Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.608
Filtrar
1.
Microbiology (Reading) ; 170(8)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39109421

RESUMEN

Shiga toxin-producing Escherichia coli (STEC) is an important waterborne pathogen capable of causing serious gastrointestinal infections with potentially fatal complications, including haemolytic-uremic syndrome. All STEC serogroups harbour genes that encode at least one Shiga toxin (stx1 and/or stx2), which constitute the primary virulence factors of STEC. Loop-mediated isothermal amplification (LAMP) enables rapid real-time pathogen detection with a high degree of specificity and sensitivity. The aim of this study was to develop and validate an on-site portable diagnostics workstation employing LAMP technology to permit rapid real-time STEC detection in environmental water samples. Water samples (n=28) were collected from groundwater wells (n=13), rivers (n=12), a turlough (n=2) and an agricultural drain (n=1) from the Corrib catchment in Galway. Water samples (100 ml) were passed through a 0.22 µm filter, and buffer was added to elute captured cells. Following filtration, eluates were tested directly using LAMP assays targeting stx1, stx2 and E. coli phoA genes. The portable diagnostics workstation was used in field studies to demonstrate the on-site testing capabilities of the instrument. Real-time PCR assays targeting stx1 and stx2 genes were used to confirm the results. The limit of detection for stx1, stx2 and phoA LAMP assays were 2, 2 and 6 copies, respectively. Overall, stx1, stx2 and phoA genes were detected by LAMP in 15/28 (53.6 %), 9/28 (32.2 %) and 24/28 (85.7 %) samples, respectively. For confirmation, the LAMP results for stx1 and stx2 correlated perfectly (100 %) with those obtained using PCR. The portable diagnostics workstation exhibited high sensitivity throughout the on-site operation, and the average time from sample collection to final result was 40 min. We describe a simple, transferable and efficient diagnostic technology for on-site molecular analysis of various water sources. This method allows on-site testing of drinking water, enabling evidence-based decision-making by public health and water management authorities.


Asunto(s)
Técnicas de Amplificación de Ácido Nucleico , Escherichia coli Shiga-Toxigénica , Microbiología del Agua , Técnicas de Amplificación de Ácido Nucleico/métodos , Escherichia coli Shiga-Toxigénica/genética , Escherichia coli Shiga-Toxigénica/aislamiento & purificación , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/instrumentación , Sensibilidad y Especificidad , Ríos/microbiología , Toxina Shiga I/genética , Agua Subterránea/microbiología
2.
Foodborne Pathog Dis ; 21(7): 409-415, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38568114

RESUMEN

Escherichia coli O157:H7 (E. coli O157:H7) and Campylobacter jejuni (C. jejuni) are pathogenic microorganisms that can cause severe clinical symptoms in humans and are associated with bovine meat consumption. Specific monitoring for E. coli O157: H7 or C. jejuni in meat is not mandatory under Chilean regulations. In this study, we analyzed 544 samples for the detection of both microorganisms, obtained from 272 bovine carcasses (280 kg average) at two slaughterhouses in the Bio-Bío District, Chile. Sampling was carried out at post-shower of carcasses and after channel passage through the cold chamber. Eleven samples were found to be positive for E. coli O157:H7 (4.0%) using microbiological and biochemical detection techniques and were subjected to a multiplex PCR to detect fliC and rfbE genes. Six samples (2.2%) were also found to be positive for the pathogenicity genes stx1, stx2, and eaeA. Twenty-two carcasses (8.0%) were found to be positive for C. jejuni using microbiological and biochemical detection techniques, but no sample with amplified mapA gene was found.


