Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Nature ; 630(8017): 587-595, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38898291

RESUMEN

Advances in large-scale single-unit human neurophysiology, single-cell RNA sequencing, spatial transcriptomics and long-term ex vivo tissue culture of surgically resected human brain tissue have provided an unprecedented opportunity to study human neuroscience. In this Perspective, we describe the development of these paradigms, including Neuropixels and recent brain-cell atlas efforts, and discuss how their convergence will further investigations into the cellular underpinnings of network-level activity in the human brain. Specifically, we introduce a workflow in which functionally mapped samples of human brain tissue resected during awake brain surgery can be cultured ex vivo for multi-modal cellular and functional profiling. We then explore how advances in human neuroscience will affect clinical practice, and conclude by discussing societal and ethical implications to consider. Potential findings from the field of human neuroscience will be vast, ranging from insights into human neurodiversity and evolution to providing cell-type-specific access to study and manipulate diseased circuits in pathology. This Perspective aims to provide a unifying framework for the field of human neuroscience as we welcome an exciting era for understanding the functional cytoarchitecture of the human brain.


Asunto(s)
Encéfalo , Neurofisiología , Neurociencias , Análisis de la Célula Individual , Humanos , Encéfalo/citología , Encéfalo/fisiología , Neuropatología/métodos , Neuropatología/tendencias , Neurofisiología/métodos , Neurofisiología/tendencias , Neurociencias/métodos , Neurociencias/tendencias , Análisis de la Célula Individual/métodos , Análisis de la Célula Individual/tendencias , Análisis de Expresión Génica de una Sola Célula , Transcriptoma , Flujo de Trabajo , Animales
2.
Hum Cell ; 37(4): 904-916, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38743204

RESUMEN

Mesenchymal stem/stromal cells (MSCs), originating from the mesoderm, represent a multifunctional stem cell population capable of differentiating into diverse cell types and exhibiting a wide range of biological functions. Despite more than half a century of research, MSCs continue to be among the most extensively studied cell types in clinical research projects globally. However, their significant heterogeneity and phenotypic instability have significantly hindered their exploration and application. Single-cell sequencing technology emerges as a powerful tool to address these challenges, offering precise dissection of complex cellular samples. It uncovers the genetic structure and gene expression status of individual contained cells on a massive scale and reveals the heterogeneity among these cells. It links the molecular characteristics of MSCs with their clinical applications, contributing to the advancement of regenerative medicine. With the development and cost reduction of single-cell analysis techniques, sequencing technology is now widely applied in fundamental research and clinical trials. This study aimed to review the application of single-cell sequencing in MSC research and assess its prospects.


Asunto(s)
Células Madre Mesenquimatosas , Medicina Regenerativa , Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Análisis de la Célula Individual/tendencias , Humanos , Células Madre Mesenquimatosas/citología , Medicina Regenerativa/métodos , Medicina Regenerativa/tendencias , Diferenciación Celular/genética , Expresión Génica/genética
4.
Mol Cell ; 82(2): 241-247, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35063094

RESUMEN

Quantitative optical microscopy-an emerging, transformative approach to single-cell biology-has seen dramatic methodological advancements over the past few years. However, its impact has been hampered by challenges in the areas of data generation, management, and analysis. Here we outline these technical and cultural challenges and provide our perspective on the trajectory of this field, ushering in a new era of quantitative, data-driven microscopy. We also contrast it to the three decades of enormous advances in the field of genomics that have significantly enhanced the reproducibility and wider adoption of a plethora of genomic approaches.


Asunto(s)
Genómica/tendencias , Microscopía/tendencias , Imagen Óptica/tendencias , Análisis de la Célula Individual/tendencias , Animales , Difusión de Innovaciones , Genómica/historia , Ensayos Analíticos de Alto Rendimiento/tendencias , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Microscopía/historia , Imagen Óptica/historia , Reproducibilidad de los Resultados , Proyectos de Investigación/tendencias , Análisis de la Célula Individual/historia
5.
Plant Physiol ; 188(2): 749-755, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34662424

RESUMEN

Single-cell genomics has the potential to revolutionize the study of plant development and tissue-specific responses to environmental stimuli by revealing heretofore unknown players and gene regulatory processes. Here, I focus on the current state of single-cell genomics in plants, emerging technologies and applications, in addition to outlining possible future directions for experiments. I describe approaches to enable cheaper and larger experiments and technologies to measure multiple types of molecules to better model and understand cell types and their different states and trajectories throughout development. Lastly, I discuss the inherent limitations of single-cell studies and the technological hurdles that need to be overcome to widely apply single-cell genomics in crops to generate the greatest possible knowledge gain.


