a dual role of ACE2 in SARS infections and protection from ARDS.


Asunto(s)
Peptidil-Dipeptidasa A/metabolismo , Síndrome de Dificultad Respiratoria/enzimología , Enzima Convertidora de Angiotensina 2 , Animales , Humanos , Ratones , Ratones Noqueados , Modelos Biológicos , Peptidil-Dipeptidasa A/deficiencia , Peptidil-Dipeptidasa A/genética , Edema Pulmonar/enzimología , Sistema Renina-Angiotensina/fisiología , Síndrome de Dificultad Respiratoria/etiología , Síndrome de Dificultad Respiratoria/fisiopatología , Síndrome de Dificultad Respiratoria/prevención & control , Síndrome Respiratorio Agudo Grave/enzimología
19.
Biochemistry ; 45(50): 14908-16, 2006 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-17154528

RESUMEN

Severe acute respiratory syndrome (SARS) is an infectious disease caused by the human coronavirus, SARS-CoV. The main viral protease, SARS 3CLpro, is a validated target for the development of antiviral therapies. Since the enzyme is a homodimer and the individual monomers are inactive, two approaches are being used to develop inhibitors: enzyme activity inhibitors that target the active site and dimerization inhibitors. Dimerization inhibitors are usually targeted to the dimerization interface and need to compete with the attractive forces between subunits to be effective. In this paper, we show that the dimerization of SARS 3CLpro is also under allosteric control and that additional and energetically more favorable target sites away from the dimerization interface may also lead to subunit dissociation. We previously identified a cluster of conserved serine residues (Ser139, Ser144, and Ser147) located adjacent to the active site of 3CLpro that could effectively be targeted to inactivate the protease [Bacha, U et al. (2004) Biochemistry 43, 4906-4912]. Mutation of any of these serine residues to alanine had a debilitating effect on the catalytic activity of 3CLpro. In particular, the mutation of Ser147, which does not make any contact with the opposing subunit and is located approximately 9 A away from the dimer interface, totally inhibited dimerization and resulted in a complete loss of enzymatic activity. The finding that residues away from the dimer interface are able to control dimerization defines alternative targets for the design of dimerization inhibitors.


Asunto(s)
Cisteína Endopeptidasas/química , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/enzimología , Proteínas Virales/química , Sitio Alostérico/genética , Sustitución de Aminoácidos , Sitios de Unión/genética , Proteasas 3C de Coronavirus , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Dimerización , Humanos , Unión Proteica/genética , Estructura Cuaternaria de Proteína/genética , Estructura Terciaria de Proteína/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Serina/química , Serina/genética , Serina/metabolismo , Síndrome Respiratorio Agudo Grave/enzimología , Síndrome Respiratorio Agudo Grave/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
20.
J Mol Med (Berl) ; 84(10): 814-20, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16988814

RESUMEN

Angiotensin-converting enzyme 2 (ACE2), a second angiotensin-converting enzyme (ACE), regulates the renin-angiotensin system by counterbalancing ACE activity. Accumulating evidence in recent years has demonstrated a physiological and pathological role of ACE2 in the cardiovascular systems. Recently, it has been shown that severe acute respiratory syndrome (SARS) coronavirus, the cause of SARS, utilizes ACE2 as an essential receptor for cell fusion and in vivo infections in mice. Intriguingly, ACE2 acts as a protective factor in various experimental models of acute lung failure and, therefore, acts not only as a key determinant for SARS virus entry into cells but also contributes to SARS pathogenesis. Here we review the role of ACE2 in disease pathogenesis, including lung diseases and cardiovascular diseases.


Asunto(s)
Enfermedades Pulmonares/enzimología , Peptidil-Dipeptidasa A/metabolismo , Síndrome Respiratorio Agudo Grave/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , Enzima Convertidora de Angiotensina 2 , Animales , Enfermedades Cardiovasculares/enzimología , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/terapia , Terapia Genética/métodos , Humanos , Enfermedades Pulmonares/metabolismo , Enfermedades Pulmonares/terapia , Ratones , Modelos Biológicos , Peptidil-Dipeptidasa A/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/crecimiento & desarrollo , Síndrome Respiratorio Agudo Grave/enzimología , Síndrome Respiratorio Agudo Grave/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...