Asunto(s)
Mataderos , Campylobacter jejuni , Escherichia coli O157 , Proteínas de Escherichia coli , Microbiología de Alimentos , Animales , Bovinos , Campylobacter jejuni/aislamiento & purificación , Campylobacter jejuni/genética , Escherichia coli O157/aislamiento & purificación , Escherichia coli O157/genética , Chile , Proteínas de Escherichia coli/genética , Flagelina/genética , Carne/microbiología , Contaminación de Alimentos/análisis , Adhesinas Bacterianas/genética , Toxina Shiga I/genética , Toxina Shiga II/genética , Reacción en Cadena de la Polimerasa Multiplex , Proteínas Bacterianas/genética , Transaminasas , Carbohidrato Epimerasas
3.
Braz J Microbiol ; 55(2): 1723-1733, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38639846

RESUMEN

Shiga toxigenic E. coli are important foodborne zoonotic pathogens. The present study was envisaged to standardize loop-mediated isothermal amplification assays targeting stx1 and stx2 genes for rapid and visual detection of STEC and compare its sensitivity with PCR. The study also assessed the effect of short enrichment on the detection limit of LAMP and PCR. The developed LAMP assays were found to be highly specific. Analytical sensitivity of LAMP was 94 fg/µLand 25.8 fg/µL for stx-1 and stx-2 while LOD of 5 CFU/g of carabeef was measured after 6-12 h enrichment. The study highlights the importance of short (6-12 h) enrichment for improving the sensitivity of LAMP. The entire detection protocol could be performed within 9 h yielding results on the same day. The developed LAMP assays proved to be a handy and cost-effective alternative for screening STEC contamination in meat.


Asunto(s)
Carne , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Sensibilidad y Especificidad , Escherichia coli Shiga-Toxigénica , Escherichia coli Shiga-Toxigénica/genética , Escherichia coli Shiga-Toxigénica/aislamiento & purificación , Técnicas de Amplificación de Ácido Nucleico/métodos , Animales , Técnicas de Diagnóstico Molecular/métodos , Carne/microbiología , Microbiología de Alimentos/métodos , Toxina Shiga I/genética , Toxina Shiga II/genética , Contaminación de Alimentos/análisis
4.
Br J Clin Pharmacol ; 90(4): 1142-1151, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38288879

RESUMEN

AIMS: Shiga toxin-producing Escherichia coli-haemolytic uraemic syndrome (STEC-HUS) is considered a toxaemic disorder in which early intervention with neutralizing antibodies may have therapeutic benefits. INM004, composed of F (ab')2 fragments from equine immunoglobulins, neutralizes Stx1/Stx2, potentially preventing the onset of HUS. METHODS: A single-centre, randomized, phase 1, single-blind, placebo-controlled clinical trial to evaluate INM004 safety, tolerance and pharmacokinetics (PK) in healthy adult volunteers, was conducted; in stage I, eight subjects were divided in two cohorts (n = 4) to receive a single INM004 dose of 2 or 4 mg kg-1, or placebo (INM004:placebo ratio of 3:1). In stage II, six subjects received three INM004 doses of 4 mg kg-1 repeated every 24 h, or placebo (INM004:placebo ratio of 5:1). RESULTS: Eight subjects (57.1%) experienced mild treatment-emergent adverse events (TEAEs); most frequent were rhinitis, headache and flushing, resolved within 24 h without changes in treatment or additional intervention. No serious AEs were reported. Peak concentrations of INM004 occurred within 2 h after infusion, with median Cmax values of 45.1 and 77.7 µg mL-1 for 2 and 4 mg kg-1, respectively. The serum concentration of INM004 declined in a biphasic manner (t1/2 range 30.7-52.9 h). Systemic exposures increased with each subsequent dose in a dose-proportional manner, exhibiting accumulation. Geometric median Cmax and AUC values were 149 and 10 300 µg h mL-1, respectively, in the repeated dose regimen. Additionally, samples from subjects that received INM004 at 2 mg kg-1 showed neutralizing capacity against Stx1 and Stx2 in in vitro assays. CONCLUSIONS: The results obtained in this first-in-human study support progression into the phase 2 trial in children with HUS.


Asunto(s)
Síndrome Hemolítico-Urémico , Toxina Shiga II , Niño , Adulto , Humanos , Animales , Caballos , Toxina Shiga I , Voluntarios Sanos , Método Simple Ciego
5.
Infect Immun ; 91(11): e0033223, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37877711

RESUMEN

Many AB toxins contain an enzymatic A moiety that is anchored to a cell-binding B moiety by a disulfide bridge. After receptor-mediated endocytosis, some AB toxins undergo retrograde transport to the endoplasmic reticulum (ER) where reduction of the disulfide bond occurs. The reduced A subunit then dissociates from the holotoxin and enters the cytosol to alter its cellular target. Intoxication requires A chain separation from the holotoxin, but, for many toxins, it is unclear if reduction alone is sufficient for toxin disassembly. Here, we examined the link between reduction and disassembly for several ER-translocating toxins. We found disassembly of the reduced Escherichia coli heat-labile enterotoxin (Ltx) required an interaction with one specific ER-localized oxidoreductase: protein disulfide isomerase (PDI). In contrast, the reduction and disassembly of ricin toxin (Rtx) and Shiga toxin 1 (Stx1) were coupled events that did not require PDI and could be triggered by reductant alone. PDI-deficient cells accordingly exhibited high resistance to Ltx with continued sensitivity to Rtx and Stx1. The distinct structural organization of each AB toxin thus appears to determine whether holotoxin disassembly occurs spontaneously upon disulfide reduction or requires the additional input of PDI.


Asunto(s)
Ricina , Ricina/toxicidad , Ricina/química , Ricina/metabolismo , Toxina Shiga I , Proteína Disulfuro Isomerasas/metabolismo , Disulfuros
6.
J AOAC Int ; 106(5): 1246-1253, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37252814

RESUMEN

BACKGROUND: Shiga toxin-producing Escherichia coli (STEC) is a significant cause of foodborne illness causing various gastrointestinal diseases including hemolytic uremic syndrome (HUS), the most severe form, which can lead to kidney failure or even death. OBJECTIVE: Here, we report the development of recombinase aided amplification (RAA)-exo-probe assays targeting the stx1 and stx2 genes for the rapid detection of STEC in food samples. METHODS: Primers and exo-probes were designed and optimized for the detection of stx1 and stx2 using RAA technology. The optimal STEC RAA-exo-probe assays were then tested for specificity and sensitivity, and validated in both spiked and real food samples. RESULTS: These assays were found to be 100% specific to STEC strains and were also highly sensitive with a detection limit of 1.6 × 103 CFU/mL or 32 copies/reaction. Importantly, the assays were able to successfully detect STEC in spiked and real food samples (beef, mutton, and pork), with a detection limit as low as 0.35 CFU/25g in beef samples after an overnight enrichment step. CONCLUSIONS: Overall, the RAA assay reactions completed within ∼20 min and were less dependent on expensive equipment, suggesting they can be easily adopted for in-field testing requiring only a fluorescent reader. HIGHLIGHTS: As such, we have developed two rapid, sensitive, and specific assays that can be used for the routine monitoring of STEC contamination in food samples, particularly in the field or in poorly equipped labs.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli Shiga-Toxigénica , Animales , Bovinos , Escherichia coli Shiga-Toxigénica/genética , Toxina Shiga I/genética , Toxina Shiga II/genética , Recombinasas , Microbiología de Alimentos
7.
Sci Rep ; 13(1): 8239, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37217775

RESUMEN

An important challenge relating to clinical diagnostics of the foodborne pathogen Shiga toxin-producing E. coli (STEC), is that PCR-detection of the shiga-toxin gene (stx) in DNA from stool samples can be accompanied by a failure to identify an STEC isolate in pure culture on agar. In this study, we have explored the use of MinION long-read sequencing of DNA from bacterial culture swipes to detect the presence of STEC, and bioinformatic tools to characterize the STEC virulence factors. The online workflow "What's in my pot" (WIMP) in the Epi2me cloud service, rapidly identified STEC also when it was present in culture swipes together with multiple other E. coli serovars, given sufficient abundance. These preliminary results provide useful information about the sensitivity of the method, which has potential to be used in clinical diagnostic of STEC, particularly in cases where a pure culture of the STEC isolate is not obtained due to the 'STEC lost Shiga toxin' phenomenon.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Shiga-Toxigénica , Humanos , Escherichia coli Shiga-Toxigénica/genética , Serogrupo , Infecciones por Escherichia coli/diagnóstico , Infecciones por Escherichia coli/microbiología , Toxina Shiga I/genética , Toxina Shiga/genética , Proteínas de Escherichia coli/genética , Heces/microbiología , Proteínas Portadoras/genética
8.
Sci Rep ; 13(1): 4935, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36973327