Asunto(s)
Genómica/tendencias , Fenómenos Fisiológicos de las Plantas/genética , Análisis de la Célula Individual/métodos , Análisis de la Célula Individual/tendencias , Predicción
6.
Front Immunol ; 12: 790379, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899758

RESUMEN

The journey of a hematopoietic stem cell (HSC) involves the passage through successive anatomical sites where HSCs are in direct contact with their surrounding microenvironment, also known as niche. These spatial and temporal cellular interactions throughout development are required for the acquisition of stem cell properties, and for maintaining the HSC pool through balancing self-renewal, quiescence and lineage commitment. Understanding the context and consequences of these interactions will be imperative for our understanding of HSC biology and will lead to the improvement of in vitro production of HSCs for clinical purposes. The aorta-gonad-mesonephros (AGM) region is in this light of particular interest since this is the cradle of HSC emergence during the embryonic development of all vertebrate species. In this review, we will focus on the developmental origin of HSCs and will discuss the novel technological approaches and recent progress made to identify the cellular composition of the HSC supportive niche and the underlying molecular events occurring in the AGM region.


Asunto(s)
Genómica/tendencias , Hematopoyesis/genética , Células Madre Hematopoyéticas/fisiología , Análisis de la Célula Individual/tendencias , Nicho de Células Madre , Animales , Aorta/embriología , Técnicas de Cultivo de Célula/tendencias , Linaje de la Célula , Células Cultivadas , Difusión de Innovaciones , Perfilación de la Expresión Génica/tendencias , Regulación del Desarrollo de la Expresión Génica , Gónadas/embriología , Humanos , Mesonefro/embriología , Fenotipo , Proteómica/tendencias , Transducción de Señal , Transcriptoma
7.
Ann N Y Acad Sci ; 1506(1): 74-97, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34605044

RESUMEN

Single cell biology has the potential to elucidate many critical biological processes and diseases, from development and regeneration to cancer. Single cell analyses are uncovering the molecular diversity of cells, revealing a clearer picture of the variation among and between different cell types. New techniques are beginning to unravel how differences in cell state-transcriptional, epigenetic, and other characteristics-can lead to different cell fates among genetically identical cells, which underlies complex processes such as embryonic development, drug resistance, response to injury, and cellular reprogramming. Single cell technologies also pose significant challenges relating to processing and analyzing vast amounts of data collected. To realize the potential of single cell technologies, new computational approaches are needed. On March 17-19, 2021, experts in single cell biology met virtually for the Keystone eSymposium "Single Cell Biology" to discuss advances both in single cell applications and technologies.


Asunto(s)
Diferenciación Celular/fisiología , Reprogramación Celular/fisiología , Congresos como Asunto/tendencias , Desarrollo Embrionario/fisiología , Informe de Investigación , Análisis de la Célula Individual/tendencias , Animales , Linaje de la Célula/fisiología , Humanos , Macrófagos/fisiología , Análisis de la Célula Individual/métodos
8.
Genome Biol ; 22(1): 301, 2021 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-34715899

RESUMEN

Recent years have seen a revolution in single-cell RNA-sequencing (scRNA-seq) technologies, datasets, and analysis methods. Since 2016, the scRNA-tools database has cataloged software tools for analyzing scRNA-seq data. With the number of tools in the database passing 1000, we provide an update on the state of the project and the field. This data shows the evolution of the field and a change of focus from ordering cells on continuous trajectories to integrating multiple samples and making use of reference datasets. We also find that open science practices reward developers with increased recognition and help accelerate the field.


Asunto(s)
RNA-Seq/tendencias , Análisis de la Célula Individual/tendencias , Programas Informáticos/tendencias
11.
AAPS J ; 23(5): 98, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34389904

RESUMEN

This review provides a brief history of the advances of cellular analysis tools focusing on instrumentation, detection probes, and data analysis tools. The interplay of technological advancement and a deeper understanding of cellular biology are emphasized. The relevance of this topic to drug development is that the evaluation of cellular biomarkers has become a critical component of the development strategy for novel immune therapies, cell therapies, gene therapies, antiviral therapies, and vaccines. Moreover, recent technological advances in single-cell analysis are providing more robust cellular measurements and thus accelerating the advancement of novel therapies.Graphical abstract.


Asunto(s)
Desarrollo de Medicamentos/tendencias , Citometría de Flujo/tendencias , Análisis de la Célula Individual/tendencias , Desarrollo de Medicamentos/historia , Desarrollo de Medicamentos/métodos , Citometría de Flujo/historia , Citometría de Flujo/métodos , Historia del Siglo XVI , Historia del Siglo XVII , Historia del Siglo XVIII , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Microscopía/historia , Microscopía/métodos , Microscopía/tendencias , Análisis de la Célula Individual/historia , Análisis de la Célula Individual/métodos
12.
Genes (Basel) ; 12(7)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34356114

RESUMEN

Together, single-cell technologies and systems biology have been used to investigate previously unanswerable questions in biomedicine with unparalleled detail. Despite these advances, gaps in analytical capacity remain. Machine learning, which has revolutionized biomedical imaging analysis, drug discovery, and systems biology, is an ideal strategy to fill these gaps in single-cell studies. Machine learning additionally has proven to be remarkably synergistic with single-cell data because it remedies unique challenges while capitalizing on the positive aspects of single-cell data. In this review, we describe how systems-biology algorithms have layered machine learning with biological components to provide systems level analyses of single-cell omics data, thus elucidating complex biological mechanisms. Accordingly, we highlight the trifecta of single-cell, systems-biology, and machine-learning approaches and illustrate how this trifecta can significantly contribute to five key areas of scientific research: cell trajectory and identity, individualized medicine, pharmacology, spatial omics, and multi-omics. Given its success to date, the systems-biology, single-cell omics, and machine-learning trifecta has proven to be a potent combination that will further advance biomedical research.


Asunto(s)
Aprendizaje Automático/tendencias , Análisis de la Célula Individual/métodos , Biología de Sistemas/métodos , Algoritmos , Animales , Biología Computacional/métodos , Descubrimiento de Drogas/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Medicina de Precisión/métodos , Medicina de Precisión/tendencias , Análisis de la Célula Individual/tendencias , Biología de Sistemas/tendencias
13.
Front Immunol ; 12: 702636, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34322133

RESUMEN

Single-cell molecular tools have been developed at an incredible pace over the last five years as sequencing costs continue to drop and numerous molecular assays have been coupled to sequencing readouts. This rapid period of technological development has facilitated the delineation of individual molecular characteristics including the genome, transcriptome, epigenome, and proteome of individual cells, leading to an unprecedented resolution of the molecular networks governing complex biological systems. The immense power of single-cell molecular screens has been particularly highlighted through work in systems where cellular heterogeneity is a key feature, such as stem cell biology, immunology, and tumor cell biology. Single-cell-omics technologies have already contributed to the identification of novel disease biomarkers, cellular subsets, therapeutic targets and diagnostics, many of which would have been undetectable by bulk sequencing approaches. More recently, efforts to integrate single-cell multi-omics with single cell functional output and/or physical location have been challenging but have led to substantial advances. Perhaps most excitingly, there are emerging opportunities to reach beyond the description of static cellular states with recent advances in modulation of cells through CRISPR technology, in particular with the development of base editors which greatly raises the prospect of cell and gene therapies. In this review, we provide a brief overview of emerging single-cell technologies and discuss current developments in integrating single-cell molecular screens and performing single-cell multi-omics for clinical applications. We also discuss how single-cell molecular assays can be usefully combined with functional data to unpick the mechanism of cellular decision-making. Finally, we reflect upon the introduction of spatial transcriptomics and proteomics, its complementary role with single-cell RNA sequencing (scRNA-seq) and potential application in cellular and gene therapy.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Terapia Genética/métodos , Análisis de la Célula Individual/métodos , Animales , Tratamiento Basado en Trasplante de Células y Tejidos/tendencias , Terapia Genética/tendencias , Humanos , Análisis de la Célula Individual/tendencias
14.
Development ; 148(12)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34170290

