Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.132
1.
An Acad Bras Cienc ; 96(2): e20231083, 2024.
Article En | MEDLINE | ID: mdl-38747840

This paper describes the fishing profile and the temporal variation in the commercial landings of elasmobranchs in a global hotspot for their conservation and investigates the variables that influenced the landings. Census data on commercial catches were obtained between April 2008 and October 2010 from nine landing sites in Bragança (Pará, northern Brazil). Five vessel types, four fishing gears, and eight fishing techniques engaged with elasmobranch capture were identified. A total of 2,357 landings were recorded, with a total production of 354 t. The highest yields were recorded in 2009, with sharks being harvested mostly by small and medium-sized vessels, and batoids, by small vessels and canoes. Drifting nets and longlines played a prominent role in elasmobranch fisheries. The results show that the landings were influenced by days at sea, which is common in tropical fisheries. The elasmobranch data series is discontinuous as statistics are absent for most fishing sites albeit imperative for proper management, as well as relevant for decision-makers focusing on their conservation.


Conservation of Natural Resources , Fisheries , Sharks , Animals , Sharks/classification , Brazil , Elasmobranchii/classification , Seasons , Skates, Fish/classification
2.
Antiviral Res ; 226: 105898, 2024 Jun.
Article En | MEDLINE | ID: mdl-38692413

SARS-CoV-2 continues to threaten human health, antibody therapy is one way to control the infection. Because new SARS-CoV-2 mutations are constantly emerging, there is an urgent need to develop broadly neutralizing antibodies to block the viral entry into host cells. VNAR from sharks is the smallest natural antigen binding domain, with the advantages of small size, flexible paratopes, good stability, and low manufacturing cost. Here, we used recombinant SARS-CoV-2 Spike-RBD to immunize sharks and constructed a VNAR phage display library. VNAR R1C2, selected from the library, efficiently binds to the RBD domain and blocks the infection of ACE2-positive cells by pseudovirus. Next, homologous bivalent VNARs were constructed through the tandem fusion of two R1C2 units, which enhanced both the affinity and neutralizing activity of R1C2. R1C2 was predicted to bind to a relatively conserved region within the RBD. By introducing mutations at four key binding sites within the CDR3 and HV2 regions of R1C2, the affinity and neutralizing activity of R1C2 were significantly improved. Furthermore, R1C2 also exhibits an effective capacity of binding to the Omicron variants (BA.2 and XBB.1). Together, these results suggest that R1C2 could serve as a valuable candidate for preventing and treating SARS-CoV-2 infections.


Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , SARS-CoV-2 , Sharks , Single-Domain Antibodies , Spike Glycoprotein, Coronavirus , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Animals , SARS-CoV-2/immunology , Single-Domain Antibodies/immunology , Single-Domain Antibodies/genetics , Humans , Sharks/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/virology , Binding Sites , Protein Binding , Peptide Library , HEK293 Cells , Mutation
3.
Commun Biol ; 7(1): 611, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773323

Human impacts lead to widespread changes in the abundance, diversity and traits of shark assemblages, altering the functioning of coastal ecosystems. The functional consequences of shark declines are often poorly understood due to the absence of empirical data describing long-term change. We use data from the Queensland Shark Control Program in eastern Australia, which has deployed mesh nets and baited hooks across 80 beaches using standardised methodologies since 1962. We illustrate consistent declines in shark functional richness quantified using both ecological (e.g., feeding, habitat and movement) and morphological (e.g., size, morphology) traits, and this corresponds with declining ecological functioning. We demonstrate a community shift from targeted apex sharks to a greater functional richness of non-target species. Declines in apex shark functional richness and corresponding changes in non-target species may lead to an anthropogenically induced trophic cascade. We suggest that repairing diminished shark populations is crucial for the stability of coastal ecosystems.


Biodiversity , Sharks , Sharks/physiology , Animals , Queensland , Ecosystem , Population Dynamics , Australia , Oceans and Seas
4.
Cell Chem Biol ; 31(5): 833-834, 2024 May 16.
Article En | MEDLINE | ID: mdl-38759616

Despite the immense clinical success of the antibody therapeutics that neutralize programmed death receptor ligand 1 (PD-L1) and thus resurrect T cell antitumor activity, the patient response rates remain low. In this issue of Cell Chemical Biology, Ludwig et al.1 reveal novel topologies of multiparatopic antibodies that mediate potent PD-L1 downregulation.


B7-H1 Antigen , Humans , B7-H1 Antigen/metabolism , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , Animals , Sharks/immunology , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism , Neoplasms/immunology
5.
PeerJ ; 12: e17192, 2024.
Article En | MEDLINE | ID: mdl-38766482

Background: Studying how the bull sharks aggregate and how they can be driven by life history traits such as reproduction, prey availability, predator avoidance and social interaction in a National Park such as Cabo Pulmo, is key to understand and protect the species. Methods: The occurrence variability of 32 bull sharks tracked with passive acoustic telemetry were investigated via a hierarchical logistic regression model, with inference conducted in a Bayesian framework, comparing sex, and their response to temperature and chlorophyll. Results: Based on the fitted model, occurrence probability varied by sex and length. Juvenile females had the highest values, whereas adult males the lowest. A strong seasonality or day of the year was recorded, where sharks were generally absent during September-November. However, some sharks did not show the common pattern, being detected just for a short period. This is one of the first studies where the Bayesian framework is used to study passive acoustic telemetry proving the potential to be used in further studies.


Bayes Theorem , Seasons , Sharks , Animals , Sharks/physiology , Female , Male , California , Telemetry
6.
Environ Int ; 187: 108661, 2024 May.
Article En | MEDLINE | ID: mdl-38688233

Deep-sea habitats are currently recognized as a hot spot for mercury (Hg) accumulation from anthropogenic sources, resulting in elevated concentrations of total mercury (THg) in deep-sea megafauna. Among them, deep-sea sharks (Class Chondrichthyes) are characterized by high trophic position and extended longevity and are, therefore, at high risk for mercury contamination. Despite this, sharks are overexploited by fishing activity in increasingly deeper water, worldwide, imposing health risks to human consumption. While it is imperative to better understand long-term mercury contamination in deep-sea megafauna, few historical data sets exist to capture this process. Here we explore four decades (1985-2022) of THg accumulation in five species of deep-sea sharks (G. melastomus, E. spinax, S. rostratus, C. granulosus, and D. licha) of the ultra-oligotrophic Southeastern Mediterranean Sea (SEMS) sampled during 19 research cruises. We exhibited exceptionally high THg levels (per length/weight), the highest as 16.6 µg g-1 (wet wt.), almost entirely (98.9 %; n = 298 specimens) exceeding the limit for safe consumption (0.3-0.5 µg THg g-1 wet wt.). The maximal THg levels of the long-lived species D. licha and C. granulosus in the SEMS were enriched by a factor of âˆ¼ 7 and >10 compared to counterpart species from other oceanic areas, respectively. We attribute this to the ultra-oligotrophic conditions of the SEMS, which cause slower growth rates and dwarfism in deep-sea sharks, resulting in an extended exposure time to mercury contamination. In the long-lived species, C. granulosus and D. licha, a temporal increase of average THg levels of âˆ¼ 80 % was recorded between 1987-1999 and 2021-2022. This likely reflects the long-term accumulation of historical anthropogenic Hg in deep-sea environments, which is further amplified in marginal seas such as the Mediterranean, impacted by global air pollution crossroads and surrounded by land-based pollution sources. Future consumption of products from deep-sea sharks is potentially high risk to human health.