RESUMEN

Shiga toxin (Stx) is the key virulence factor of Stx-producing Escherichia coli (STEC). All known Stxs (Stx1 and Stx2) are encoded by bacteriophages (Stx phages). Although the genetic diversity of Stx phages has frequently been described, systematic analyses of Stx phages in a single STEC lineage are limited. In this study, focusing on the O26:H11 STEC sequence type 21 (ST21) lineage, where the stx1a gene is highly conserved, we analysed the Stx1a phages in 39 strains representative of the entire ST21 lineage and found a high level of variation in Stx1a phage genomes caused by various mechanisms, including replacement by a different Stx1a phage at the same or different locus. The evolutionary timescale of events changing Stx1a phages in ST21 was also determined. Furthermore, by using an Stx1 quantification system developed in this study, we found notable variations in the efficiency of Stx1 production upon prophage induction, which sharply contrasted with the conserved iron regulated Stx1 production. These variations were associated with the Stx1a phage alteration in some cases but not in other cases; thus, Stx1 production in this STEC lineage was determined by differences not only in Stx1 phages but also in host-encoded factors.


Asunto(s)
Bacteriófagos , Infecciones por Escherichia coli , Escherichia coli Shiga-Toxigénica , Humanos , Escherichia coli Shiga-Toxigénica/genética , Toxina Shiga I , Bacteriófagos/genética , Toxina Shiga/genética
9.
Toxicol In Vitro ; 87: 105537, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36535555

RESUMEN

Enterohemorrhagic or Shiga toxin-producing Escherichia coli is a food-poisoning bacterium that grows in the intestine to produce Shiga toxin (Stx). In this study, the effects of 20 polyphenols on the cytotoxicity of Stx1 and Stx2 in Vero cells were investigated. Among these, epigallocatechin gallate, butein, isorhapontigenin, hesperetin, morin, luteolin, resveratrol, and rhapontigenin showed inhibitory effects on the cytotoxicity of Stxs at 0.4 mmol/L. Furthermore, Vero cells pre-treated with these polyphenols were resistant to Stx at 0.4 mmol/L. However, luteolin showed the most potent inhibitory and cytoprotective effect against Stxs at 0.08 mmol/L or more. This inhibitory mechanism of luteolin was determined using a cell-free protein synthesis system and quantitative reverse transcription PCR assay to detect depurination of 28S rRNA in Vero cells. Luteolin did not inhibit the cell-free protein synthesis by Stxs, suggesting that the enzymatic activity of the Stx A subunit was not inhibited by luteolin. The depurination of 28S rRNA by Stxs was also investigated in Vero cells. The 28S rRNA depurination by Stxs was suppressed in Vero cells treated with Stxs which had been pretreated with luteolin. These results suggest that luteolin inhibits the incorporation of Stxs into Vero cells. This is the first report to show that luteolin inhibits the cytotoxicity of both Stx1 and Stx2 by inhibiting the incorporation of Stxs into Vero cells.


Asunto(s)
Toxina Shiga II , Toxina Shiga , Animales , Chlorocebus aethiops , Células Vero , Toxina Shiga/toxicidad , Toxina Shiga I/toxicidad , Toxina Shiga I/metabolismo , Toxina Shiga II/toxicidad , Toxina Shiga II/metabolismo , Luteolina/farmacología , ARN Ribosómico 28S
10.
Sci Rep ; 12(1): 17999, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289440

RESUMEN

Immunoglobulin A (IgA) is a candidate antibody for oral passive immunization against mucosal pathogens like Shiga toxin-producing Escherichia coli (STEC). We previously established a mouse IgG monoclonal antibody (mAb) neutralizing Shiga toxin 1 (Stx1), a bacterial toxin secreted by STEC. We designed cDNA encoding an anti-Stx1 antibody, in which variable regions were from the IgG mAb and all domains of the heavy chain constant region from a mouse IgA mAb. Considering oral administration, we expressed the cDNA in a plant expression system aiming at the production of enough IgA at low cost. The recombinant-IgA expressed in Arabidopsis thaliana formed the dimeric IgA, bound to the B subunit of Stx1, and neutralized Stx1 toxicity to Vero cells. Colon injury was examined by exposing BALB/c mice to Stx1 via the intrarectal route. Epithelial cell death, loss of crypt and goblet cells from the distal colon were observed by electron microscopy. A loss of secretory granules containing MUC2 mucin and activation of caspase-3 were observed by immunohistochemical methods. Pretreatment of Stx1 with the plant-based recombinant IgA completely suppressed caspase-3 activation and loss of secretory granules. The results indicate that a plant-based recombinant IgA prevented colon damage caused by Stx1 in vivo.


Asunto(s)
Inmunoglobulina A , Escherichia coli Shiga-Toxigénica , Chlorocebus aethiops , Ratones , Animales , Toxina Shiga I , Caspasa 3 , Células Vero , ADN Complementario , Inmunoglobulina G , Escherichia coli Shiga-Toxigénica/genética , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Colon/metabolismo , Mucinas
11.
Food Res Int ; 154: 111013, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35337571

RESUMEN

Escherichia coli O157:H7 EDL933 exposed to low-shear modeled microgravity (LSMMG) and normal gravity (NG) was used for a transcriptomic analysis. The modified Gompertz model (R2 = 0.81-0.99) showed an increased growth rate of E. coli O157:H7 under LSMMG. The mechanism of this active growth was associated with highly upregulated genes in nutrient and energy metabolism, including the TCA cycle, glycolysis, and pyruvate metabolism. Green fluorescent protein-labeled E. coli O157:H7 also formed significantly thick biofilms (fluorescent unit: NG, 1,263; LSMMG, 1,533; P = 0.0473) under LSMMG, whereas bacterial mobility decreased slightly (P = 0.0310). The transcriptomic analysis revealed that genes encoding glycogen biosynthesis (glgCAP operon) were upregulated (1.40 to 1.82 of log fold change [FC]) due to the downregulation of csrA (2.17 of log FC), which is the global regulator of biofilm formation of E. coli. We also identified 52 genes in E. coli O157:H7 EDL933 that were involved in the secretion pathway, 32 of which showed ≥2-fold significant changes in transcription levels after cultivation under LSMMG. Notably, all downregulated genes belonged to the type III and VI secretion systems, indicating that host cell contact secretion was dysregulated in the LSMMG cultures compared to the NG cultures. LSMMG also stimulates the pathogenicity of E. coli O157:H7 via transcriptional upregulation of Shiga toxin 1 (1.36 to 2.81 log FC) and toxin HokB (6.1 log FC). Our results suggest LSMMG affects bacterial growth, biofilm formation, and E. coli O157:H7 pathogenicity at some transcriptional levels, which indicates the importance of understanding biological consequences.


Asunto(s)
Toxinas Bacterianas , Escherichia coli O157 , Proteínas de Escherichia coli , Ingravidez , Toxinas Bacterianas/metabolismo , Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/metabolismo , Redes y Vías Metabólicas , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Toxina Shiga I
12.
Mar Pollut Bull ; 174: 113188, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34856431

RESUMEN

In this study, we reported Shiga toxin-producing Escherichia coli (STEC) in 847 samples, including those in coastal waters, sediments, and fish samples in the Southeast Coast of India. A total of 3742 E. coli strains were identified using conventional and molecular identification methods. Of these, 1518 isolates expressed virulent genes Stx1, Stx2, and Eae; effects on these genes on toxicity were examined. Furthermore, 2224 non-STEC isolates caused hemolytic uremic syndrome and played a key role in the persistence of STEC contamination. We conclude that toxin production is not adequate to cause disease, and the pathogenic mechanism of STEC remains poorly defined. Therefore, the present study indicates the status of pollution, highlighting the need for sanitation in public health.


Asunto(s)
Proteínas de Escherichia coli , Agua de Mar/microbiología , Escherichia coli Shiga-Toxigénica , Animales , Proteínas de Escherichia coli/genética , Peces/microbiología , Sedimentos Geológicos/microbiología , India , Toxina Shiga , Toxina Shiga I/genética , Escherichia coli Shiga-Toxigénica/aislamiento & purificación
13.
Microbiology (Reading) ; 167(12)2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34951398

RESUMEN

Enterohaemorrhagic Escherichia coli (EHEC) produces Shiga toxin 1 (Stx1) and Shiga toxin 2 (Stx2). Although stx1 and stx2 were found within the late operons of the Stx-encoding phages (Stx-phages), stx1 could mainly be transcribed from the stx1 promoter (PStx1), which represents the functional operator-binding site (Fur box) for the transcriptional regulator Fur (ferric uptake regulator), upstream of stx1. In this study, we found that the production of Stx1 by EHEC was affected by oxygen concentration. Increased Stx1 production in the presence of oxygen is dependent on Fur, which is an Fe2+-responsive transcription factor. The intracellular Fe2+ pool was lower under microaerobic conditions than under anaerobic conditions, suggesting that lower Fe2+ availability drove the formation of less Fe2+-Fur, less DNA binding to the PStx1 region, and an increase in Stx1 production.


Asunto(s)
Bacteriófagos , Escherichia coli Enterohemorrágica , Escherichia coli Enterohemorrágica/genética , Escherichia coli Enterohemorrágica/metabolismo , Oxígeno/metabolismo , Toxina Shiga I/genética , Toxina Shiga I/metabolismo , Toxina Shiga II/genética , Toxina Shiga II/metabolismo
14.
Toxins (Basel) ; 13(11)2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34822608

RESUMEN

Hemolytic Uremic Syndrome (HUS) associated with Shiga-toxigenic Escherichia coli (STEC) infections is the principal cause of acute renal injury in pediatric age groups. Shiga toxin type 2 (Stx2) has in vitro cytotoxic effects on kidney cells, including human glomerular endothelial (HGEC) and Vero cells. Neither a licensed vaccine nor effective therapy for HUS is available for humans. Recombinant antibodies against Stx2, produced in bacteria, appeared as the utmost tool to prevent HUS. Therefore, in this work, a recombinant FabF8:Stx2 was selected from a human Fab antibody library by phage display, characterized, and analyzed for its ability to neutralize the Stx activity from different STEC-Stx2 and Stx1/Stx2 producing strains in a gold standard Vero cell assay, and the Stx2 cytotoxic effects on primary cultures of HGEC. This recombinant Fab showed a dissociation constant of 13.8 nM and a half maximum effective concentration (EC50) of 160 ng/mL to Stx2. Additionally, FabF8:Stx2 neutralized, in different percentages, the cytotoxic effects of Stx2 and Stx1/2 from different STEC strains on Vero cells. Moreover, it significantly prevented the deleterious effects of Stx2 in a dose-dependent manner (up to 83%) in HGEC and protected this cell up to 90% from apoptosis and necrosis. Therefore, this novel and simple anti-Stx2 biomolecule will allow further investigation as a new therapeutic option that could improve STEC and HUS patient outcomes.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Síndrome Hemolítico-Urémico/prevención & control , Fragmentos Fab de Inmunoglobulinas/inmunología , Toxina Shiga II/inmunología , Animales , Anticuerpos Monoclonales/administración & dosificación , Apoptosis/efectos de los fármacos , Chlorocebus aethiops , Relación Dosis-Respuesta a Droga , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Humanos , Fragmentos Fab de Inmunoglobulinas/administración & dosificación , Glomérulos Renales/citología , Glomérulos Renales/efectos de los fármacos , Glomérulos Renales/patología , Proteínas Recombinantes , Toxina Shiga I/inmunología , Toxina Shiga I/toxicidad , Toxina Shiga II/toxicidad , Escherichia coli Shiga-Toxigénica/inmunología , Células Vero
15.
Sci Rep ; 11(1): 18372, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34526533

RESUMEN

Enterohaemorrhagic Escherichia coli (EHEC) comprise a group of intestinal pathogens responsible for a range of illnesses, including kidney failure and neurological compromise. EHEC produce critical virulence factors, Shiga toxin (Stx) 1 or 2, and the synthesis of Stx2 is associated with worse disease manifestations. Infected patients only receive supportive treatment because some conventional antibiotics enable toxin production. Shiga toxin 2 genes (stx2) are carried in λ-like bacteriophages (stx2-phages) inserted into the EHEC genome as prophages. Factors that cause DNA damage induce the lytic cycle of stx2-phages, leading to Stx2 production. The phage Q protein is critical for transcription antitermination of stx2 and phage lytic genes. This study reports that deficiency of two endoribonucleases (RNases), E and G, significantly delayed cell lysis and impaired production of both Stx2 and stx2-phages, unlike deficiency of either enzyme alone. Moreover, scarcity of both enzymes reduced the concentrations of Q and stx2 transcripts and slowed cell growth.


Asunto(s)
Bacteriófagos/genética , Escherichia coli Enterohemorrágica/fisiología , Escherichia coli Enterohemorrágica/virología , Infecciones por Escherichia coli/microbiología , Ribonucleasas/metabolismo , Toxina Shiga/biosíntesis , Toxina Shiga/genética , Escherichia coli Enterohemorrágica/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica , Mitomicina/farmacología , Plásmidos/genética , Ribonucleasas/genética , Toxina Shiga I/genética , Toxina Shiga II/genética , Ensayo de Placa Viral , Factores de Virulencia/genética
18.
J Med Microbiol ; 70(7)2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34309502

RESUMEN

Introduction. Shiga toxin-producing Escherichia coli (STEC) can cause severe disease and large outbreaks. In England, the incidence and clinical significance of STEC serogroups other than O157 (non-O157) is unknown due to a testing bias for detection of STEC O157. Since 2013, the implementation of PCR to detect all STEC serogroups by an increasing number of diagnostic laboratories has led to an increase in the detection of non-O157 STEC.Hypothesis/Gap statement. Due to a bias in testing methodologies to select for STEC serogroup O157 in frontline diagnostic laboratories in most countries, very little surveillance data have been previously generated on non-O157 STEC.Aim. Five years (2014-2018) of STEC national surveillance data were extracted and descriptive analysis undertaken to assess disease severity of non-O157 STEC strains.Methods. Data from 1 January 2014 to 31 December 2018 were extracted from the National Enhanced Surveillance System for STEC and analysed.Results. The implementation of Gastrointestinal Polymerase Chain Reaction (GI-PCR) has resulted in a four-fold increase in the detection of non-O157 STEC cases between 2014 and 2018. There were 2579 cases infected with 97 different non-O157 serogroups. The gender distribution was similar amongst STEC O157 and non-O157 STEC cases with 57 and 56 % of cases being female respectively, but a significantly higher proportion of cases (P <0.001) under 5 years of age was observed among STEC O157 (22 %) cases compared to non-O157 STEC (14 %). The most common non-O157 serogroups were O26 (16 %), O146 (11 %), O91 (10 %), O128 (7 %), O103 (5 %) and O117 (3 %). Overall, rates of bloody diarrhoea were highest in O26 (44 %) and O103 (48 %) cases and lowest in STEC O117 cases (17 %). Strains harbouring Shiga toxin stx1a caused the highest proportion of diarrhoea (93 %) and caused the same level of bloody diarrhoea as stx2a (39 %). However, stx2a caused the highest proportion of vomiting (46 %), hospitalisation (49 %) and considerably more HUS (29 %) than other stx profiles.Conclusion. The implementation of PCR targeting stx at diagnostic laboratories has shown that non-O157 STEC, most notably STEC O26, are an emerging risk to public health.


Asunto(s)
Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/microbiología , Escherichia coli Shiga-Toxigénica/aislamiento & purificación , Adolescente , Adulto , Distribución por Edad , Niño , Preescolar , Inglaterra/epidemiología , Femenino , Humanos , Masculino , Técnicas de Diagnóstico Molecular , Reacción en Cadena de la Polimerasa , Serogrupo , Distribución por Sexo , Toxina Shiga I/genética , Toxina Shiga II/genética , Escherichia coli Shiga-Toxigénica/clasificación , Escherichia coli Shiga-Toxigénica/genética , Escherichia coli Shiga-Toxigénica/patogenicidad , Virulencia/genética , Adulto Joven
19.
Toxins (Basel) ; 13(6)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203879

RESUMEN

Shiga toxin 1 and 2 (STx1 and STx2) undergo retrograde trafficking to reach the cytosol of cells where they target ribosomes. As retrograde trafficking is essential for disease, inhibiting STx1/STx2 trafficking is therapeutically promising. Recently, we discovered that the chemotherapeutic drug tamoxifen potently inhibits the trafficking of STx1/STx2 at the critical early endosome-to-Golgi step. We further reported that the activity of tamoxifen against STx1/STx2 is independent of its selective estrogen receptor modulator (SERM) property and instead depends on its weakly basic chemical nature, which allows tamoxifen to increase endolysosomal pH and alter the recruitment of retromer to endosomes. The goal of the current work was to obtain a better understanding of the mechanism of action of tamoxifen against the more disease-relevant toxin STx2, and to differentiate between the roles of changes in endolysosomal pH and retromer function. Structure activity relationship (SAR) analyses revealed that a weakly basic amine group was essential for anti-STx2 activity. However, ability to deacidify endolysosomes was not obligatorily necessary because a tamoxifen derivative that did not increase endolysosomal pH exerted reduced, but measurable, activity. Additional assays demonstrated that protective derivatives inhibited the formation of retromer-dependent, Golgi-directed, endosomal tubules, which mediate endosome-to-Golgi transport, and the sorting of STx2 into these tubules. These results identify retromer-mediated endosomal tubulation and sorting to be fundamental processes impacted by tamoxifen; provide an explanation for the inhibitory effect of tamoxifen on STx2; and have important implications for the therapeutic use of tamoxifen, including its development for treating Shiga toxicosis.


Asunto(s)
Antineoplásicos Hormonales/farmacología , Toxina Shiga I/metabolismo , Toxina Shiga II/metabolismo , Tamoxifeno/farmacología , Endosomas/efectos de los fármacos , Células HeLa , Humanos , Transporte de Proteínas/efectos de los fármacos
20.
J Microbiol Methods ; 188: 106291, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34311019

RESUMEN

The performance of the eazyplex® EHEC complete (Amplex) for the detection of Shiga toxin genes in stool samples was evaluated. The assay performed well in distinguishing between stx1 and stx2 but suboptimal sensitivity may limit its use to complementary testing rather than primary diagnosis of Shiga toxin-producing Escherichia coli infections.


Asunto(s)
Infecciones por Escherichia coli/diagnóstico , Heces/microbiología , Técnicas de Diagnóstico Molecular/métodos , Toxina Shiga I/genética , Toxina Shiga II/genética , Técnicas Bacteriológicas/métodos , Escherichia coli Enterohemorrágica/aislamiento & purificación , Toxina Shiga , Escherichia coli Shiga-Toxigénica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA