Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 9.990
1.
Water Sci Technol ; 89(9): 2342-2366, 2024 May.
Article En | MEDLINE | ID: mdl-38747953

To investigate the influence of carbonization process parameters on the characteristics of municipal sludge carbonization products, this study selected carbonization temperatures of 300-700 °C and carbonization times of 0.5-1.5 h to carbonize municipal sludge. The results showed that with an increase in temperature and carbonization time, the sludge was carbonized more completely, and the structure and performance characteristics of the sludge changed significantly. Organic matter was continuously cracked, the amorphous nature of the material was reduced, its morphology was transformed into an increasing number of regular crystalline structures, and the content of carbon continued to decrease, from the initial 52.85 to 38.77%, while the content of inorganic species consisting continued to increase. The conductivity was reduced by 87.8%, and the degree of conversion of salt ions into their residual and insoluble states was significant. Natural water absorption in the sludge decreased from 8.13 to 1.29%, and hydrophobicity increased. The dry-basis higher calorific value decreased from 8,703 to 3,574 kJ/kg. Heavy metals were concentrated by a factor of 2-3, but the content of the available state was very low. The results of this study provide important technological support for the selection of suitable carbonization process conditions and for resource utilization.


Carbon , Sewage , Temperature , Sewage/chemistry , Carbon/chemistry , Waste Disposal, Fluid/methods , Time Factors , Metals, Heavy/chemistry
2.
Molecules ; 29(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38731551

The aim of this study is to solve the problems of the complicated pretreatment and high analytical cost in the detection technology of trace drugs and their metabolites in municipal wastewater. A high-performance magnetic sorbent was fsynthesized for the enrichment of trace drugs and their metabolites in wastewater to develop a magnetic solid-phase extraction pretreatment combined with the acoustic ejection mass spectrometry (AEMS) analytical method. The magnetic nanospheres were successfully prepared by magnetic nanoparticles modified with divinylbenzene and vinylpyrrolidone. The results showed that the linear dynamic range of 17 drugs was 1-500 ng/mL, the recovery was 44-100%, the matrix effect was more than 51%, the quantification limit was 1-2 ng/mL, and the MS measurement was fast. It can be seen that the developed magnetic solid-phase extraction (MSPE) method is a good solution to the problems of the complicated pretreatment and analytical cost in the analysis of drugs in wastewater. The developed magnetic material and acoustic excitation pretreatment coupled with mass spectrometry analysis method can realize the low-cost, efficient enrichment, and fast analysis of different kinds of drug molecules in urban sewage.


Illicit Drugs , Mass Spectrometry , Sewage , Solid Phase Extraction , Sewage/analysis , Sewage/chemistry , Solid Phase Extraction/methods , Mass Spectrometry/methods , Illicit Drugs/analysis , Water Pollutants, Chemical/analysis , Wastewater/analysis , Wastewater/chemistry , Magnetite Nanoparticles/chemistry
3.
Bioresour Technol ; 401: 130760, 2024 Jun.
Article En | MEDLINE | ID: mdl-38692376

This study aims to apply the Absorbing oxygen carriers (AOCs) to induce the migration and transformation of phosphorus compounds during the microwave thermal conversion of sludge so the hard-to-extract organic phosphorus (OP) can be converted to easy-to-extract inorganic phosphorus (IP) and be enriched onto the sludge char. The AOCs were recycled by screen separation from the IP-rich sludge char, with the latter being a renewable phosphorus source from sludge. The AOCs in this novel process enhanced the conversion efficiency of OP into non-apatite inorganic phosphorus (NAlP), which was further converted to apatite inorganic phosphorus (AP). Most phosphorus in the sludge char is presented in the form of orthophosphate.


Microwaves , Oxygen , Phosphorus , Sewage , Sewage/chemistry , Oxygen/chemistry , Temperature
4.
Sci Rep ; 14(1): 10723, 2024 05 10.
Article En | MEDLINE | ID: mdl-38730012

Our study investigates the effects of iron oxide (Fe3O4) nanoparticles combined microwave pretreatment on the anaerobic digestibility and soluble chemical oxygen demand (SCOD) of meat industry sludge. One of our main objectives was to see whether the different microwave-based pretreatment procedures can enhance biogas production by improving the biological availability of organic compounds. Results demonstrated that combining microwave irradiation with magnetic iron oxide nanoparticles considerably increased SCOD (enhancement ratio was above 1.5), the rate of specific biogas production, and the total cumulative specific biogas volume (more than a threefold increment), while having no negative effect on the biomethane content. Furthermore, the assessment of the sludge samples' dielectric properties (dielectric constant and loss factor measured at the frequency of 500 MHz) showed a strong correlation with SCOD changes (r = 0.9942, R2 = 0.99), offering a novel method to evaluate pretreatment efficiency.


Magnetic Iron Oxide Nanoparticles , Microwaves , Sewage , Sewage/chemistry , Magnetic Iron Oxide Nanoparticles/chemistry , Anaerobiosis , Meat/analysis , Biological Oxygen Demand Analysis , Biofuels/analysis , Food Industry , Industrial Waste
5.
J Environ Manage ; 359: 120986, 2024 May.
Article En | MEDLINE | ID: mdl-38696849

The efficient, safe and eco-friendly disposal of the chromium-containing sludge (CCS) has attracted an increasing concern. In this study, Co-processing of CCS was developed via employing sintering and ironmaking combined technology for its harmless disposal and resource utilization. Crystalline phase and valence state transformation of chromium (Cr), technical feasibility assessment, leaching risk, characteristics of sintered products, and pollutant release during CCS co-processing were investigated through a series of laboratory-scale sintering pot experiments and large scale industrial trials. The results showed that the content of Cr(VI) in sintered products first increased then decreased with increasing temperature ranges of 300 °C-800 °C, and reached a maximum of 2189.64 mg/kg at 500 °C. 99.99% of Cr(VI) can be reduced to Cr(III) at above 1000 °C, which was attributed to the transformation of the Cr(VI)-containing crystalline phases (such as, MgCrO4 and CaCrO4) to the (Mg, Fe2+)(Cr, Al, Fe3+)2O4. The industrial trial results showed that adding 0.5 wt‰ CCS to sintering feed did not have adverse effects on the properties of the sintered ore and the plant's operating stability. The tumbler index of sinter was above 78% and the leaching concentrations of TCr (0.069 mg/L) was significantly lower than the Chinese National Standard of 1.0 mg/L (GB5085.3-2007). The TCr contents of sintering dust and blast furnace gas (BFG) scrubbing water were less than 0.19 wt‰ and 0.11 mg/L, respectively, which was far below the regulatory limit (1.5 mg/L, GB13456-2012). The mass balance evaluation results indicated that at least 89.9% of the Cr in the CCS migrated into the molten iron in the blast furnace (BF), which became a useful supplement to the molten iron. This study provided a new perspective strategy for the safe disposal and resource utilization of CCS in iron and steel industry.


Chromium , Sewage , Chromium/chemistry , Sewage/chemistry , Iron/chemistry
6.
Chemosphere ; 358: 142209, 2024 Jun.
Article En | MEDLINE | ID: mdl-38697564

Elevated usage of pharmaceutical products leads to the accumulation of emerging contaminants in sewage. In the current work, Ganoderma lucidum (GL) was used to remove pharmaceutical compounds (PCs), proposed as a tertiary method in sewage treatment plants (STPs). The PCs consisted of a group of painkillers (ketoprofen, diclofenac, and dexamethasone), psychiatrists (carbamazepine, venlafaxine, and citalopram), beta-blockers (atenolol, metoprolol, and propranolol), and anti-hypertensives (losartan and valsartan). The performance of 800 mL of synthetic water, effluent STP, and hospital wastewater (HWW) was evaluated. Parameters, including treatment time, inoculum volume, and mechanical agitation speed, have been tested. The toxicity of the GL after treatment is being studied based on exposure levels to zebrafish embryos (ZFET) and the morphology of the GL has been observed via Field Emission Scanning Electron Microscopy (FESEM). The findings conclude that GL can reduce PCs from <10% to >90%. Diclofenac and valsartan are the highest (>90%) in the synthetic model, while citalopram and propranolol (>80%) are in the real wastewater. GL effectively removed pollutants in 48 h, 1% of the inoculum volume, and 50 rpm. The ZFET showed GL is non-toxic (LC50 is 209.95 mg/mL). In the morphology observation, pellets GL do not show major differences after treatment, showing potential to be used for a longer treatment time and to be re-useable in the system. GL offers advantages to removing PCs in water due to their non-specific extracellular enzymes that allow for the biodegradation of PCs and indicates a good potential in real-world applications as a favourable alternative treatment.


Reishi , Wastewater , Water Pollutants, Chemical , Zebrafish , Wastewater/chemistry , Water Pollutants, Chemical/toxicity , Animals , Reishi/metabolism , Waste Disposal, Fluid/methods , Pharmaceutical Preparations/analysis , Pharmaceutical Preparations/metabolism , Malaysia , Sewage/chemistry , Sewage/microbiology , Biodegradation, Environmental , Diclofenac/toxicity
7.
J Environ Manage ; 359: 120947, 2024 May.
Article En | MEDLINE | ID: mdl-38718599

This article presents ways of recovering waste in the form of anaerobically digested and dried sewage sludge (average humidity approx. 6 wt%) by carbonization at various temperatures in the range of 400-900 °C. The resulting products, biochars, are investigated in terms of yield, surface properties and Raman spectra analysis. The sorption capacity of biochars differs depending on the carbonization temperature. The experimental amount of adsorbed CO2 slowly increases with the carbonization temperature from 0.212 mmol/g at 400 °C to the highest value of 0.415 mmol/g, which is achieved at 900 °C by slow carbonization at a rate of 10 °C/min. Additionally, there is a strong positive dependence of the adsorption capacity on the micropore volume. Higher carbonization temperatures support the powerful formation of micropores and improve their sorption capacity.


Charcoal , Sewage , Temperature , Sewage/chemistry , Adsorption , Charcoal/chemistry
8.
Chemosphere ; 358: 142265, 2024 Jun.
Article En | MEDLINE | ID: mdl-38719121

Electro-dewatering of sewage sludge with pulsating voltage was conducted under the two different wave shapes (square wave (SQW) and half-sine wave (HSW)) to investigate the influence of wave shape and duty cycle on sludge dewatering performance. The results indicated that, under the same average voltage, the moisture content of dewatered sludge with HSW was 10.3%-35.4% lower than that with SQW, suggesting the better dewatering performance of HSW. The optimal dewatering performance was achieved at duty cycle of 80% for SQW and 60% for SHW. The chemical oxygen demand of filtrate from HSW could be 13% higher than that from SQW, indicating the higher capacity of HSW in breaking sludge cells/floc structure. The applied voltage during electrochemical treatment promoted the hydrolysis of protein in filtrate, and the main components in the electro-dewatered filtrate were fulvic acid- and humic acid-like substances. The specific energy consumption for sludge electro-dewatering were 0.015-0.269 kWh/(kg removed water), and it was almost in linear relationship with duty cycle. By overall considering the energy consumption and electro-dewatering performance, the condition of 60% duty cycle with HSW was obviously better than other conditions, which provides a meaningful guidance for future application of sludge electro-dewatering technology with pulsating voltage.


Sewage , Waste Disposal, Fluid , Sewage/chemistry , Waste Disposal, Fluid/methods , Biological Oxygen Demand Analysis , Electrochemical Techniques/methods , Humic Substances/analysis , Water/chemistry , Benzopyrans
9.
Chemosphere ; 358: 142272, 2024 Jun.
Article En | MEDLINE | ID: mdl-38719128

The study assessed the ecotoxicity and bioavailability of potential metals (PMs) from tannery waste sludge, alongside addressing the environmental concerns of overuse of chemical fertilizers, by comparing the impacts of organic vermicomposted tannery waste, chemical fertilizers, and sole application of tannery waste on soil and rice (Oryza sativa L.) plants. The results revealed that T3, which received high-quality vermicomposted tannery waste as an amendment, exhibited superior enzymatic characteristics compared to tannery sludge amended (TWS) treatments (T8, T9). After harvesting, vermicomposted tannery waste treatment (T3) showed a more significant decrease in PMs bioavailability. Accumulation of PMs in rice was minimal across all treatments except T8 and T9, where toxic tannery waste was present, resulting in a high-risk classification (class 5 < 0.01) according to the SAMOE risk assessment. Results from Fuzzy-TOPSIS, ANN, and Sobol sensitivity analyses (SSA) further indicated that elevated concentrations of PMs (Ni, Pb, Cr, Cu) adversely impacted soil-plant health synergy, with T3 showing a minimal risk in comparison to T8 and T9. According to SSA, microbial biomass carbon and acid phosphatase activity were the most sensitive factors affected by PMs concentrations in TWS. The results from the ANN assay revealed that the primary contributing factor of toxicity on the TWS was the exchangeable fraction of Cr. Correlation statistics underscored the significant detrimental effect of PMs' bioavailability on microbial and enzymatic parameters. Overall, the findings suggest that vermicomposting of tannery sludge waste shows potential as a viable organic amendment option in the near future.


Machine Learning , Oryza , Sewage , Soil Pollutants , Tanning , Wetlands , Sewage/chemistry , Soil Pollutants/toxicity , Soil Pollutants/analysis , Metals/toxicity , Soil/chemistry , Composting/methods , Fertilizers , Animals , Metals, Heavy/toxicity , Metals, Heavy/analysis
10.
Water Environ Res ; 96(5): e11032, 2024 May.
Article En | MEDLINE | ID: mdl-38698675

In recent years, ceramic membranes have been increasingly used in membrane bioreactors (MBRs). However, membrane fouling was still the core issue restricting the large-scale engineering application of ceramic MBRs. As a novel and alternative technology, ultrasonic could be used to control membrane fouling. This research focused on the efficiency and mechanism of ultrasonic controlling membrane fouling in ceramic MBRs. The results showed that ultrasonic reduced the sludge concentration in MBR, and the average particle size of sludge was always in a high range. The sludge activity of the system was stable at 6-9 (mg O2·(g MLSS·h)-1), indicating that ultrasonic did not destroy the activity of microorganisms in the system. The extracellular polymer substance (EPS) of the ultrasonic group was slightly higher than that of the control group, while the soluble microbial product (SMP) content was relatively stable. The ceramic membrane of the ultrasonic group has a partial retention effect on the organic components. The application of ultrasonic slowed down the decrease of the hydrophilicity of the ceramic membrane. The main pollutants on the membrane surface exist in the form of aromatic and heteroaromatic rings, alkynes, and so forth. Ultrasonic removes the amide substances from the membrane surface. Membrane fouling resistance is mainly due to membrane pore blockage, accounting for 75.53%. PRACTITIONER POINTS: Enrich the research on the mechanism of ultrasonic technology in membrane fouling control. The MBR can still operate normally with ultrasonic applied. The time for the ceramic membrane to reach the fouling end point is 2.4 times that without ultrasonic. The main cause of membrane fouling was pore blocking, accounting for 75.53%.


Bioreactors , Ceramics , Membranes, Artificial , Ceramics/chemistry , Waste Disposal, Fluid/methods , Sewage/chemistry , Biofouling/prevention & control
11.
Water Environ Res ; 96(4): e11015, 2024 Apr.
Article En | MEDLINE | ID: mdl-38599573

The recent SARS-CoV-2 outbreak yielded substantial data regarding virus fate and prevalence at water reclamation facilities (WRFs), identifying influential factors as natural decay, adsorption, light, pH, salinity, and antagonistic microorganisms. However, no studies have quantified the impact of these factors in full scale WRFs. Utilizing a mass balance approach, we assessed the impact of natural decay and other fate mechanisms on genetic marker removal during water reclamation, through the use of sludge and wastewater genetic marker loading estimates. Results indicated negligible removal of genetic markers during P/PT (primary effluent (PE) p value: 0.267; preliminary and primary treatment (P/PT) accumulation p value: 0.904; and thickened primary sludge (TPS) p value: 0.076) indicating no contribution of natural decay and other fate mechanisms toward removal in P/PT. Comparably, adsorption and decomposition was found to be the dominant pathway for genetic marker removal (thickened waste activated sludge (TWAS) log loading 9.75 log10 GC/day); however, no estimation of log genetic marker accumulation could be carried out due to high detections in TWAS. PRACTITIONER POINTS: The mass balance approach suggested that the contribution of natural decay and other fate mechanisms to virus removal during wastewater treatment are negligible compared with adsorption and decomposition in P/PT (p value: 0.904). During (P/PT), a higher viral load remained in the (PE) (14.16 log10 GC/day) compared with TPS (13.83 log10 GC/day); however, no statistical difference was observed (p value: 0.280) indicting that adsorption/decomposition most probably did not occur. In secondary treatment (ST), viral genetic markers in TWAS were consistently detected (13.41 log10 GC/day) compared with secondary effluent (SE), indicating that longer HRT and the potential presence of extracellular polymeric substance-containing enriched biomass enabled adsorption/decomposition. Estimations of total solids and volatile solids for TPS and TWAS indicated that adsorption affinity was different between solids sampling locations (p value: <0.0001).


COVID-19 , Water Purification , Humans , Sewage/chemistry , SARS-CoV-2/genetics , Genetic Markers , Water , Extracellular Polymeric Substance Matrix , Waste Disposal, Fluid/methods
12.
J Environ Manage ; 357: 120653, 2024 Apr.
Article En | MEDLINE | ID: mdl-38574704

In this research, we established an enhanced aerobic biological method utilizing a high-density bacterial flora for the treatment of low-biochemical plating parts washing wastewater. The elucidation of pollutant removal mechanisms was achieved through a comprehensive analysis of changes in sludge characteristics and bacterial community structure. The results demonstrated that throughout the operational period, the organic load remained stable within the range of 0.01-0.02 kgCOD/kgMLSS·d, the BOD5/COD ratio increased from 0.004 mg/L to 0.33 mg/L, and the average removal rates for key pollutants, including COD, NH4+-N, and TN, reached 98.13%, 99.86%, and 98.09%. MLSS concentration remained at 7627 mg/L, indicating a high-density flora. Notably, Proteobacteria, Bacteroidota, and Acidobacteriota, which have the ability to degrade large organic molecules, had been found in the system. This study affirms the efficacy of the intensive aerobic biological method for treating low-biochemical plating washing wastewater while ensuring system stability.


Environmental Pollutants , Wastewater , Waste Disposal, Fluid/methods , Bioreactors/microbiology , Nitrogen/analysis , Sewage/chemistry , Bacteria/metabolism , Environmental Pollutants/analysis
13.
Huan Jing Ke Xue ; 45(5): 2741-2747, 2024 May 08.
Article Zh | MEDLINE | ID: mdl-38629537

To evaluate the effect of thermal hydrolysis pretreatment time on the sludge anaerobic digestion system of wastewater treatment plants (WWTPs) in Daxing district, Beijing, the structure and diversity of microbial communities in primary sludge and an activated sludge anaerobic digestion system with different thermal hydrolysis pretreatment times (15 min, 30 min, and 45 min) were analyzed using Illumina MiSeq high-throughput sequencing. The results showed that the dominant groups of digested sludge were mainly distributed in Firmicutes, Cloacimonadota, Chloroflexi, and Synergistota, with W5 being the most common genus. The sum of relative abundance of the dominant phylum was greater than 60%, and W5 accounted for 20.8%-54.5%, showing a high abundance of a few dominant species. During the anaerobic digestion of thermo-hydrolyzed sludge, the relative abundance of acetogenic methanogens decreased due to high levels of volatile fatty acids (VFAs) and ammonia nitrogen (NH4+-N) concentrations, which suggested that the hydrogenophilic methanogenic pathway was more than that of the acetogenic methanogenic pathway. Correlation analysis showed that the soluble protein and pH of thermo-hydrolyzed sludge, NH4+-N of digested sludge, and thermal hydrolysis pretreatment time were the four main environmental factors affecting microbial community structure, and NH4+-N of digested sludge had the largest negative correlation with methanogens. The thermal hydrolysis pretreatment time was negatively correlated with both the Chao index and Shannon index, so longer thermal hydrolysis pretreatment time was not conducive to microbial flora during anaerobic digestion.


Microbiota , Sewage , Sewage/chemistry , Anaerobiosis , Waste Disposal, Fluid/methods , Hydrolysis , Methane , Bioreactors
14.
Huan Jing Ke Xue ; 45(5): 3047-3058, 2024 May 08.
Article Zh | MEDLINE | ID: mdl-38629565

In order to comprehensively evaluate the effects of vermicomposting on compost quality and the conversion of heavy metals under different control conditions, 109 studies were reviewed. The effects of earthworm species, pre-compost time, ventilation methods, initial C/N, initial pH, and initial moisture of the raw materials on compost quality and the heavy metal toxicity were quantitatively discussed during the vermicomposting process through Meta-analysis. The results showed that the six subgroups of factors all showed obvious influences on the compost quality and heavy metal toxicity. After vermicomposting, the contents of NO3--N (116.2%), TN (29.1%), TP (31.2%), and TK (15.0%) were significantly increased, whereas NH4+-N (-14.8%) and C/N (-36.3%) were significantly decreased. Meanwhile, the total amount of Cu and Cr of the final compost and their bioavailability were significantly reduced. Considering the influences of grouping factors on compost quality and heavy metals, it is recommended to adjust the initial moisture of pile materials to 70%-80%, C/N to 30-85, and pH to 6-7 and to conduct pre-composting for 0-15 d; additionally, vermicomposting should be naturally placed when the composting is aimed at promoting the compost quality. If the main purpose is to weaken the perniciousness of heavy metals in the raw material, it is recommended to adjust the initial moisture of the material to 50%-60%, C/N to less than 30, and pH to 7-8; to conduct no pre-compost; regularly turn the piles; and use the earthworm Eudrilus eugeniae for vermicomposting.


Composting , Metals, Heavy , Oligochaeta , Animals , Soil/chemistry , Sewage/chemistry , Metals, Heavy/analysis
15.
J Hazard Mater ; 470: 134182, 2024 May 15.
Article En | MEDLINE | ID: mdl-38583202

Establishing an economic and sustained Fenton oxidation system to enhance sludge dewaterability and carbamazepine (CBZ) removal rate is a crucial path to simultaneously achieve sludge reduction and harmless. Leveraging the principles akin to "tea making", we harnessed tea waste to continually release tea polyphenols (TP), thus effectively maintaining high level of oxidation efficiency through the sustained Fenton reaction. The results illustrated that the incorporation of tea waste yielded more favorable outcomes in terms of water content reduction and CBZ removal compared to direct TP addition within the Fe(III)/hydrogen peroxide (H2O2) system. Concomitantly, this process mainly generated hydroxyl radical (•OH) via three oxidation pathways, effectively altering the properties of extracellular polymeric substances (EPS) and promoting the degradation of CBZ from the sludge mixture. The interval addition of Fe(III) and H2O2 heightened extracellular oxidation efficacy, promoting the desorption and removal of CBZ. The degradation of EPS prompted the transformation of bound water to free water, while the formation of larger channels drove the discharge of water. This work achieved the concept of treating waste with waste through using tea waste to treat sludge, meanwhile, can provide ideas for subsequent sludge harmless disposal.


Carbamazepine , Hydrogen Peroxide , Iron , Oxidation-Reduction , Sewage , Tea , Water Pollutants, Chemical , Carbamazepine/chemistry , Hydrogen Peroxide/chemistry , Tea/chemistry , Sewage/chemistry , Iron/chemistry , Water Pollutants, Chemical/chemistry , Extracellular Polymeric Substance Matrix/chemistry , Extracellular Polymeric Substance Matrix/metabolism , Waste Disposal, Fluid/methods , Ferric Compounds/chemistry , Polyphenols/chemistry
16.
Environ Sci Pollut Res Int ; 31(20): 29304-29320, 2024 Apr.
Article En | MEDLINE | ID: mdl-38570432

Recently, one of the main purposes of wastewater treatment plants is to achieve a neutral or positive energy balance while meeting the discharge criteria. Aerobic granular sludge (AGS) technology is a promising technology that has low energy and footprint requirements as well as high treatment performance. The effect of co-treatment of municipal wastewater and food waste (FW) on the treatment performance, granule morphology, and settling behavior of the granules was investigated in the study. A biochemical methane potential (BMP) test was also performed to assess the methane potential of mono- and co-digestion of the excess sludge from the AGS process. The addition of FW into wastewater enhanced the nutrient treatment efficiency in the AGS process. BMP of the excess sludge from the AGS process fed with the mixture of wastewater and FW (195 ± 17 mL CH4/g VS) was slightly higher than BMP of excess sludge from the AGS process fed with solely wastewater (173 ± 16 mL CH4/g VS). The highest methane yield was observed for co-digestion of excess sludge from the AGS process and FW, which was 312 ± 8 mL CH4/g VS. Integration of FW as a co-substrate in the AGS process would potentially enhance energy recovery and the quality of effluent in municipal wastewater treatment.


Sewage , Waste Disposal, Fluid , Wastewater , Sewage/chemistry , Wastewater/chemistry , Waste Disposal, Fluid/methods , Methane , Food , Bioreactors , Food Loss and Waste
17.
Environ Sci Pollut Res Int ; 31(21): 30415-30426, 2024 May.
Article En | MEDLINE | ID: mdl-38607482

Computational techniques, such as quantitative structure-property relationships (QSPRs), can play a significant role in exploring the important chemical features essential for the degree of sorption or sludge/water partition coefficient (Kd) towards sewage sludge of wastewater treatment process to evaluate the environmental consequence and risk of pharmaceuticals. The current research work aims to construct a predictive QSPR model for the sorption of 148 diverse active pharmaceutical ingredients (APIs) in sewage sludge during wastewater treatment. For the development of the model, we employed easily computable 2D descriptors as independent variables. The model has been developed following the Organization for Economic Cooperation and Development's (OECD) guidelines. It has undergone internal and external validation using a variety of methodologies, as well as been tested for its applicability domain. A measure of hydrophobicity, i.e., MLOGP2, showed the most promising contribution in modeling the sorption coefficient of APIs. Among other parameters, the number of tertiary aromatic amines, the presence of electronegative atoms like N, O, and Cl, the size of a molecule, the number of aromatic hydroxyl groups, the presence of substituted aromatic nitrogen atoms and alkyl-substituted tertiary carbon atoms were also found to be influential for the regulation of solid water partition coefficient of APIs during the wastewater treatment process. The statistical validity tests performed on the developed partial least squares (PLS) model showed that it is statistically evident, robust, and predictive (R2Train = 0.750, Q2LOO = 0.683, Q2F1 = 0.655, Q2F2 (or R2Test) = 0.651). In addition, the predictivity of the constructed model was further inspected by using the "prediction reliability indicator" tool for 14 external APIs.


Quantitative Structure-Activity Relationship , Sewage , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical , Sewage/chemistry , Wastewater/chemistry , Pharmaceutical Preparations/chemistry , Water Pollutants, Chemical/chemistry , Waste Disposal, Fluid/methods
18.
Chemosphere ; 357: 142007, 2024 Jun.
Article En | MEDLINE | ID: mdl-38631497

For energy recovery, anaerobic digestion is applied to organic waste, such as livestock manure (LM) and food wastewater (FW). Digested sludge(DS), a residue from the anaerobic co-digestion of LM and FW, is another type of organic waste that can be converted into energy through pyrolysis. This study compared the pyrolysis characteristics of LM, FW, and DS. The product content varied with the pyrolysis temperature, rate of temperature increase, reaction time, and final reaction temperature. Gas production from FW and DS was similar; however, gas production from LM was low. As the pyrolysis temperature increased, the H2 content increased, and the CO2 content decreased, respectively. At 1000 °C, the H2 content of LM increased to 45%, and FW produced the most gas but the lowest H2 content. The H2/CO ratios of LM and FW ranged from 3.5 to 5.2, while those of DS ranged from 5.5 to 12.4, with the highest values. The carbon conversion rate was the highest for the gaseous products of LM (30-54%) and lowest for the gaseous products of digested sludge (26-36%). Conversely, the cold gas efficiency was the highest for the DS and lowest for the LM. Following anaerobic digestion, the DS generated less tar than the untreated LM and FW, showed higher efficiency in gas generation and gas properties, and exhibited a higher value as a char fuel.


Livestock , Manure , Pyrolysis , Sewage , Waste Disposal, Fluid , Wastewater , Manure/analysis , Sewage/chemistry , Animals , Wastewater/chemistry , Anaerobiosis , Waste Disposal, Fluid/methods , Gases/analysis , Gases/chemistry
19.
Chemosphere ; 357: 141920, 2024 Jun.
Article En | MEDLINE | ID: mdl-38636914

Antimony contamination from textile industries has been a global environmental concern and the existing treatment technologies could not reduce Sb(V) to meet the discharge standards. To overcome this shortcoming, ferric flocs were introduced to expedite the biological process for enhanced Sb(V) removal in wastewater treatment plant (WWTP). For this purpose, a series of laboratorial-scale sequential batch reactor activated sludge processes (SBRs) were applied for Sb(V) removal with varied reactor conditions and the transformation of Fe and Sb in SBR system was investigated. Results showed a significant improvement in Sb(V) removal and the 20 mg L-1 d-1 iron ions dosage and iron loss rate was found to be only 15.2%. The influent Sb(V) concentration ranging 153-612 µg L-1 was reduced to below 50 µg L-1, and the maximum Sb(V) removal rate of the enhanced system reached about 94.3%. Furthermore, it exhibited high stability of Sb(V) removal in the face of antimonate load, Fe strike and matrix change of wastewater. Sludge total Sb determination and capacity calculation revealed decreasing in Sb adsorption capacity and desorption without fresh Fe dosage. While sludge morphology analysis demonstrated the aging and crystallization of iron hydroxides. These results verify the distinct effects of fresh iron addition and iron aging on Sb(V) removal. High-throughput gene pyrosequencing results showed that the iron addition changed microbial mechanisms and effect Fe oxidized bacterial quantity, indicating Sb(V) immobilization achieved by microbial synergistic iron oxidation. The present study successfully established a simple and efficient method for Sb(V) removal during biological treatment, and the modification of biological process by iron supplement could provide insights for real textile wastewater treatment.


Antimony , Sewage , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical , Wastewater/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Sewage/chemistry , Sewage/microbiology , Antimony/chemistry , Iron/chemistry , Adsorption , Textile Industry , Ferric Compounds/chemistry , Bioreactors/microbiology , Textiles , Biodegradation, Environmental , Aerobiosis
20.
Chemosphere ; 357: 141949, 2024 Jun.
Article En | MEDLINE | ID: mdl-38636918

The disintegration of raw sludge is of importance for enhancing biogas production and facilitates the degradation of substrates for microorganisms so that the efficiency of digestion can be increased. In this study, the effect of hydrodynamic cavitation (HC) as a pretreatment approach for waste activated sludge (WAS) was investigated at two upstream pressures (0.83 and 1.72 MPa) by using a milli-scale apparatus which makes sludge pass through an orifice with a restriction at the cross section of the flow. The HC probe made of polyether ether ketone (PEEK) material was tested using potassium iodide solution and it was made sure that cavitation occurred at the selected pressures. The analysis on chemical effects of HC bubbles collapse suggested that not only cavitation occurred at low upstream pressure, i.e., 0.83 MPa, but it also had high intensity at this pressure. The pretreatment results of HC implementation on WAS were also in agreement with the chemical characterization of HC collapse. Release of soluble organics and ammonium was observed in the treated samples, which proved the efficiency of the HC pretreatment. The methane production was improved during the digestion of the treated samples compared to the control one. The digestion of treated WAS sample at lower upstream pressure (0.83 MPa) resulted in higher methane production (128.4 mL CH4/g VS) compared to the treated sample at higher upstream pressure (119.1 mL CH4/g VS) and control sample (98.3 mL CH4/g VS). Thus, these results showed that the HC pretreatment for WAS led to a significant increase in methane production (up to 30.6%), which reveals the potential of HC in full-scale applications.


Hydrodynamics , Methane , Sewage , Waste Disposal, Fluid , Sewage/chemistry , Waste Disposal, Fluid/methods , Methane/metabolism , Biofuels/analysis , Bioreactors
...