Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 89
1.
Folia Histochem Cytobiol ; 62(1): 13-24, 2024.
Article En | MEDLINE | ID: mdl-38563049

INTRODUCTION: During sepsis, the kidney is one of the most vulnerable organs. Sepsis-associated acute kidney injury (S-AKI) is hallmarked by renal inflammation, apoptosis, and oxidative injury. Ginsenoside Rg1 (Rg1) is a natural product that possesses abundant pharmacological actions and protects against many sepsis-related diseases. Nevertheless, its role and related mechanism in S-AKI remain to be determined. MATERIALS AND METHODS: S-AKI was induced using lipopolysaccharide (LPS, 10 mg/kg) via a single intraperitoneal injection. Rg1 (200 mg/kg) was intraperitoneally administered for 3 consecutive days before LPS treatment. For histopathological examination, murine kidney tissues were stained with hematoxylin and eosin. Tubular injury score was calculated to evaluate kidney injury. Serum creatinine and BUN levels were measured for assessing renal dysfunction. The levels and activities of oxidative stress markers (MDA, 4-HNE, PC, GSH, SOD, and CAT) in renal tissue were measured by corresponding kits. Renal cell apoptosis was detected by TUNEL staining. The protein levels of apoptosis-related markers (Bcl-2, Bax, and Cleaved caspase-3), proinflammatory factors, SIRT1, IκBα, p-NF-κB p65, and NF-κB p65 in kidneys were determined using western blotting. Immunofluorescence staining was employed to assess p-NF-κB p65 expression in renal tissues. RESULTS: LPS-induced injury of kidneys and renal dysfunction in mice were ameliorated by Rg1. Rg1 also impeded LPS-evoked renal cell apoptosis in kidneys. Moreover, Rg1 attenuated LPS-triggered inflammation and oxidative stress in kidneys by inhibiting proinflammatory cytokine release, enhancing antioxidant levels and activities, and reducing lipid peroxidation. However, all these protective effects of Rg1 in LPS-induced AKI mice were reversed by EX527, an inhibitor of sirtuin 1 (SIRT1). Mechanistically, Rg1 upregulated SIRT1 protein expression, increased SIRT1 activity, and inactivated NF-κB signaling in the kidney of LPS-induced AKI mice, which was also reversed by EX527. CONCLUSIONS: Rg1 ameliorates LPS-induced kidney injury and suppresses renal inflammation, apoptosis, and oxidative stress in mice via regulating the SIRT1/NF-κB signaling.


Acute Kidney Injury , Ginsenosides , Sepsis , Animals , Mice , NF-kappa B/metabolism , NF-kappa B/pharmacology , NF-kappa B/therapeutic use , Lipopolysaccharides/toxicity , Sirtuin 1/metabolism , Sirtuin 1/pharmacology , Sirtuin 1/therapeutic use , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Sepsis/chemically induced , Sepsis/complications , Sepsis/drug therapy , Apoptosis
2.
J Psychiatry Neurosci ; 49(2): E96-E108, 2024.
Article En | MEDLINE | ID: mdl-38490646

BACKGROUND: The assessment of deep brain stimulation (DBS) as a therapeutic alternative for treating Alzheimer disease (AD) is ongoing. We aimed to determine the effects of intracranial self-stimulation at the medial forebrain bundle (MFB-ICSS) on spatial memory, neurodegeneration, and serum expression of microRNAs (miRNAs) in a rat model of sporadic AD created by injection of streptozotocin. We hypothesized that MFB-ICSS would reverse the behavioural effects of streptozotocin and modulate hippocampal neuronal density and serum levels of the miRNAs. METHODS: We performed Morris water maze and light-dark transition tests. Levels of various proteins, specifically amyloid-ß precurser protein (APP), phosphorylated tau protein (pTAU), and sirtuin 1 (SIRT1), and neurodegeneration were analyzed by Western blot and Nissl staining, respectively. Serum miRNA expression was measured by reverse transcription polymerase chain reaction. RESULTS: Male rats that received streptozotocin had increased hippocampal levels of pTAU S202/T205, APP, and SIRT1 proteins; increased neurodegeneration in the CA1, dentate gyrus (DG), and dorsal tenia tecta; and worse performance in the Morris water maze task. No differences were observed in miRNAs, except for miR-181c and miR-let-7b. After MFB-ICSS, neuronal density in the CA1 and DG regions and levels of miR-181c in streptozotocin-treated and control rats were similar. Rats that received streptozotocin and underwent MFB-ICSS also showed lower levels of miR-let-7b and better spatial learning than rats that received streptozotocin without MFB-ICSS. LIMITATIONS: The reversal by MFB-ICSS of deficits induced by streptozotocin was fairly modest. CONCLUSION: Spatial memory performance, hippocampal neurodegeneration, and serum levels of miR-let-7b and miR-181c were affected by MFB-ICSS under AD-like conditions. Our results validate the MFB as a potential target for DBS and lend support to the use of specific miRNAs as promising biomarkers of the effectiveness of DBS in combatting AD-associated cognitive deficits.


Alzheimer Disease , MicroRNAs , Rats , Male , Animals , Rats, Wistar , Self Stimulation/physiology , Streptozocin/toxicity , Spatial Learning , Alzheimer Disease/therapy , Sirtuin 1/pharmacology , Hippocampus , MicroRNAs/genetics , Maze Learning
3.
Res Vet Sci ; 169: 105177, 2024 Mar.
Article En | MEDLINE | ID: mdl-38350170

Subclinical ketosis (SCK) in dairy cows is often misdiagnosed because it lacks clinical signs and detection indicators. However, it is highly prevalent and may transform into clinical ketosis if not treated promptly. Due to the negative energy balance, a large amount of fat is mobilized, producing NEFA that exceeds the upper limit of liver processing, which in turn leads to the disturbance of liver lipid metabolism. The silent information regulator 1 (SIRT1) is closely related to hepatic lipid metabolism disorders. Exosomes as signal transmitters, also play a role in the circulatory system. We hypothesize that the circulating exosome-mediated adenosine 5'-monophosphate (AMP)-activated protein kinase alpha (AMPKα)-SIRT1 pathway regulates lipid metabolism disorders in SCK cows. We extracted the exosomes required for the experiment from the peripheral circulating blood of non-ketotic (NK) and SCK cows. We investigated the effect of circulating exosomes on the expression levels of mRNA and protein of the AMPKα-SIRT1 pathway in non-esterified fatty acid (NEFA)-induced dairy cow primary hepatocytes using in vitro cell experiments. The results showed that circulating exosomes increased the expression levels of Lipolysis-related genes and proteins (AMPKα, SIRT1, and PGC-1α) in hepatocytes treated with 1.2 mM NEFA, and inhibited the expression of lipid synthesis-related genes and protein (SREBP-1C). The regulation of exosomes on lipid metabolism disorders caused by 1.2 mM NEFA treatment showed the same trend as for SIRT1-overexpressing adenovirus. The added exosomes could regulate NEFA-induced lipid metabolism in hepatocytes by mediating the AMPKα-SIRT1 pathway, consistent with the effect of transfected SIRT1 adenovirus.


Cattle Diseases , Exosomes , Ketosis , Lipid Metabolism Disorders , Female , Animals , Cattle , Lipid Metabolism/physiology , Sirtuin 1/genetics , Sirtuin 1/metabolism , Sirtuin 1/pharmacology , Fatty Acids, Nonesterified , Exosomes/metabolism , Hepatocytes/metabolism , Liver/metabolism , Lipid Metabolism Disorders/metabolism , Lipid Metabolism Disorders/veterinary , AMP-Activated Protein Kinases/genetics , Ketosis/veterinary , Cattle Diseases/metabolism
4.
J Cosmet Dermatol ; 23(2): 676-680, 2024 Feb.
Article En | MEDLINE | ID: mdl-37697693

BACKGROUND: When the skin is damaged and its barrier function is disrupted, the proliferation and migration of epidermal keratinocytes are vital for repairing the damaged area. The Schumann resonance at 7.8 Hz has been reported to protect rat cardiomyocytes against oxidative stress and inhibit the proliferation of B16 mouse melanoma cells. However, its effect on the skin is unknown. AIMS: In this study, we applied 7.8-Hz electromagnetic waves to normal human epidermal keratinocytes (NHEKs) and investigated its effects on cell proliferation and migration, ß-defensin (DEFB1) and sirtuin 1 (SIRT1) expression. METHODS: We performed cell proliferation assay, cell migrationassay and gene expression analysis of DEFB1 and SIRT1. RESULTS: We found that the application of 7.8-Hz electromagnetic waves caused a 2.8-fold increase in NHEK proliferation, enhanced cell migration, and increased the expression of DEFB1 and SIRT1 by 2.4-fold and 4.9-fold, respectively. CONCLUSIONS: These results suggest that the application of 7.8-Hz electromagnetic waves may contribute to improving the skin barrier function and skin ulcer.


Sirtuin 1 , beta-Defensins , Humans , Mice , Rats , Animals , Sirtuin 1/genetics , Sirtuin 1/metabolism , Sirtuin 1/pharmacology , Keratinocytes/metabolism , Epidermis/metabolism , Skin/metabolism , Cell Proliferation , Cells, Cultured , beta-Defensins/genetics , beta-Defensins/metabolism , beta-Defensins/pharmacology
5.
Curr Stem Cell Res Ther ; 19(3): 389-399, 2024.
Article En | MEDLINE | ID: mdl-37183461

BACKGROUND: This study employed a severed finger rat model to analyze the effects of human mesenchymal stem cells (MSCs) on angiogenesis, inflammatory response, apoptosis, and oxidative stress, to evaluate the possible mechanism of the repair effect of MSCs on severed finger (SF) rats. METHODS: Sixty Sprague-Dawley (SD) rats were categorized into five groups (n = 12). The pathological changes of severed finger tissues were investigated by Hematoxylin and eosin (H&E) staining on day 14 after the rats were sacrificed. The levels of inflammatory factors and oxidative stress factors were detected by ELISA. Terminal Deoxynucleotidyl Transferase (TdT) dUTP Nick End Labeling (TUNEL) was employed to assess the apoptosis of chondrocytes in severed finger tissues. The expression of osteocalcin (OCN), osteopontin (OPN), Collagen I (Col-1), and CD31 were detected by immunohistochemistry or immunofluorescence assay, respectively. The expression levels of related proteins were determined by western blot. RESULT: Our study presented evidence that MSCs treatment improved pathological changes of skin and bone tissue, diminished the inflammatory response, prevented oxidative stress injury, suppressed chondrocyte apoptosis, and promoted angiogenesis, and bone formation compared to the model group. In addition, EX527 treatment attenuated the effect of MSCs, SRT1720 and ML385 co-treatment also attenuated the effect of MSCs. Importantly, the MSCs treatment increased the expression of Sirtuin 1(SIRT1)/Nuclear factor erythroid2-related factor 2(Nrf2) relate proteins. CONCLUSION: Our study indicated that the mechanism of the effect of MSCs on a severed finger was related to the SIRT1/ Nrf2 signaling pathway.


Mesenchymal Stem Cells , Sirtuin 1 , Rats , Humans , Animals , Rats, Sprague-Dawley , Sirtuin 1/metabolism , Sirtuin 1/pharmacology , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/pharmacology , Osteogenesis , Angiogenesis , Signal Transduction , Apoptosis , Mesenchymal Stem Cells/metabolism , Oxidative Stress
6.
Environ Res ; 245: 117973, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38145729

Air pollution, particularly fine particulate matter (PM2.5), poses a major threat to human health. Exercise has long been recognized as a beneficial way to maintain physical health. However, there is limited research on whether exercise can mitigate the damage caused by PM2.5 exposure. In this study, the mice were exercised on the IITC treadmill for 1 h per day, then exposed to concentrated PM2.5 for 8 h. After 2, 4 and 6-month exercise and PM2.5 exposure, the glucose tolerance and insulin tolerance were determined. Meanwhile, the corresponding indicators in epididymal white adipose tissue (eWAT), brown adipose tissue (BAT) and skeletal muscle were detected. The results indicated that PM2.5 exposure significantly increased insulin resistance (IR), while exercise effectively attenuated this response. The observations of muscle, BAT and eWAT by transmission electron microscopy (TEM) showed that PM2.5 significantly reduced the number of mitochondria in all of the three tissues mentioned above, and decreased the mitochondrial area in skeletal muscle and BAT. Exercise reversed the changes in mitochondrial area in all of the three tissues, but had no effect on the reduction of mitochondrial number in skeletal muscle. At 2 months, the expressions of Mfn2, Mfn1, OPA1, Drp1 and Fis1 in eWAT of the PM mice showed no significant changes when compared with the corresponding FA mice. However, at 4 months and 6 months, the expression levels of these genes in PM mice were higher than those in the FA mice in skeletal muscle. Exercise intervention significantly reduced the upregulation of these genes induced by PM exposure. The study indicated that PM2.5 may impact mitochondrial biogenesis and dynamics by inhibiting the SIRT1/AMPKα/PGC1-α/NRF1 pathway, which further lead to IR, glucose and lipid disorders. However, exercise might alleviate the damages caused by PM2.5 exposure.


Insulin Resistance , Particulate Matter , Humans , Animals , Mice , Particulate Matter/metabolism , Sirtuin 1/genetics , Sirtuin 1/metabolism , Sirtuin 1/pharmacology , Signal Transduction , Adipose Tissue, White/metabolism , Glucose/metabolism
7.
J Hazard Mater ; 464: 132932, 2024 02 15.
Article En | MEDLINE | ID: mdl-37988864

Chronic obstructive pulmonary disease (COPD) is a group of illnesses associated with unresolved inflammation in response to toxic environmental stimuli. Persistent exposure to PM is a major risk factor for COPD, but the underlying mechanism remains unclear. Using our established mouse model of PM-induced COPD, we find that repeated PM exposure provokes macrophage-centered chronic inflammation and COPD development. Mechanistically, chronic PM exposure induces transcriptional downregulation of HAAO, KMO, KYNU, and QPRT in macrophages, which are the enzymes of de novo NAD+ synthesis pathway (kynurenine pathway; KP), via elevated chromatin binding of the CCCTC-binding factor (CTCF) near the transcriptional regulatory regions of the enzymes. Subsequent reduction of NAD+ and SIRT1 function increases histone acetylation, resulting in elevated expression of pro-inflammatory genes in PM-exposed macrophages. Activation of SIRT1 by nutraceutical resveratrol mitigated PM-induced chronic inflammation and COPD development. In agreement, increased levels of histone acetylation and decreased expression of KP enzymes were observed in pulmonary macrophages of COPD patients. We newly provide an evidence that dysregulated NAD+ metabolism and consecutive SIRT1 deficiency significantly contribute to the pathological activation of macrophages during PM-mediated COPD pathogenesis. Additionally, targeting PM-induced intertwined metabolic and epigenetic reprogramming in macrophages is an effective strategy for COPD treatment.


Particulate Matter , Pulmonary Disease, Chronic Obstructive , Animals , Mice , Humans , Particulate Matter/toxicity , Particulate Matter/metabolism , Sirtuin 1/genetics , Sirtuin 1/metabolism , Sirtuin 1/pharmacology , Histones/metabolism , NAD/metabolism , Pulmonary Disease, Chronic Obstructive/chemically induced , Pulmonary Disease, Chronic Obstructive/genetics , Macrophages , Inflammation/metabolism , Epigenesis, Genetic
8.
Arch Gerontol Geriatr ; 117: 105255, 2024 02.
Article En | MEDLINE | ID: mdl-37952424

OBJECTIVE: Aging becomes the most predominant risk factor for all age-associated pathological conditions with the increase of life expectancy and the aggravation of social aging. Slowing down the speed of aging is considered an effective way to improve health, but so far, effective anti-aging methods are relatively lacking. METHODS: Anemonin (ANE) was screened from eight existing small-molecule compounds by cell viability assay. The function of ANE was determined by the analysis of cell proliferation, ß -galactosidase (SA-ß -Gal) activity, cell cycle, SASP secretion, NAD+/NADH ratio, and other aging-related indicators. The targets of ANE were predicted by Drug Target Prediction System (DTPS) and Swiss Targe Prediction System. The effect of ANE on PARP-1-NAD+-SIRT1 signaling pathway was assessed by quantitative reverse-transcription polymerase chain reaction (RT-PCR), Western blot, PARP1, NAD+ and SIRT1 activity detection. RESULTS: ANE can delay cell senescence; PARP1 is one of the targets of ANE and plays a crucial role in ANE anti-aging; ANE release more NAD+ by inhibiting PARP1 activity, thereby conversely promoting the function of SIRT1 and delay cell senescence. CONCLUSIONS: Our study indicates that ANE can delay cellular senescence through the PARP1-NAD+-SIRT1 signaling pathway, which may be considered as an effective anti-aging strategy.


NAD , Sirtuin 1 , Humans , Sirtuin 1/genetics , Sirtuin 1/metabolism , Sirtuin 1/pharmacology , NAD/metabolism , NAD/pharmacology , Diploidy , Cellular Senescence/physiology , Signal Transduction , Fibroblasts/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/pharmacology
9.
Chin J Nat Med ; 21(11): 812-829, 2023 Nov.
Article En | MEDLINE | ID: mdl-38035937

Mulberry (Morus alba L.) leaf is a well-established traditional Chinese botanical and culinary resource. It has found widespread application in the management of diabetes. The bioactive constituents of mulberry leaf, specifically mulberry leaf flavonoids (MLFs), exhibit pronounced potential in the amelioration of type 2 diabetes (T2D). This potential is attributed to their ability to safeguard pancreatic ß cells, enhance insulin resistance, and inhibit α-glucosidase activity. Our antecedent research findings underscore the substantial therapeutic efficacy of MLFs in treating T2D. However, the precise mechanistic underpinnings of MLF's anti-T2D effects remain the subject of inquiry. Activation of brown/beige adipocytes is a novel and promising strategy for T2D treatment. In the present study, our primary objective was to elucidate the impact of MLFs on adipose tissue browning in db/db mice and 3T3-L1 cells and elucidate its underlying mechanism. The results manifested that MLFs reduced body weight and food intake, alleviated hepatic steatosis, improved insulin sensitivity, and increased lipolysis and thermogenesis in db/db mice. Moreover, MLFs activated brown adipose tissue (BAT) and induced the browning of inguinal white adipose tissue (IWAT) and 3T3-L1 adipocytes by increasing the expressions of brown adipocyte marker genes and proteins such as uncoupling protein 1 (UCP1) and beige adipocyte marker genes such as transmembrane protein 26 (Tmem26), thereby promoting mitochondrial biogenesis. Mechanistically, MLFs facilitated the activation of BAT and the induction of WAT browning to ameliorate T2D primarily through the activation of AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1)/peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) signaling pathway. These findings highlight the unique capacity of MLF to counteract T2D by enhancing BAT activation and inducing browning of IWAT, thereby ameliorating glucose and lipid metabolism disorders. As such, MLFs emerge as a prospective and innovative browning agent for the treatment of T2D.


Diabetes Mellitus, Type 2 , Morus , Mice , Animals , Adipose Tissue, Brown , Sirtuin 1/genetics , Sirtuin 1/metabolism , Sirtuin 1/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Morus/metabolism , Flavonoids/pharmacology , Flavonoids/metabolism , Prospective Studies , Signal Transduction , Adipose Tissue, White , Plant Leaves , Uncoupling Protein 1/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
10.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(5): 947-953, 2023 Sep.
Article Zh | MEDLINE | ID: mdl-37866951

Objective: To investigate whether hesperetin (Hes) alleviates doxorubicin (DOX)-induced cardiomyocytotoxicity by reducing oxidative stress via regulating silent information regulator 1 (SIRT1)/nuclear transcription factor E2-related factor 2 (NRF2) signaling in H9c2 cells. Methods: H9c2 cells were treated with DOX to establish the cardiotoxicity model and were randomly assigned to four groups, a control group (Control) and three treatment groups, receiving respectively DOX (the DOX group), Hes+DOX (the DOX+Hes group), and Hes+SIRT1 inhibitor EX527+DOX (the DOX+Hes+EX527 group). Cellular morphology was observed by the light microscope. Cell viability was evaluated by CCK-8. DOX-induced apoptosis in H9c2 cells was examined by flow cytometry. The levels of reactive oxygen species (ROS) in the H9c2 cells of the four groups were determied with 2'-7'-dichlorodihydrofluorescein diacetate (DCFH-DA) staining. The activities of lactate dehydrogenase (LDH), superoxide dismutase (SOD), catalase (CAT), and SIRT1 as well as the malondialdehyde (MDA) content were measured using ELISA kits. The expressions of cleaved caspase-3, cytochrome c, SIRT1, Ac-FOXO1, NRF2, and heme oxygenase 1 (HO-1) were determined by Western blot. Results: Compared with the Control group, the DOX group showed swollen cellular morphology, decreased cell density and viability, and increased LDH activity in the medium ( P<0.01); both apoptosis and the expression of cleaved caspase-3 and cytochrome c increased ( P<0.01); the activities of CAT and SOD decreased while the contents of MDA and ROS increased ( P<0.01); the expression of SIRT1, NRF2, and HO-1 decreased, the activity of SIRT1 decreased, and the expression of Ac-FOXO1 increased ( P<0.01). Compared with the DOX group, the DOX+Hes group showed improved cellular morphology, increased cell density and viability, and decreased LDH activity in the medium ( P<0.01); the apoptosis and the expression of cleaved caspase-3 and cytochrome c decreased ( P<0.01); the activities of CAT and SOD increased while the levels of MDA and ROS decreased ( P<0.01); the expression of SIRT1, NRF2, and HO-1 increased, the activity of SIRT1 increased, and the expression of Ac-FOXO1 decreased ( P<0.01). Comparison of the findings for the DOX+Hes group and the DOX+Hes+EX527 group showed that EX527 could block the protective effects of Hes against DOX-induced cell injury, oxidative stress, and SIRT1/NRF2 signaling. Conclusion: Hes inhibits oxidative stress and apoptosis via regulating SIRT1/NRF2 signaling, thereby reducing DOX-induced cardiotoxicity in H9c2 cells.


Cardiotoxicity , NF-E2-Related Factor 2 , Humans , Cardiotoxicity/metabolism , NF-E2-Related Factor 2/metabolism , Sirtuin 1/metabolism , Sirtuin 1/pharmacology , Caspase 3/metabolism , Reactive Oxygen Species/metabolism , Cytochromes c/metabolism , Doxorubicin/adverse effects , Doxorubicin/metabolism , Oxidative Stress , Apoptosis , Superoxide Dismutase/metabolism , Myocytes, Cardiac
11.
Clin Res Hepatol Gastroenterol ; 47(10): 102231, 2023 Dec.
Article En | MEDLINE | ID: mdl-37865226

INTRODUCTION: Linalool is a monoterpene that occurs naturally in various aromatic plants and is identified in our previous study as a potential candidate for protection against high-fat diet (HFD)-induced metabolic dysfunction-associated steatotic liver disease (MASLD). However, little is known about its direct effects on hepatic lipid metabolism and oxidative stress. Therefore, this study aims to investigate the therapeutic effect of linalool against MASLD and the underlying mechanism. METHODS: To establish a rat model of MASLD, male Wistar rats were fed HFD for 16 weeks and orally administered linalool (100 mg/kg body weight) for 45 days starting from week 14. RESULTS: Linalool significantly reduced HFD-induced liver lipid accumulation and restored altered adipokine levels. Mechanistically, linalool downregulated the mRNA expression of sterol regulatory element binding protein 1 and its lipogenesis target genes fatty acid synthase and acetyl-CoA carboxylase, and upregulated the mRNA expression of genes involved in fatty acid oxidation (peroxisome proliferator-activated receptor (PPAR)-alpha [PPAR-α], lipoprotein lipase and protein kinase B [Akt]) as well as the upstream mediators sirtuin 1 (Sirt1) and AMP-activated protein kinase (AMPK) in the liver of MASLD rats. In addition, linalool also curbed oxidative stress by increasing antioxidant enzymes and activating nuclear erythroid-2-related factor 2 (Nrf-2) and its downstream target genes involved in antioxidant properties. CONCLUSION: Therefore, this study concludes that linalool attenuates lipid accumulation in the liver by inhibiting de novo lipogenesis, promoting fatty acid oxidation, and attenuating oxidative stress by regulating Sirt1/Akt/PPRA-α/AMPK and Nrf-2/ HO-1 signaling pathways.


Fatty Liver , Non-alcoholic Fatty Liver Disease , Rats , Animals , Sirtuin 1/metabolism , Sirtuin 1/pharmacology , Sirtuin 1/therapeutic use , Proto-Oncogene Proteins c-akt , AMP-Activated Protein Kinases/metabolism , Antioxidants/therapeutic use , Peroxisome Proliferator-Activated Receptors/metabolism , Peroxisome Proliferator-Activated Receptors/pharmacology , Peroxisome Proliferator-Activated Receptors/therapeutic use , Rats, Wistar , Liver/metabolism , Lipid Metabolism , Signal Transduction , Oxidative Stress , Fatty Acids , Lipids , RNA, Messenger/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy
12.
Chin J Physiol ; 66(4): 239-247, 2023.
Article En | MEDLINE | ID: mdl-37635483

Ischemia-reperfusion injury is an important cause of liver injury occurring during liver transplantation. It is usually caused by inflammatory response and oxidative stress-induced oxidative damage. Pachymic acid (PA) has various biological activities such as anti-inflammatory, antioxidant and anti-cancer. However, the action mechanism of PA in hepatic ischemia-reperfusion injury is currently unknown. In this study, liver cells were subjected to oxygen-glucose deprivation/reperfusion (OGD/R) to simulate a hepatic ischemia-reperfusion injury model. The binding relationship between PA and sirtuin 1 (SIRT1) was analyzed by molecular docking. Cell viability was detected by Cell Counting Kit-8. Expression levels of SIRT1 and high mobility group box 1 (HMGB1) were detected by western blot. Subsequent levels of inflammatory factors were detected by related kits and western blot. Meanwhile, related kits were used to examine levels of oxidative stress markers including reactive oxygen species, malondialdehyde, superoxide dismutase and cytotoxicity-associated lactate dehydrogenase. Finally, cell apoptosis was detected by flow cytometry and western blot. The results showed that PA significantly ameliorated OGD/R-induced decrease in SIRT1 expression, increase in HMGB1 acetylation and HMGB1 translocation. Moreover, the elevated levels of inflammatory factors, oxidative stress indexes and cell apoptosis upon exposure to OGD/R were reversed by PA treatment. Moreover, the addition of SIRT1 agonist and inhibitor further demonstrated that PA exerted the aforementioned effects in OGD/R-exposed cells by targeting SIRT1. Thus, the present study revealed the mechanism by which PA ameliorated OGD/R-induced hepatic injury via SIRT1. These results might provide a clearer theoretical basis for the targeted treatment of OGD/R-induced hepatic injury with PA.


HMGB1 Protein , Reperfusion Injury , Rats , Animals , Humans , Oxygen/metabolism , Oxygen/pharmacology , Glucose/metabolism , Sirtuin 1/metabolism , Sirtuin 1/pharmacology , Rats, Sprague-Dawley , Acetylation , HMGB1 Protein/metabolism , HMGB1 Protein/pharmacology , Molecular Docking Simulation , Reperfusion Injury/prevention & control , Reperfusion Injury/metabolism , Oxidative Stress , Hepatocytes/metabolism , Apoptosis
13.
Protein Pept Lett ; 30(9): 743-753, 2023.
Article En | MEDLINE | ID: mdl-37622713

BACKGROUND: Apelin-13 is an endogenous adipocytokine known for its antioxidant, antiinflammatory, and antiapoptotic properties. OBJECTIVE: We aimed to investigate the possible protective effects of exogenous Apelin-13 administration on oxidative stress, inflammation, and apoptosis induced by the cytotoxic agent cyclophosphamide (CP) in the lungs. METHODS: Twenty-four male Wistar albino rats were divided into four groups: Control (saline), CP (200 mg/kg), Apelin-13 (10 µg/kg/day), and CP+Apelin-13. CP was administered as a single dose on the fifth day, and apelin-13 was administered intraperitoneally for five days. Total oxidant status (TOS), total antioxidant status (TAS), and lipid peroxidation were determined with spectrophotometry, TNFα and IL1ß were determined with ELISA, APJ, Sirt1, NF-κB, and p53 mRNA expressions were determined with qRT-PCR, cytochrome (Cyt) C and caspase-3 protein expressions were studied with western blotting in lung tissues. The oxidative stress index (OSI) was also calculated. Furthermore, serum surfactant protein-D (SP-D) and Krebs von den Lungen-6 (KL-6) levels were measured with ELISA. RESULTS: Compared to the control group, TOS, OSI, lipid peroxidation, TNFα, IL1ß, cyt C, caspase-3, APJ, NF-κB, and p53 were higher, and Sirt1 was lower in the lung tissue of rats in the CP group. Serum KL-6 and SP-D levels were higher in the CP group. Co-administration of CP with Apelin-13 completely reversed the changes induced by CP administration. CONCLUSION: Exogenous Apelin-13 treatment protected lung tissue against injury by inhibiting cyclophosphamide-induced oxidative stress, inflammation, and apoptosis. This protective effect of apelin-13 was accompanied by upregulation of the Sirt1 and downregulation of NF-κB/p53 in the lungs.


Antioxidants , NF-kappa B , Rats , Male , Animals , NF-kappa B/metabolism , Rats, Wistar , Antioxidants/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Sirtuin 1/metabolism , Sirtuin 1/pharmacology , Caspase 3/metabolism , Tumor Suppressor Protein p53/metabolism , Pulmonary Surfactant-Associated Protein D/metabolism , Pulmonary Surfactant-Associated Protein D/pharmacology , Oxidative Stress , Cyclophosphamide/adverse effects , Inflammation/drug therapy , Inflammation/metabolism , Lung , Apoptosis , Apelin/adverse effects , Apelin/metabolism
14.
Funct Integr Genomics ; 23(3): 260, 2023 Aug 02.
Article En | MEDLINE | ID: mdl-37530871

Andrographis (Andro) has been identified as an anti-cancer herbal. This study was to explore its underlying regulatory routes regarding cisplatin (DDP) resistance in lung cancer. The impacts of Andro on cell viability in lung cancer cells and normal cells BEAS-2B were validated using CCK8 tests. Then, cell viability and apoptosis analysis was performed in the cells after DDP, Andro, or combined treatment. RT-qPCR was applied for evaluating miR-155-5p and SIRT1 mRNA expressions, while western blot was for evaluating SIRT1 protein expressions. Binding sites between SIRT1 and miR-155-5p were predicted on TargetScan and were confirmed using luciferase reporter assays. Xenograft animal models were established for in vivo validation of the regulatory function of Andro in lung cancer. Andro decreased the cell viability in lung cancer cells but not normal cells BEAS-2B. The combined treatment with DDP and Andro induced the lowest viability and highest apoptosis in both A549 and A549/DDP cells. MiR-155-5p expression was suppressed, and SIRT was promoted by the Andro treatment, while overexpression of miR-155-5p reversed effects of Andro in cells, which was further counteracted by SIRT1 activation. SIRT1 was verified to be a target of miR-155-5p in A549/DDP cells. Moreover, Andro synergized with DDP in mice with lung cancer via miR-155-5p/SIRT1. Andro modulates cisplatin resistance in lung cancer via miR-155-5p/SIRT1 axis.


Lung Neoplasms , MicroRNAs , Humans , Animals , Mice , Cisplatin/pharmacology , Cisplatin/therapeutic use , Cisplatin/metabolism , Sirtuin 1/genetics , Sirtuin 1/metabolism , Sirtuin 1/pharmacology , MicroRNAs/genetics , MicroRNAs/metabolism , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Cell Proliferation
15.
Altern Ther Health Med ; 29(8): 156-165, 2023 Nov.
Article En | MEDLINE | ID: mdl-37535922

Objective: Diabetic retinopathy (DR), characterized by neuronal damage in the retina, is primarily driven by oxidative stress resulting from diabetes (DM). This study investigated the potential effects of methylene blue (MB) on streptozotocin (STZ)-induced DR. Methods: A rat model of DR was established via STZ injection, while a cell model was created using high-glucose (HG) exposure of human retinal microvascular endothelial cells. Evaluation of oxidative stress markers, pro-inflammatory cytokines, and pro-apoptotic proteins was performed based on their expression profiles in human retinal microvascular endothelial cells. Results: MB treatment significantly upregulated the expression of sirtuin 1 (SIRT1), which was found to be downregulated in the retinal tissues of STZ-treated rats and HG-exposed human retinal microvascular endothelial cells, as determined by polymerase chain reaction (PCR). Furthermore, MB therapy effectively suppressed STZ-induced oxidative stress, inflammation, and cell death. Consistent with the in vivo findings, MB activated the expression of SIRT1, thereby protecting HG-treated human retinal microvascular endothelial cells against oxidative stress, inflammation, and apoptosis. Conclusion: These results support the conclusion that MB mitigates DR by activating SIRT1, leading to a reduction of inflammation, apoptosis, and oxidative stress.


Diabetes Mellitus, Experimental , Diabetic Retinopathy , Rats , Humans , Animals , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/metabolism , Sirtuin 1/metabolism , Sirtuin 1/pharmacology , Methylene Blue/adverse effects , Methylene Blue/metabolism , Endothelial Cells/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/chemically induced , Oxidative Stress/physiology , Inflammation/drug therapy , Apoptosis
16.
Cancer Biol Ther ; 24(1): 2235770, 2023 12 31.
Article En | MEDLINE | ID: mdl-37575080

INTRODUCTION: Sirtuin 1 (SIRT1) is a key modulator in several types of cancer, including colorectal cancer (CRC). Here, we probed into the molecular mechanism of SIRT1 regulating the development and chemoresistance of CRC. METHODS: Differentially expressed genes related to the growth, metastasis and chemoresistance of CRC were identified by bioinformatics analysis. The expression of SIRT1 in clinical tissues from CRC patients and CRC cell lines was detected by RT-qPCR. Interactions among SIRT1, p53, miR-101 and KPNA3 were analyzed. The effect of SIRT1 on the cell viability, migration, invasion, epithelial-mesenchymal transformation and chemoresistance to 5-FU was evaluated using loss-function investigations in CRC cells. Finally, a xenograft model of CRC and a metastasis model were constructed for further exploration of the roles of SIRT1 in vivo. RESULTS: SIRT1 was elevated in CRC tissues and cell lines. SIRT1 decreased p53 via deacetylation, and consequently downregulated the expression of miR-101 while increasing that of the miR-101 target gene KPNA3. By this mechanism, SIRT1 enhanced the proliferation, migration, invasion, epithelial-mesenchymal transformation, and resistance to 5-FU of CRC cells. In addition, in vivo data also showed that SIRT1 promoted the growth, metastasis and chemoresistance to 5-FU of CRC cells via regulation of the p53/miR-101/KPNA3 axis. CONCLUSIONS: In conclusion, SIRT1 can function as an oncogene in CRC by accelerating the growth, metastasis and chemoresistance to 5-FU of CRC cells through the p53/miR-101/KPNA3 axis.


Colorectal Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Sirtuin 1/genetics , Sirtuin 1/metabolism , Sirtuin 1/pharmacology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Cell Proliferation , alpha Karyopherins/genetics , alpha Karyopherins/metabolism , alpha Karyopherins/pharmacology
17.
Chin J Physiol ; 66(3): 129-136, 2023.
Article En | MEDLINE | ID: mdl-37322623

Atherosclerosis, a leading cause of mortality worldwide, is driven by multiple risk factors such as diabetes. Oxidative stress and inflammation assist interrelated roles in diabetes-accelerated atherosclerosis. Thereby, treatment of diabetic atherosclerosis from an oxidative stress/inflammatory perspective seems to be a more effective modality to prevent and delay plaque formation and progression. This study aimed to evaluate the effects of l-limonene (LMN) on oxidative stress/inflammatory responses in the aortic artery of diabetic atherosclerosis-modeled rats. Male Wistar rats (n = 30, 250-280 g, 12 weeks old) were used to establish a diabetic atherosclerosis model (8 weeks) using high-fat diet/low-dose streptozotocin. LMN (200 mg/kg/day) was administered orally, starting on day 30th before tissue sampling. Plasma lipid profiles, aortic histopathological changes, atherogenic index, aortic artery levels of oxidative stress markers (manganese superoxide dismutase, glutathione, and 8-isoprostane), inflammatory markers (tumor necrosis factor-alpha, interleukin (IL)-6, and IL-10), and expression of phosphorylated adenosine monophosphate-activated protein kinase (p-AMPK)/AMPK, Sirtuin 1 (SIRT1), and p-p65/p65 proteins were evaluated. The administration of LMN to diabetic rats improved lipid profiles, aortic histopathological morphology, and atherogenic index (P < 0.05 to P < 0.001). It also increased enzymatic antioxidant activities, decreased 8-isoprostane level, suppressed inflammatory response, upregulated p-AMPK and SIRT1 proteins, and downregulated p-p65 protein (P < 0.05 to P < 0.01). Inhibiting the AMPK through the administration of compound C significantly abolished or reversed the positive effects of LMN in diabetic rats (P < 0.05 to P < 0.01). LMN treatment had dual anti-oxidative and anti-inflammatory actions against atherosclerosis in the aortic artery of diabetic rats. Atheroprotection by LMN was mediated partly through modulation of AMPK/SIRT1/p65 nuclear factor kappa B signaling pathway. LMN appears to be a promising anti-atherosclerotic modality to improve the quality of life in diabetic patients.


Atherosclerosis , Diabetes Mellitus, Experimental , Rats , Male , Animals , Diet, High-Fat , Limonene/therapeutic use , Limonene/pharmacology , Rats, Wistar , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , AMP-Activated Protein Kinases/metabolism , Sirtuin 1/metabolism , Sirtuin 1/pharmacology , Sirtuin 1/therapeutic use , Quality of Life , Oxidative Stress , Atherosclerosis/drug therapy , Atherosclerosis/etiology , Aorta/metabolism , Interleukin-6 , Lipids/pharmacology , Lipids/therapeutic use
18.
Shanghai Kou Qiang Yi Xue ; 32(2): 132-136, 2023 Apr.
Article Zh | MEDLINE | ID: mdl-37153992

PURPOSE: To investigate whether resveratrol promotes odontogenic differentiation of human dental pulp stem cells(DPSCs) by up-regulating the expression of silent information regulator 1 (SIRT1) and activating ß-catenin signaling pathway. METHODS: Different concentrations of resveratrol(0, 10, 15, 20 and 50 µmol/L) were used to treat DPSCs for 7 days and 14 days, and cell proliferative activity was detected by CCK-8. After odontogenic differentiation induced by 15 µmol/L resveratrol for 7 days, alkaline phosphatase(ALP) staining was performed and real-time quantitative reverse transcription PCR(qRT-PCR) was used to detect the mRNA expression of Runt-related transcription factor 2 (Runx2), dentin sialophosphoprotein(DSPP) and dentin matrix protein-1(DMP-1) in DPSCs. Western blot was used to detect the expression of SIRT1 in DPSCs on a specific day (0, 3rd, 5th, 7th and 14th) after differentiation induction. Western blot was also used to detect the expression of SIRT1 and activated ß-catenin during odontogenic differentiation of DPSCs treated by 15 µmol/L resveratrol for 7 days. The experimental data was analyzed with GraphPad Prism 9 software package. RESULTS: 15 µmol/L resveratrol had no significant effect on proliferation of DPSCs on the 7th and 14th day; 15 µmol/L resveratrol promoted odontogenic differentiation of DPSCs and up-regulated mRNA expression of RUNX2, DSPP, and DMP-1 in DPSCs; the expression of SIRT1 was the highest on the 7th day during odontogenic differentiation induction. Resveratrol resulted in the increasing protein expressions of SIRT1 and activated ß-catenin when DPSCs was induced to odontogenic differentiation for 7 days. CONCLUSIONS: Resveratrol promotes odontogenic differentiation of human DPSCs by up-regulating the expression of SIRT1 protein and activating ß-catenin signaling pathway.


Core Binding Factor Alpha 1 Subunit , beta Catenin , Humans , Resveratrol/pharmacology , Core Binding Factor Alpha 1 Subunit/metabolism , beta Catenin/metabolism , beta Catenin/pharmacology , Dental Pulp/metabolism , Sirtuin 1/genetics , Sirtuin 1/metabolism , Sirtuin 1/pharmacology , Cell Proliferation , Cell Differentiation , Odontogenesis/genetics , Stem Cells/metabolism , RNA, Messenger/metabolism , Cells, Cultured
19.
Digestion ; 104(5): 370-380, 2023.
Article En | MEDLINE | ID: mdl-37231890

INTRODUCTION: Gap junctions can transmit signals between cells, including miRNAs, leading to the amplification of adjacent cell damage. No previous study has addressed gap junctions and miRNAs in sepsis because the internal mechanism of sepsis-induced intestinal injury is complex. Therefore, we studied the relationship between connexin43 (Cx43) and miR-181b and provided a research direction for further study of sepsis. METHODS: A mouse caecal ligation and puncture method was used to construct a mouse sepsis model. Firstly, damage to intestinal tissues at different time points was analysed. The levels of Cx43, miR-181b, Sirt1, and FOXO3a in intestinal tissues and the transcription and translation of the apoptosis-related genes Bim and puma, which are downstream of FOXO3a were analysed. Secondly, the effect of Cx43 levels on miR-181b and Sirt1/FOXO3a signalling pathway activity was explored by using the Cx43 inhibitor heptanol. Finally, luciferase assays were used to determine miR-181b binding to the predicted target sequence. RESULTS: The results show that during sepsis, intestinal injury becomes increasingly worse with time, and the expression of Cx43 and miR-181b increase. In addition, we found that heptanol could significantly reduce intestinal injury. This finding indicates that inhibiting Cx43 regulates the transfer of miR-181b between adjacent cells, thereby reducing the activity of the Sirt1/FOXO3a signalling pathway and reducing the degree of intestinal injury during sepsis. CONCLUSIONS: In sepsis, the enhancement of Cx43 gap junctions leads to an increase in miR-181b intercellular transfer, affects the downstream SIRT1/FOXO3a signalling pathway and causes cell and tissue damage.


Apoptosis , MicroRNAs , Sepsis , Animals , Mice , Apoptosis/genetics , Connexin 43/genetics , Connexin 43/pharmacology , Disease Models, Animal , Heptanol/pharmacology , MicroRNAs/genetics , Sepsis/metabolism , Sirtuin 1/genetics , Sirtuin 1/metabolism , Sirtuin 1/pharmacology
20.
Pain Physician ; 26(3): E213-E222, 2023 05.
Article En | MEDLINE | ID: mdl-37192244

BACKGROUND: Clinically, neuropathic pain is a severe side effect of oxaliplatin chemotherapy, which usually leads to dose reduction or cessation of treatment. Due to the unawareness of detailed mechanisms of oxaliplatin-induced neuropathic pain, it is difficult to develop an effective therapy and limits its clinical use. OBJECTIVES: The aim of the present study was to identify the role of sirtuin 1 (SIRT1) reduction in epigenetic regulation of the expression of voltage-gated sodium channels 1.7 (Nav1.7) in the dorsal root ganglion (DRG) during oxaliplatin-induced neuropathic pain. STUDY DESIGN: Controlled animal study. SETTING: University laboratory. METHODS: The von Frey test was performed to evaluate pain behavior in rats. Real-time quantitative polymerase chain reaction, western blotting, electrophysiological recording, chromatin immunoprecipitation, and small interfering RNA (siRNA) were used to illustrate the mechanisms. RESULTS: In the present study, we found that both the activity and expression of SIRT1 were significantly decreased in rat DRG following oxaliplatin treatment. The activator of SIRT1, resveratrol, not only increased the activity and expression of SIRT1, but also attenuated the mechanical allodynia following oxaliplatin treatment. In addition, local knockdown of SIRT1 by intrathecal injection of SIRT1 siRNA caused mechanical allodynia in naive rats. Besides, oxaliplatin treatment enhanced the action potential firing frequency of DRG neurons and the expression of Nav1.7 in DRG and activation of SIRT1 by resveratrol reversed this effect. Furthermore, blocking Nav1.7 by ProTx II (a selective Nav1.7 channel blocker) reversed oxaliplatin-induced mechanical allodynia. In addition, histone H3 hyperacetylation at the Nav1.7 promoter in DRG of rats following oxaliplatin treatment was significantly suppressed by activation of SIRT1 with resveratrol. Moreover, both the expression of Nav1.7 and histone H3 acetylation at the Nav1.7 promoter were upregulated in the DRG by local knockdown of SIRT1 with SIRT1 siRNA in naive rats. LIMITATIONS: More underlying mechanism(s) of SIRT1 reduction after oxaliplatin treatment needs to be explored in future research. CONCLUSIONS: These findings suggest that reduction of SIRT1-mediated epigenetic upregulation of Nav1.7 in the DRG contributes to the development of oxaliplatin-induced neuropathic pain in rats. The intrathecal drug delivery treatment of activating SIRT1 might be a novel therapeutic option for oxaliplatin-induced neuropathic pain.


Neuralgia , Sirtuin 1 , Rats , Animals , Oxaliplatin/adverse effects , Oxaliplatin/metabolism , Up-Regulation , Sirtuin 1/genetics , Sirtuin 1/metabolism , Sirtuin 1/pharmacology , Hyperalgesia/chemically induced , Hyperalgesia/drug therapy , Hyperalgesia/genetics , Rats, Sprague-Dawley , Histones/genetics , Histones/metabolism , Histones/pharmacology , Epigenesis, Genetic , Resveratrol/adverse effects , Resveratrol/metabolism , Neuralgia/metabolism , Ganglia, Spinal/metabolism , RNA, Small Interfering/metabolism
...