Environmental Monitoring , Mercury , Sharks , Water Pollutants, Chemical , Animals , Mercury/analysis , Mediterranean Sea , Sharks/metabolism , Water Pollutants, Chemical/analysis
7.
Proc Biol Sci ; 291(2021): 20240262, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38654646

The fossil fish Ptychodus Agassiz, 1834, characterized by a highly distinctive grinding dentition and an estimated gigantic body size (up to around 10 m), has remained one of the most enigmatic extinct elasmobranchs (i.e. sharks, skates and rays) for nearly two centuries. This widespread Cretaceous taxon is common in Albian to Campanian deposits from almost all continents. However, specimens mostly consist of isolated teeth or more or less complete dentitions, whereas cranial and post-cranial skeletal elements are very rare. Here we describe newly discovered material from the early Late Cretaceous of Mexico, including complete articulated specimens with preserved body outline, which reveals crucial information on the anatomy and systematic position of Ptychodus. Our phylogenetic and ecomorphological analyses indicate that ptychodontids were high-speed (tachypelagic) durophagous lamniforms (mackerel sharks), which occupied a specialized predatory niche previously unknown in fossil and extant elasmobranchs. Our results support the view that lamniforms were ecomorphologically highly diverse and represented the dominant group of sharks in Cretaceous marine ecosystems. Ptychodus may have fed predominantly on nektonic hard-shelled prey items such as ammonites and sea turtles rather than on benthic invertebrates, and its extinction during the Campanian, well before the end-Cretaceous crisis, might have been related to competition with emerging blunt-toothed globidensine and prognathodontine mosasaurs.


Fossils , Phylogeny , Sharks , Animals , Fossils/anatomy & histology , Mexico , Sharks/anatomy & histology , Sharks/classification , Sharks/physiology , Biological Evolution , Tooth/anatomy & histology
8.
PLoS One ; 19(4): e0282374, 2024.
Article En | MEDLINE | ID: mdl-38568901

The waters around the Galápagos Marine Reserve (GMR) are important fishing grounds for authorized artisanal vessels fishing within the reserve as well as for national and foreign industrial fleets operating in the wider Ecuadorian Insular Exclusive Economic Zone (IEEZ). Although it was not originally designed for fisheries management, Automatic Identification System (AIS) data provides useful, open access, near real-time and high-resolution information that allows for increased monitoring, particularly around Marine Protected Areas (MPAs) and in Areas Beyond National Jurisdiction. This study uses AIS data provided by Global Fishing Watch to assess the spatial distribution and seasonal dynamics of fishing effort by vessel flag within the GMR and the IEEZ from 2012 to 2021. Based on kernel density estimation analysis, we determinate the core-use areas (50%) and spatial extent (95%) of fishing activities by fleets (Ecuadorian and foreign), gear types and seasons (warm, from December to May; and cold, from June to November). Our results show that the Ecuadorian fleet recorded the most observed fishing hours in the study area, with 32,829 hours in the IEEZ and 20,816 hours within the GMR. The foreign flags with the most observed fishing hours in the IEEZ were Panama (3,245 hours) and Nicaragua (2,468.5 hours), while in the GMR were the 'Unknown flag' (4,991.4 hours) and Panama (133.7 hours). Vessels fished employing different fishing gears, but the waters of the GMR and IEEZ were mostly targeted by tuna purse-seiners and drifting longlines. The spatial distribution of the fishing effort exhibits marked seasonal variability, likely influenced by seasonal migrations of target species such as tunas (e.g., Thunnus albacares, T. obesus and Katsuwonus pelamis), marlins (e.g., Makaira nigricans) and sharks (e.g., Alopias pelagicus). The collection and use of this type of spatial and seasonal information is an essential step to understand the dynamics of fishing activities in national waters and improve fisheries management, particularly in less studied areas and fisheries.


Hunting , Sharks , Animals , Seasons , Tuna , Fisheries , Conservation of Natural Resources
9.
Gene ; 8942024 Feb 05.
Article En | MEDLINE | ID: mdl-38572145

The Lemon shark Negaprion brevirostris is an important species experiencing conservation issues that is in need of genomic resources. Herein, we conducted a genome survey sequencing in N. brevirostris and determined genome size, explored repetitive elements, assembled and annotated the 45S rRNA DNA operon, and assembled and described in detail the mitochondrial genome. Lastly, the phylogenetic position of N. brevirostris in the family Carcharhinidae was examined using translated protein coding genes. The estimated haploid genome size ranged between 2.29 and 2.58 Gbp using a k-mer analysis, which is slightly below the genome size estimated for other sharks belonging to the family Carcharhinidae. Using a k-mer analysis, approx. 64-71 % of the genome of N. brevirostris was composed of repetitive elements. A relatively large proportion of the 'repeatome' could not be annotated. Taking into account only annotated repetitive elements, Class I - Long Interspersed Nuclear Element (LINE) were the most abundant repetitive elements followed by Class I - Penelope and Satellite DNA. The nuclear ribosomal operon was fully assembled. The AT-rich complete mitochondrial genome was 16,703 bp long and encoded 13 protein coding genes, 2 ribosomal RNA genes, and 22 transfer RNA genes. Negaprion brevirostris is closely related to the genera Carcharhinus, Glyphis and Lamiopsis in the family Carcharinidae. This new genomic resources will aid with the development of conservation plans for this large coastal shark.


Genome, Mitochondrial , Sharks , Animals , Genome Size , Phylogeny , DNA , Sharks/genetics
10.
PLoS One ; 19(4): e0300383, 2024.
Article En | MEDLINE | ID: mdl-38574082

Threatened shark species are caught in large numbers by artisanal and commercial fisheries and traded globally. Monitoring both which shark species are caught and sold in fisheries, and the export of CITES-restricted products, are essential in reducing illegal fishing. Current methods for species identification rely on visual examination by experts or DNA barcoding techniques requiring specialist laboratory facilities and trained personnel. The need for specialist equipment and/or input from experts means many markets are currently not monitored. We have developed a paper-based Lab-on-a-Chip (LOC) to facilitate identification of three threatened and CITES-listed sharks, bigeye thresher (Alopias superciliosus), pelagic thresher (A. pelagicus) and shortfin mako shark (Isurus oxyrinchus) at market source. DNA was successfully extracted from shark meat and fin samples and combined with DNA amplification and visualisation using Loop Mediated Isothermal Amplification (LAMP) on the LOC. This resulted in the successful identification of the target species of sharks in under an hour, with a working positive and negative control. The LOC provided a simple "yes" or "no" result via a colour change from pink to yellow when one of the target species was present. The LOC serves as proof-of-concept (PoC) for field-based species identification as it does not require specialist facilities. It can be used by non-scientifically trained personnel, especially in areas where there are suspected high frequencies of mislabelling or for the identification of dried shark fins in seizures.


Sharks , Animals , Sharks/genetics , Endangered Species , Seafood , Meat , DNA/genetics
11.
Methods Mol Biol ; 2744: 503-514, 2024.
Article En | MEDLINE | ID: mdl-38683338

FastFish-ID via Closed-Tube barcoding is a portable platform for rapid and accurate identification of fish species that was conceived at Brandeis University, commercialized at Thermagenix, Inc., and further improved at Ecologenix, LLC (see Chap. 17 in this volume). This chapter focuses on the use of FastFish-ID for (1) identification of intraspecies variants, (2) quantitative use of FastFish-ID to measure the decay of fresh fish, and (3) use of FastFish-ID for the identification of dried and processed shark fins.


DNA Barcoding, Taxonomic , Fishes , Sharks , Animals , DNA Barcoding, Taxonomic/methods , Animal Fins
12.
Sci Rep ; 14(1): 8909, 2024 04 17.
Article En | MEDLINE | ID: mdl-38632352

Among vertebrates, sharks exhibit both large and heterogeneous genome sizes ranging from 2.86 to 17.05 pg. Aiming for a better understanding of the patterns and causalities of shark genome size evolution, we applied phylogenetic comparative methods to published genome-size estimates for 71 species representing the main phylogenetic lineages, life-histories and ecological traits. The sixfold range of genome size variation was strongly traceable throughout the phylogeny, with a major expansion preceding shark diversification during the late Paleozoic and an ancestral state (6.33 pg) close to the present-day average (6.72 pg). Subsequent deviations from this average occurred at higher rates in squalomorph than in galeomorph sharks and were unconnected to evolutionary changes in the karyotype architecture, which were dominated by descending disploidy events. Genome size was positively correlated with cell and nucleus sizes and negatively with metabolic rate. The metabolic constraints on increasing genome size also manifested at higher phenotypic scales, with large genomes associated with slow lifestyles and purely marine waters. Moreover, large genome sizes were also linked to non-placental reproductive modes, which may entail metabolically less demanding embryological developments. Contrary to ray-finned fishes, large genome size was associated neither with the taxonomic diversity of affected clades nor with low genetic diversity.


Sharks , Animals , Phylogeny , Genome Size , Sharks/genetics , Vertebrates/genetics , Fishes/genetics , Evolution, Molecular
13.
Mar Pollut Bull ; 202: 116291, 2024 May.
Article En | MEDLINE | ID: mdl-38555804

Dogfish (Scyliorhinus canicula) transferred trace elements (110Ag, 109Cd, 54Mn and 75Se) from their diet to eggs, and their components (yolk and embryo, case and jelly) at greatly varying rates. Trace element levels in eggs showed positive linear relationships (p < 0.001; r2-0.83-0.91) with their cumulative rates of maternal ingestion over 61 days (maternal-to-egg transfer rates: mTFs). These mTFs varied by 2-3 orders of magnitude, with 54Mn > 110Ag > 75Se > 109Cd, and their range encompassed those previously measured for 60Co, 65Zn, 241Am and 134Cs. For six of the eight trace elements, their mTFs were significantly influenced (p < 0.05; r2 = 0.72) by both their dietary assimilation efficiency and their location within the egg (case). In contrast, both 110Ag and 54Mn greatly exceeded the mTFs predicted by this multiple regression model by one and 2-3 orders of magnitude, respectively, and were predominantly transferred to the egg case. Among elements, contrasting rates of transfer and percentage distributions in egg components imply differing ecotoxicological and radiological detriments to the developing embryo.


Diet , Ovum , Sharks , Trace Elements , Animals , Trace Elements/analysis , Sharks/metabolism , Ovum/chemistry , Water Pollutants, Chemical/analysis , Female , Environmental Monitoring
14.
J Appl Microbiol ; 135(4)2024 Apr 01.
Article En | MEDLINE | ID: mdl-38486350

AIMS: Although elasmobranchs are consumed worldwide, bacteriological assessments for this group are still sorely lacking. In this context, this study assessed bacteria of sharks and rays from one of the most important landing ports along the Rio de Janeiro coast. METHODS AND RESULTS: Bacteria were isolated from the cloacal swabs of the sampled elasmobranchs. They were cultured, and Vibrio, Aeromonas, and Enterobacterales were isolated and identified. The isolated bacteria were then biochemically identified and antimicrobial susceptibility assays were performed. Antigenic characterizations were performed for Salmonella spp. and Polymerase Chain Reaction (PCR) assays were performed to identify Escherichia coli pathotypes. Several bacteria of interest in the One Health context were detected. The most prevalent Enterobacterales were Morganella morganii and Citrobacter freundii, while Vibrio harveyi and Vibrio fluvialis were the most prevalent among Vibrio spp. and Aeromonas allosacharophila and Aeromonas veronii bv. veronii were the most frequent among Aeromonas spp. Several bacteria also displayed antimicrobial resistance, indicative of Public Health concerns. A total of 10% of Vibrio strains were resistant to trimethoprim-sulfamethoxazole and 40% displayed intermediate resistance to cefoxitin. Salmonella enterica strains displayed intermediate resistance to ciprofloxacin, nalidixic acid and streptomycin. All V. cholerae strains were identified as non-O1/non-O139. The detected E. coli strains did not exhibit pathogenicity genes. This is the first study to perform serology assessments for S. enterica subsp. enterica isolated from elasmobranchs, identifying the zoonotic Typhimurium serovar. Salmonella serology evaluations are, therefore, paramount to identify the importance of elasmobranchs in the epidemiological salmonellosis chain. CONCLUSIONS: The detection of several pathogenic and antibiotic-resistant bacteria may pose significant Public Health risks in Brazil, due to high elasmobranch consumption rates, indicating the urgent need for further bacteriological assessments in this group.


Aeromonas , Sharks , Vibrio cholerae , Animals , Escherichia coli , Brazil , Salmonella/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Aeromonas/genetics
15.
Sci Data ; 11(1): 285, 2024 Mar 09.
Article En | MEDLINE | ID: mdl-38461175

Sharks have thrived in the oceans for 400 million years, experienced five extinctions and evolved into today's apex predators. However, enormous genome size, poor karyotyping and limited tissue sampling options are the bottlenecks in shark research. Sharks of the family Orectolobiformes act as model species in transcriptome research with exceptionally high reproductive fecundity, catch prominence and oviparity. The present study illustrates a de novo transcriptome for an adult grey bamboo shark, Chiloscyllium griseum (Chondrichthyes; Hemiscyllidae) using paired-end RNA sequencing. Around 150 million short Illumina reads were obtained from five different tissues and assembled using the Trinity assembler. 70,647 hits on Uniprot by BLASTX was obtained after the transcriptome annotation. The data generated serve as a basis for transcriptome-based population genetic studies and open up new avenues in the field of comparative transcriptomics and conservation biology.


Sharks , Transcriptome , Animals , Base Sequence , Gene Expression Profiling , Sequence Analysis, RNA , Sharks/genetics
16.
PLoS One ; 19(3): e0299544, 2024.
Article En | MEDLINE | ID: mdl-38478496

The velvet belly lanternshark (Etmopterus spinax) is a small, bioluminescent shark that is caught as bycatch in many deep-sea fisheries in the Atlantic Ocean. Using data from 10,597 seasonal research survey tows spanning 11 years, the distribution, relative abundance, life history, and environmental preferences of E. spinax in Icelandic waters was examined for the first time. E. spinax (n = 8774) were only captured in relatively deep offshore waters to the south and west of Iceland. Females grew to larger sizes than males and reached 50% sexual maturity at a total length of 50 cm. Females at a late stage of maturity and very small juveniles (<20 cm) were restricted to the central south Icelandic shelf, suggesting that this might be critical habitat for the reproduction of the species. Most of the sharks were captured at depths of 400-500 m, a relatively narrow depth range, and classified as a stenothermic warm-water species with habitat temperature restricted to about 6.3-8.0°C. Teleosts, crustaceans and cephalopods made up most of the diet. There was no indication of a decline in abundance over the time span of the survey. However, climate-induced warming of the deep ocean may shift the distribution of the species to more northerly waters within Iceland.


Sharks , Animals , Female , Male , Iceland , Ecosystem , Atlantic Ocean , Diet
17.
BMC Vet Res ; 20(1): 104, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38491459

BACKGROUND: members of the genus Sarcocystis are intracellular obligate protozoan parasites classified within the phylum Apicomplexa and have an obligate heteroxenous life cycle involving two hosts. A more comprehensive understanding of the prevalence and geographic range of different Sarcocystis species in marine ecosystems is needed globally and nationally. Hence, the objective of this study was to document the incidence of Sarcocystis infection in sharks within the aquarium ecosystem of Egypt and to identify the species through the characterization of the SSU rDNA gene. METHODS: All organs of the mako shark specimen underwent macroscopic screening to detect the existence of a Sarcocystis cyst. Ten cysts were collected from the intestine and processed separately to extract the genomic DNA. The polymerase chain reaction (PCR) was accomplished by amplifying a specific 18S ribosomal RNA (rRNA) gene fragment. Subsequently, the resulting amplicons were subjected to purification and sequencing processes. RESULTS: Macroscopic examination of the mako shark intestinal wall sample revealed the presence of Sarcocystis cysts of various sizes and shapes, and sequencing of the amplicons from Sarcocystis DNA revealed a 100% nucleotide identity with the sequence of Sarcocystis tenella recorded from sheep in Iran; The mako shark sequence has been deposited in the GeneBank with the accession number OQ721979. This study presents the first scientific evidence demonstrating the presence of the Sarcocystis parasite in sharks, thereby documenting this specific marine species as a novel intermediate host in the Sarcocystis life cycle. CONCLUSIONS: This is the first identification of Sarcocystis infection in sharks, and we anticipate it will be an essential study for future screenings and establishing effective management measures for this disease in aquatic ecosystems.


Sarcocystis , Sharks , Animals , Sheep/genetics , Sarcocystis/genetics , Ecosystem , Sharks/genetics , Phylogeny , Indian Ocean , DNA, Ribosomal , Life Cycle Stages
18.
Sci Rep ; 14(1): 4100, 2024 03 14.
Article En | MEDLINE | ID: mdl-38485970

Coastal ecosystems are highly vulnerable to the impacts of climate change and other stressors, including urbanization and overfishing. Consequently, distributions of coastal fish have begun to change, particularly in response to increasing temperatures linked to climate change. However, few studies have evaluated how natural and anthropogenic disturbances can alter species distributions in conjunction with geophysical habitat alterations, such as changes to land use and land cover (LU/LC). Here, we examine the spatiotemporal changes in the distribution of juvenile bull sharks (Carcharhinus leucas) using a multi-decadal fishery-independent survey of coastal Alabama. Using a boosted regression tree (BRT) modeling framework, we assess the covariance of environmental conditions (sea surface temperature, depth, salinity, dissolved oxygen, riverine discharge, Chl-a) as well as historic changes to LU/LC to the distribution of bull sharks. Species distribution models resultant from BRTs for early (2003-2005) and recent (2018-2020) monitoring periods indicated a mean increase in habitat suitability (i.e., probability of capture) for juvenile bull sharks from 0.028 to 0.082, concomitant with substantial increases in mean annual temperature (0.058°C/yr), Chl-a (2.32 mg/m3), and urbanization (increased LU/LC) since 2000. These results align with observed five-fold increases in the relative abundance of juvenile bull sharks across the study period and demonstrate the impacts of changing environmental conditions on their distribution and relative abundance. As climate change persists, coastal communities will continue to change, altering the structure of ecological communities and the success of nearshore fisheries.


Ecosystem , Sharks , Animals , Conservation of Natural Resources , Fisheries , Sharks/physiology
19.
Braz J Biol ; 84: e274862, 2024.
Article En | MEDLINE | ID: mdl-38511772

Sharks of the genus Sphyrna are under intense exploitation globally. In Brazil's northern coast, this genus represents a high proportion of fisheries landings and comprises four species. However, due to difficulty of specific identification when specimens are landed, most of the records are limited to the genus level. Here we analyzed the effectiveness of ITS2 (Internal Transcribed Spacer 2 of rDNA) fragment length protocol (Abercrombie et al., 2005) for identifying hammerhead shark species, comparing with the analysis of COI (Cytochrome oxidase subunit I) and ITS2 sequences. We evaluated samples of muscle tissue acquired in the main fishing ports of Maranhão: Carutapera, Raposa e Tutóia. Sampling was conducted between March 2017 to March 2018 and complemented with material deposited in collection (2015). COI results indicated the occurrence of endangered species which are prohibited to be landed. These include Sphyrna mokarran (67%), S. lewini (15%), S. tudes (3%), and S. tiburo (15%). For the ITS2 marker, we investigated the optimization of the protocol developed by Abercrombie (2005) for to improve the use in this geographical area througout design of a new primers.


Sharks , Animals , Sharks/genetics , Brazil , Endangered Species , Fisheries , Seafood
20.
Mar Environ Res ; 196: 106442, 2024 Apr.
Article En | MEDLINE | ID: mdl-38484651

Grazing by nominally herbivorous fishes is widely recognised as a critical ecosystem function on coral reefs. However, several studies have suggested that herbivory is reduced in the presence of predators, especially sharks. Nevertheless, the effects of shark presence on grazing, under natural settings, remains poorly resolved. Using ∼200 h of video footage, we quantify the extent of direct disturbance by reef sharks on grazing fishes. Contrary to expectations, grazing rate was not significantly suppressed due to sharks, with fishes resuming feeding in as little as 4 s after sharks passed. Based on our observations, we estimate that an average m2 area of reef at our study locations would be subjected to ∼5 s of acute shark disturbance during daylight hours. It appears the short-term impact of reef shark presence has a negligible effect on herbivore grazing rates, with the variable nature of grazing under natural conditions overwhelming any fear effects.


Ecosystem , Sharks , Animals , Herbivory , Coral Reefs , Fishes , Fear
...