RESUMEN

The third 'Symposium for the Next Generation of Stem Cell Research' (SY-Stem) was held virtually on 3-5 March 2021, having been cancelled in 2020 due to the COVID-19 pandemic. As in previous years, the meeting highlighted the work of early career researchers, ranging from postgraduate students to young group leaders working in developmental and stem cell biology. Here, we summarize the excellent work presented at the Symposium, which covered topics ranging from pluripotency, species-specific aspects of development and emerging technologies, through to organoids, single-cell technology and clinical applications.


Asunto(s)
Congresos como Asunto/organización & administración , Invenciones/tendencias , Investigación con Células Madre , Animales , COVID-19/epidemiología , Diferenciación Celular , Congresos como Asunto/historia , Congresos como Asunto/tendencias , Historia del Siglo XXI , Humanos , Internet , Invenciones/historia , Sistemas en Línea , Pandemias , Análisis de la Célula Individual/métodos , Análisis de la Célula Individual/tendencias , Investigación con Células Madre/historia , Células Madre/fisiología , Técnicas de Cultivo de Tejidos/métodos , Técnicas de Cultivo de Tejidos/tendencias
16.
J Genet Genomics ; 48(4): 277-288, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-34052184

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disease, leading to the impairment of movement execution. PD pathogenesis has been largely investigated, either limited to bulk transcriptomic levels or at certain cell types, which failed to capture the cellular heterogeneity and intrinsic interplays among distinct cell types. Here, we report the application of single-nucleus RNA-seq on midbrain, striatum, and cerebellum of the α-syn-A53T mouse, a well-established PD mouse model, and matched controls, generating the first single cell transcriptomic atlas for the PD model mouse brain composed of 46,174 individual cells. Additionally, we comprehensively depicte the dysfunctions in PD pathology, covering the elevation of NF-κB activity, the alteration of ion channel components, the perturbation of protein homeostasis network, and the dysregulation of glutamatergic signaling. Notably, we identify a variety of cell types closely associated with PD risk genes. Taken together, our study provides valuable resources to systematically dissect the molecular mechanism of PD pathogenesis at the single-cell resolution, which facilitates the development of novel approaches for diagnosis and therapies against PD.


Asunto(s)
Encéfalo/metabolismo , Proteínas de Filamentos Intermediarios/genética , Proteínas Musculares/genética , Enfermedad de Parkinson/genética , Transcriptoma/genética , Animales , Encéfalo/patología , Encéfalo/ultraestructura , Cerebelo/metabolismo , Cerebelo/patología , Cerebelo/ultraestructura , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Cuerpo Estriado/ultraestructura , Modelos Animales de Enfermedad , Humanos , Mesencéfalo/metabolismo , Mesencéfalo/patología , Mesencéfalo/ultraestructura , Ratones , FN-kappa B/genética , Enfermedad de Parkinson/patología , RNA-Seq , Análisis de la Célula Individual/tendencias
17.
Zhongguo Fei Ai Za Zhi ; 24(4): 279-283, 2021 Apr 20.
Artículo en Chino | MEDLINE | ID: mdl-33910276

RESUMEN

Lung cancer is the malignant tumor with the highest mortality rate in the world. Heterogeneity of lung cancer, usually studied by sequencing technology, is considered to have important clinical significance in current studies. However, general sequencing technology can only explain the differences between samples integrally and its resolution is not enough to describe the differences between the individual cells. Therefore, people urgently hope to understand the cell type, state, subgroup distribution in the tumor microenvironment and the communication behavior between cells in the single cell level. Single-cell sequencing technology solves this problem. Using this technique will contribute to further understanding the mechanism of the occurrence and development of lung cancer, discovering new diagnostic markers and therapeutic targets, and providing theoretical references for the precise treatment of lung cancer patients in the future. This article reviews the progress of single-cell sequencing technology and focuses on its research on lung cancer tumor heterogeneity, tumor microenvironment, invasion and metastasis, treatment response, and drug resistance.
.


Asunto(s)
Neoplasias Pulmonares/fisiopatología , Análisis de la Célula Individual/tendencias , Animales , Competencia Celular , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Microambiente Tumoral
18.
Stem Cells ; 39(5): 511-521, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33587792

RESUMEN

When used in cell therapy and regenerative medicine strategies, stem cells have potential to treat many previously incurable diseases. However, current application methods using stem cells are underdeveloped, as these cells are used directly regardless of their culture medium and subgroup. For example, when using mesenchymal stem cells (MSCs) in cell therapy, researchers do not consider their source and culture method nor their application angle and function (soft tissue regeneration, hard tissue regeneration, suppression of immune function, or promotion of immune function). By combining machine learning methods (such as deep learning) with data sets obtained through single-cell RNA sequencing (scRNA-seq) technology, we can discover the hidden structure of these cells, predict their effects more accurately, and effectively use subpopulations with differentiation potential for stem cell therapy. scRNA-seq technology has changed the study of transcription, because it can express single-cell genes with single-cell anatomical resolution. However, this powerful technology is sensitive to biological and technical noise. The subsequent data analysis can be computationally difficult for a variety of reasons, such as denoising single cell data, reducing dimensionality, imputing missing values, and accounting for the zero-inflated nature. In this review, we discussed how deep learning methods combined with scRNA-seq data for research, how to interpret scRNA-seq data in more depth, improve the follow-up analysis of stem cells, identify potential subgroups, and promote the implementation of cell therapy and regenerative medicine measures.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/tendencias , Aprendizaje Profundo , RNA-Seq/tendencias , Análisis de la Célula Individual/tendencias , Humanos , Medicina Regenerativa , Transcriptoma/genética
19.
Nat Biotechnol ; 39(5): 619-629, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33558698

RESUMEN

Current methods for comparing single-cell RNA sequencing datasets collected in multiple conditions focus on discrete regions of the transcriptional state space, such as clusters of cells. Here we quantify the effects of perturbations at the single-cell level using a continuous measure of the effect of a perturbation across the transcriptomic space. We describe this space as a manifold and develop a relative likelihood estimate of observing each cell in each of the experimental conditions using graph signal processing. This likelihood estimate can be used to identify cell populations specifically affected by a perturbation. We also develop vertex frequency clustering to extract populations of affected cells at the level of granularity that matches the perturbation response. The accuracy of our algorithm at identifying clusters of cells that are enriched or depleted in each condition is, on average, 57% higher than the next-best-performing algorithm tested. Gene signatures derived from these clusters are more accurate than those of six alternative algorithms in ground truth comparisons.


Asunto(s)
Biología Computacional , Análisis de Secuencia de ARN/tendencias , Análisis de la Célula Individual/tendencias , Transcriptoma/genética , Algoritmos , Análisis por Conglomerados , Simulación por Computador , Humanos , Funciones de Verosimilitud
20.
Arterioscler Thromb Vasc Biol ; 41(3): 1012-1018, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33441024

RESUMEN

The blood system is often represented as a tree-like structure with stem cells that give rise to mature blood cell types through a series of demarcated steps. Although this representation has served as a model of hierarchical tissue organization for decades, single-cell technologies are shedding new light on the abundance of cell type intermediates and the molecular mechanisms that ensure balanced replenishment of differentiated cells. In this Brief Review, we exemplify new insights into blood cell differentiation generated by single-cell RNA sequencing, summarize considerations for the application of this technology, and highlight innovations that are leading the way to understand hematopoiesis at the resolution of single cells. Graphic Abstract: A graphic abstract is available for this article.


Asunto(s)
Hematopoyesis/genética , RNA-Seq/métodos , Análisis de la Célula Individual/métodos , Animales , Biología Computacional/métodos , Biología Computacional/tendencias , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , RNA-Seq/estadística & datos numéricos , RNA-Seq/tendencias , Análisis de la Célula Individual/estadística & datos numéricos , Análisis de la Célula Individual/tendencias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA