Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.715
2.
J Transl Med ; 22(1): 475, 2024 May 19.
Article En | MEDLINE | ID: mdl-38764033

PURPOSE: To analyze the role of and mechanism underlying obstructive sleep apnea (OSA)-derived exosomes in inducing non-alcoholic fatty liver (NAFLD). METHODS: The role of OSA-derived exosomes was analyzed in inducing hepatocyte fat accumulation in mice models both in vivo and in vitro. RESULTS: OSA-derived exosomes caused fat accumulation and macrophage activation in the liver tissue. These exosomes promoted fat accumulation; steatosis was more noticeable in the presence of macrophages. Macrophages could internalize OSA-derived exosomes, which promoted macrophage polarization to the M1 type. Moreover, it inhibited sirtuin-3 (SIRT3)/AMP-activated protein kinase (AMPK) and autophagy and promoted the activation of nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasomes. The use of 3-methyladenine (3-MA) to inhibit autophagy blocked NLRP3 inflammasome activation and inhibited the M1 polarization of macrophages. miR-421 targeting inhibited SIRT3 protein expression in the macrophages. miR-421 was significantly increased in OSA-derived exosomes. Additionally, miR-421 levels were increased in OSA + NAFLD mice- and patient-derived exosomes. In the liver tissues of OSA and OSA + NAFLD mice, miR-421 displayed similar co-localization with the macrophages. Intermittent hypoxia-induced hepatocytes deliver miR-421 to the macrophages via exosomes to inhibit SIRT3, thereby participating in macrophage M1 polarization. After OSA and NAFLD modeling in miR-421-/- mice, liver steatosis and M1 polarization were significantly reduced. Additionally, in the case of miR-421 knockout, the inhibitory effects of OSA-derived exosomes on SIRT3 and autophagy were significantly alleviated. Furthermore, their effects on liver steatosis and macrophage M1 polarization were significantly reduced. CONCLUSIONS: OSA promotes the delivery of miR-421 from the hepatocytes to macrophages. Additionally, it promotes M1 polarization by regulating the SIRT3/AMPK-autophagy pathway, thereby causing NAFLD.


Autophagy , Cell Polarity , Exosomes , Macrophages , Mice, Inbred C57BL , MicroRNAs , Non-alcoholic Fatty Liver Disease , Sirtuin 3 , Sleep Apnea, Obstructive , Exosomes/metabolism , Animals , Sirtuin 3/metabolism , Sirtuin 3/genetics , MicroRNAs/metabolism , MicroRNAs/genetics , Macrophages/metabolism , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Humans , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/metabolism , Male , Mice , Hepatocytes/metabolism , Hepatocytes/pathology , Inflammasomes/metabolism , Base Sequence , Liver/pathology , Liver/metabolism , AMP-Activated Protein Kinases/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
3.
Cell Biol Toxicol ; 40(1): 31, 2024 May 20.
Article En | MEDLINE | ID: mdl-38767771

Mitochondrial dysfunction contributes to cerebral ischemia-reperfusion (CI/R) injury, which can be ameliorated by Sirtuin-3 (SIRT3). Under stress conditions, the SIRT3-promoted mitochondrial functional recovery depends on both its activity and expression. However, the approach to enhance SIRT3 activity after CI/R injury remains unelucidated. In this study, Sprague-Dawley (SD) rats were intracranially injected with either adeno-associated viral Sirtuin-1 (AAV-SIRT1) or AAV-sh_SIRT1 before undergoing transient middle cerebral artery occlusion (tMCAO). Primary cortical neurons were cultured and transfected with lentiviral SIRT1 (LV-SIRT1) and LV-sh_SIRT1 respectively before oxygen-glucose deprivation/reoxygenation (OGD/R). Afterwards, rats and neurons were respectively treated with a selective SIRT3 inhibitor, 3-(1H-1,2,3-triazol-4-yl) pyridine (3-TYP). The expression, function, and related mechanism of SIRT1 were investigated by Western Blot, flow cytometry, immunofluorescence staining, etc. After CI/R injury, SIRT1 expression decreased in vivo and in vitro. The simulation and immune-analyses reported strong interaction between SIRT1 and SIRT3 in the cerebral mitochondria before and after CI/R. SIRT1 overexpression enhanced SIRT3 activity by increasing the deacetylation of SIRT3, which ameliorated CI/R-induced cerebral infarction, neuronal apoptosis, oxidative stress, neurological and motor dysfunction, and mitochondrial respiratory chain dysfunction, promoted mitochondrial biogenesis, and retained mitochondrial integrity and mitochondrial morphology. Meanwhile, SIRT1 overexpression alleviated OGD/R-induced neuronal death and mitochondrial bioenergetic deficits. These effects were reversed by AAV-sh_SIRT1 and the neuroprotective effects of SIRT1 were partially offset by 3-TYP. These results suggest that SIRT1 restores the structure and function of mitochondria by activating SIRT3, offering neuroprotection against CI/R injury, which signifies a potential approach for the clinical management of cerebral ischemia.


Brain Ischemia , Mitochondria , Neurons , Rats, Sprague-Dawley , Reperfusion Injury , Sirtuin 1 , Sirtuin 3 , Animals , Sirtuin 1/metabolism , Sirtuin 1/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Mitochondria/metabolism , Male , Sirtuin 3/metabolism , Sirtuin 3/genetics , Neurons/metabolism , Neurons/pathology , Rats , Brain Ischemia/metabolism , Brain Ischemia/pathology , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/pathology , Apoptosis , Sirtuins
4.
Sci Adv ; 10(20): eadj5942, 2024 May 17.
Article En | MEDLINE | ID: mdl-38758779

Acetyl-CoA synthetase short-chain family member 1 (ACSS1) uses acetate to generate mitochondrial acetyl-CoA and is regulated by deacetylation by sirtuin 3. We generated an ACSS1-acetylation (Ac) mimic mouse, where lysine-635 was mutated to glutamine (K635Q). Male Acss1K635Q/K635Q mice were smaller with higher metabolic rate and blood acetate and decreased liver/serum ATP and lactate levels. After a 48-hour fast, Acss1K635Q/K635Q mice presented hypothermia and liver aberrations, including enlargement, discoloration, lipid droplet accumulation, and microsteatosis, consistent with nonalcoholic fatty liver disease (NAFLD). RNA sequencing analysis suggested dysregulation of fatty acid metabolism, cellular senescence, and hepatic steatosis networks, consistent with NAFLD. Fasted Acss1K635Q/K635Q mouse livers showed increased fatty acid synthase (FASN) and stearoyl-CoA desaturase 1 (SCD1), both associated with NAFLD, and increased carbohydrate response element-binding protein binding to Fasn and Scd1 enhancer regions. Last, liver lipidomics showed elevated ceramide, lysophosphatidylethanolamine, and lysophosphatidylcholine, all associated with NAFLD. Thus, we propose that ACSS1-K635-Ac dysregulation leads to aberrant lipid metabolism, cellular senescence, and NAFLD.


Cellular Senescence , Mitochondria , Non-alcoholic Fatty Liver Disease , Stearoyl-CoA Desaturase , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Mice , Cellular Senescence/genetics , Acetylation , Mitochondria/metabolism , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , Male , Acetate-CoA Ligase/metabolism , Acetate-CoA Ligase/genetics , Gene Knock-In Techniques , Liver/metabolism , Liver/pathology , Lipid Metabolism , Sirtuin 3/metabolism , Sirtuin 3/genetics , Disease Models, Animal , Coenzyme A Ligases , Fatty Acid Synthase, Type I
5.
BMC Complement Med Ther ; 24(1): 190, 2024 May 15.
Article En | MEDLINE | ID: mdl-38750550

BACKGROUND: Bawei Chenxiang Wan (BCW) is among the most effective and widely used therapies for coronary heart disease and angina pectoris in Tibet. However, whether it confers protection through a right-ventricle (RV) myocardial metabolic mechanism is unknown. METHODS: Male Sprague-Dawley rats were orally administrated with BCW, which was injected concurrently with a bolus of Sugen5416, and subjected to hypoxia exposure (SuHx; 5000 m altitude) for 4 weeks. Right ventricular hypertrophy (RVH) in high-altitude heart disease (HAHD) was assessed using Fulton's index (FI; ratio of RV to left ventricle + septum weights) and heart-weight-to-body-weight ratio (HW/BW). The effect of therapeutic administration of BCW on the RVH hemodynamics was assessed through catheterization (mean right ventricular pressure and mean pulmonary artery pressure (mRVP and mPAP, respectively)). Tissue samples were used to perform histological staining, and confirmatory analyses of mRNA and protein levels were conducted to detect alterations in the mechanisms of RVH in HAHD. The protective mechanism of BCW was further verified via cell culture. RESULTS: BCW considerably reduced SuHx-associated RVH, as indicated by macro morphology, HW/BW ratio, FI, mPAP, mRVP, hypertrophy markers, heart function, pathological structure, and myocardial enzymes. Moreover, BCW can alleviate the disorder of glucose and fatty acid metabolism through upregulation of carnitine palmitoyltransferase1ɑ, citrate synthase, and acetyl-CoA and downregulation of glucose transport-4, phosphofructokinase, and pyruvate, which resulted in the reduced levels of free fatty acid and lactic acid and increased aerobic oxidation. This process may be mediated via the regulation of sirtuin 3 (SIRT3)-hypoxia-inducible factor 1α (HIF1α)-pyruvate dehydrogenase kinase (PDK)/pyruvate dehydrogenase (PDH) signaling pathway. Subsequently, the inhibition of SIRT3 expression by 3-TYP (a selective inhibitor of SIRT3) can reverse substantially the anti-RVH effect of BCW in HAHD, as indicated by hypertrophy marker and serum myocardial enzyme levels. CONCLUSIONS: BCW prevented SuHx-induced RVH in HAHD via the SIRT3-HIF1ɑ-PDK/PDH signaling pathway to alleviate the disturbance in fatty acid and glucose metabolism. Therefore, BCW can be used as an alternative drug for the treatment of RVH in HAHD.


Drugs, Chinese Herbal , Hypertrophy, Right Ventricular , Hypoxia-Inducible Factor 1, alpha Subunit , Rats, Sprague-Dawley , Animals , Male , Rats , Drugs, Chinese Herbal/pharmacology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypertrophy, Right Ventricular/drug therapy , Sirtuin 3/metabolism , Fatty Acids/metabolism , Signal Transduction/drug effects , Glucose/metabolism , Altitude Sickness/drug therapy , Disease Models, Animal , Pyruvate Dehydrogenase Acetyl-Transferring Kinase
6.
Signal Transduct Target Ther ; 9(1): 133, 2024 May 15.
Article En | MEDLINE | ID: mdl-38744811

Sirtuin 3 (SIRT3) is well known as a conserved nicotinamide adenine dinucleotide+ (NAD+)-dependent deacetylase located in the mitochondria that may regulate oxidative stress, catabolism and ATP production. Accumulating evidence has recently revealed that SIRT3 plays its critical roles in cardiac fibrosis, myocardial fibrosis and even heart failure (HF), through its deacetylation modifications. Accordingly, discovery of SIRT3 activators and elucidating their underlying mechanisms of HF should be urgently needed. Herein, we identified a new small-molecule activator of SIRT3 (named 2-APQC) by the structure-based drug designing strategy. 2-APQC was shown to alleviate isoproterenol (ISO)-induced cardiac hypertrophy and myocardial fibrosis in vitro and in vivo rat models. Importantly, in SIRT3 knockout mice, 2-APQC could not relieve HF, suggesting that 2-APQC is dependent on SIRT3 for its protective role. Mechanically, 2-APQC was found to inhibit the mammalian target of rapamycin (mTOR)-p70 ribosomal protein S6 kinase (p70S6K), c-jun N-terminal kinase (JNK) and transforming growth factor-ß (TGF-ß)/ small mother against decapentaplegic 3 (Smad3) pathways to improve ISO-induced cardiac hypertrophy and myocardial fibrosis. Based upon RNA-seq analyses, we demonstrated that SIRT3-pyrroline-5-carboxylate reductase 1 (PYCR1) axis was closely assoiated with HF. By activating PYCR1, 2-APQC was shown to enhance mitochondrial proline metabolism, inhibited reactive oxygen species (ROS)-p38 mitogen activated protein kinase (p38MAPK) pathway and thereby protecting against ISO-induced mitochondrialoxidative damage. Moreover, activation of SIRT3 by 2-APQC could facilitate AMP-activated protein kinase (AMPK)-Parkin axis to inhibit ISO-induced necrosis. Together, our results demonstrate that 2-APQC is a targeted SIRT3 activator that alleviates myocardial hypertrophy and fibrosis by regulating mitochondrial homeostasis, which may provide a new clue on exploiting a promising drug candidate for the future HF therapeutics.


Cardiomegaly , Fibrosis , Sirtuin 3 , Animals , Sirtuin 3/genetics , Sirtuin 3/metabolism , Cardiomegaly/genetics , Cardiomegaly/drug therapy , Cardiomegaly/pathology , Cardiomegaly/chemically induced , Cardiomegaly/metabolism , Fibrosis/genetics , Rats , Mice , Isoproterenol , Humans , Mice, Knockout , Homeostasis/drug effects , Mitochondria/drug effects , Mitochondria/genetics , Mitochondria/pathology , Mitochondria/metabolism , Mitochondria, Heart/drug effects , Mitochondria, Heart/genetics , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Myocardium/pathology , Myocardium/metabolism , Male
7.
Nat Commun ; 15(1): 4383, 2024 May 23.
Article En | MEDLINE | ID: mdl-38782909

Macrophages (Mφ) autophagy is a pivotal contributor to inflammation-related diseases. However, the mechanistic details of its direct role in acute kidney injury (AKI) were unclear. Here, we show that Mφ promote AKI progression via crosstalk with tubular epithelial cells (TECs), and autophagy of Mφ was activated and then inhibited in cisplatin-induced AKI mice. Mφ-specific depletion of ATG7 (Atg7Δmye) aggravated kidney injury in AKI mice, which was associated with tubulointerstitial inflammation. Moreover, Mφ-derived exosomes from Atg7Δmye mice impaired TEC mitochondria in vitro, which may be attributable to miR-195a-5p enrichment in exosomes and its interaction with SIRT3 in TECs. Consistently, either miR-195a-5p inhibition or SIRT3 overexpression improved mitochondrial bioenergetics and renal function in vivo. Finally, adoptive transfer of Mφ from AKI mice to Mφ-depleted mice promotes the kidney injury response to cisplatin, which is alleviated when Mφ autophagy is activated with trehalose. We conclude that exosomal miR-195a-5p mediate the communication between autophagy-deficient Mφ and TECs, leading to impaired mitochondrial biogenetic in TECs and subsequent exacerbation of kidney injury in AKI mice via miR-195a-5p-SIRT3 axis.


Acute Kidney Injury , Autophagy , Cisplatin , Macrophages , MicroRNAs , Mitochondria , Sirtuin 3 , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Cisplatin/adverse effects , Sirtuin 3/metabolism , Sirtuin 3/genetics , Acute Kidney Injury/metabolism , Acute Kidney Injury/genetics , Acute Kidney Injury/chemically induced , Acute Kidney Injury/pathology , Autophagy/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Mice , Macrophages/metabolism , Macrophages/drug effects , Male , Exosomes/metabolism , Mice, Inbred C57BL , Autophagy-Related Protein 7/genetics , Autophagy-Related Protein 7/metabolism , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Trehalose/pharmacology , Kidney Tubules/pathology , Kidney Tubules/metabolism , Humans , Kidney/pathology , Kidney/metabolism , Disease Models, Animal
8.
Sci Rep ; 14(1): 10143, 2024 05 02.
Article En | MEDLINE | ID: mdl-38698042

Sirtuin3 (SIRT3), a mitochondrial deacetylase, has been shown to be involved in various kidney diseases. In this study, we aimed to clarify the role of SIRT3 in cyclosporine-induced nephrotoxicity and the associated mitochondrial dysfunction. Madin-Darby canine kidney (MDCK) cells were transfected with Flag-tagged SIRT3 for SIRT3 overexpression or SIRT3 siRNA for the inhibition of SIRT3. Subsequently, the cells were treated with cyclosporine A (CsA) or vehicle. Wild-type and SIRT3 knockout (KO) mice were randomly assigned to receive cyclosporine A or olive oil. Furthermore, SIRT3 activator, honokiol, was treated alongside CsA to wild type mice. Our results revealed that CsA treatment inhibited mitochondrial SIRT3 expression in MDCK cells. Inhibition of SIRT3 through siRNA transfection exacerbated apoptosis, impaired the expression of the AMP-activated protein kinase-peroxisome proliferator-activated receptor gamma coactivator 1 alpha (AMPK-PGC1α) pathway, and worsened mitochondrial dysfunction induced by CsA treatment. Conversely, overexpression of SIRT3 through Flag-tagged SIRT3 transfection ameliorated apoptosis, increased the expression of mitochondrial superoxide dismutase 2, and restored the mitochondrial regulator pathway, AMPK-PGC1α. In SIRT3 KO mice, CsA treatment led to aggravated kidney dysfunction, increased kidney tubular injury, and accumulation of oxidative end products indicative of oxidative stress injury. Meanwhile, SIRT3 activation in vivo significantly mitigated these adverse effects, improving kidney function, reducing oxidative stress markers, and enhancing mitochondrial health following CsA treatment. Overall, our findings suggest that SIRT3 plays a protective role in alleviating mitochondrial dysfunction caused by CsA through the activation of the AMPK-PGC1α pathway, thereby preventing further kidney injury.


Apoptosis , Cyclosporine , Mice, Knockout , Mitochondria , Oxidative Stress , Sirtuin 3 , Animals , Sirtuin 3/metabolism , Sirtuin 3/genetics , Cyclosporine/adverse effects , Cyclosporine/toxicity , Cyclosporine/pharmacology , Mitochondria/metabolism , Mitochondria/drug effects , Mice , Dogs , Apoptosis/drug effects , Oxidative Stress/drug effects , AMP-Activated Protein Kinases/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Madin Darby Canine Kidney Cells , Kidney Diseases/chemically induced , Kidney Diseases/metabolism , Kidney Diseases/prevention & control , Kidney Diseases/pathology , Kidney Diseases/genetics , Kidney/pathology , Kidney/drug effects , Kidney/metabolism , Mice, Inbred C57BL , Male , Signal Transduction/drug effects
9.
Cytokine ; 179: 156612, 2024 Jul.
Article En | MEDLINE | ID: mdl-38631184

INTRODUCTION: Pregnancy-induced hypertension (PIH) and preeclampsia (PE) are associated with disturbed maternal inflammatory response, oxidative stress and vascular endothelial cell dysfunction. Obesity is one of risk factors of PE. Leptin is elevated in obesity and its level correlates positively with the amount of adipose tissue. In contrast, adiponectin levels are decreased in obesity. Sirtuins are expressed in the placenta, however their role in pregnancy-related pathology in humans is not known. AIM OF THE STUDY: The aim of our study was to measure serum concentrations of selected sirtuins, adiponectin and leptin in healthy pregnancy and in women with PIH. MATERIALS AND METHODS: The study included 70 women: 38 healthy pregnant women and 32 women with PIH. Blood samples were obtained between the 20th and 40th week of gestation. Serum levels of sirtuins 1, 3, 6, leptin and adiponectin were measured with ELISA. RESULTS: Leptin levels were significantly higher in PIH group as compared to the controls and correlated positively with BMI. Highest leptin levels were observed in women who needed a cesarean section. Levels of sirtuins 1, 3 and 6 were similar in both groups and did not correlate with BMI. CONCLUSIONS: High leptin levels in PIH women during 3rd trimester might be helpful to predict the necessity for a caesarian section. Blood levels of sirtuins 1, 3 and 6 measured after the 20th week of gestation cannot be regarded as a single diagnostic test for PIH or preeclampsia. More studies to clarify significance of sirtuins in PIH and PE development and diagnosis are needed.


Adiponectin , Hypertension, Pregnancy-Induced , Leptin , Sirtuins , Humans , Female , Adiponectin/blood , Pregnancy , Leptin/blood , Adult , Sirtuins/blood , Hypertension, Pregnancy-Induced/blood , Pre-Eclampsia/blood , Body Mass Index , Sirtuin 3/blood , Sirtuin 1/blood
10.
Sci Rep ; 14(1): 8176, 2024 04 08.
Article En | MEDLINE | ID: mdl-38589505

Knee osteoarthritis (KOA) usually leads to quadriceps femoris atrophy, which in turn can further aggravate the progression of KOA. Curcumin (CUR) has anti-inflammatory and antioxidant effects and has been shown to be a protective agent for skeletal muscle. CUR has been shown to have a protective effect on skeletal muscle. However, there are no studies related to whether CUR improves KOA-induced quadriceps femoris muscle atrophy. We established a model of KOA in rats. Rats in the experimental group were fed CUR for 5 weeks. Changes in autophagy levels, reactive oxygen species (ROS) levels, and changes in the expression of the Sirutin3 (SIRT3)-superoxide dismutase 2 (SOD2) pathway were detected in the quadriceps femoris muscle of rats. KOA led to quadriceps femoris muscle atrophy, in which autophagy was induced and ROS levels were increased. CUR increased SIRT3 expression, decreased SOD2 acetylation and ROS levels, inhibited the over-activation of autophagy, thereby alleviating quadriceps femoris muscle atrophy and improving KOA. CUR has a protective effect against quadriceps femoris muscle atrophy, and KOA is alleviated after improvement of quadriceps femoris muscle atrophy, with the possible mechanism being the reduction of ROS-induced autophagy via the SIRT3-SOD2 pathway.


Curcumin , Osteoarthritis, Knee , Sirtuin 3 , Superoxide Dismutase , Rats , Animals , Reactive Oxygen Species/metabolism , Osteoarthritis, Knee/pathology , Quadriceps Muscle/metabolism , Sirtuin 3/metabolism , Curcumin/pharmacology , Muscular Atrophy/drug therapy , Muscular Atrophy/pathology , Autophagy , Signal Transduction
11.
J Med Chem ; 67(8): 6749-6768, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38572607

Cardiovascular diseases (CVDs) persist as the predominant cause of mortality, urging the exploration of innovative pharmaceuticals. Mitochondrial dysfunction stands as a pivotal contributor to CVDs development. Sirtuin 3 (SIRT3), a prominent mitochondrial deacetylase known for its crucial role in protecting mitochondria against damage and dysfunction, has emerged as a promising therapeutic target for CVDs treatment. Utilizing isosteviol, a natural ent-beyerene diterpenoid, 24 derivatives were synthesized and evaluated in vivo using a zebrafish model, establishing a deduced structure-activity relationship. Among these, derivative 5v exhibited significant efficacy in doxorubicin-induced cardiomyopathy in zebrafish and murine models. Subsequent investigations revealed that 5v selectively elevated SIRT3 expression, leading to the upregulation of SOD2 and OPA1 expression, effectively preventing mitochondrial dysfunction, mitigating oxidative stress, and preserving cardiomyocyte viability. As a novel structural class of SIRT3 activators with robust therapeutic effects, 5v emerges as a promising candidate for further drug development.


Cardiotonic Agents , Diterpenes, Kaurane , Drug Design , Sirtuin 3 , Zebrafish , Animals , Sirtuin 3/metabolism , Sirtuin 3/antagonists & inhibitors , Diterpenes, Kaurane/pharmacology , Diterpenes, Kaurane/chemical synthesis , Diterpenes, Kaurane/chemistry , Diterpenes, Kaurane/therapeutic use , Cardiotonic Agents/pharmacology , Cardiotonic Agents/chemical synthesis , Cardiotonic Agents/chemistry , Cardiotonic Agents/therapeutic use , Structure-Activity Relationship , Mice , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Humans , Oxidative Stress/drug effects , Doxorubicin/pharmacology
12.
Int J Mol Sci ; 25(7)2024 Mar 30.
Article En | MEDLINE | ID: mdl-38612678

Sirt-3 is an important regulator of mitochondrial function and cellular energy homeostasis, whose function is associated with aging and various pathologies such as Alzheimer's disease, Parkinson's disease, cardiovascular diseases, and cancers. Many of these conditions show differences in incidence, onset, and progression between the sexes. In search of hormone-independent, sex-specific roles of Sirt-3, we performed mRNA sequencing in male and female Sirt-3 WT and KO mouse embryonic fibroblasts (MEFs). The aim of this study was to investigate the sex-specific cellular responses to the loss of Sirt-3. By comparing WT and KO MEF of both sexes, the differences in global gene expression patterns as well as in metabolic and stress responses associated with the loss of Sirt-3 have been elucidated. Significant differences in the activities of basal metabolic pathways were found both between genotypes and between sexes. In-depth pathway analysis of metabolic pathways revealed several important sex-specific phenomena. Male cells mount an adaptive Hif-1a response, shifting their metabolism toward glycolysis and energy production from fatty acids. Furthermore, the loss of Sirt-3 in male MEFs leads to mitochondrial and endoplasmic reticulum stress. Since Sirt-3 knock-out is permanent, male cells are forced to function in a state of persistent oxidative and metabolic stress. Female MEFs are able to at least partially compensate for the loss of Sirt-3 by a higher expression of antioxidant enzymes. The activation of neither Hif-1a, mitochondrial stress response, nor oxidative stress response was observed in female cells lacking Sirt-3. These findings emphasize the sex-specific role of Sirt-3, which should be considered in future research.


Sirtuin 3 , Animals , Female , Male , Mice , Sirtuin 3/genetics , Fibroblasts , Gene Expression Profiling , Microarray Analysis , Oxidation-Reduction
13.
Nutrients ; 16(7)2024 Mar 27.
Article En | MEDLINE | ID: mdl-38613012

Aging-associated hepatic fatty acid (FA) oxidation dysfunction contributes to impaired adaptive thermogenesis. 5-Heptadecylresorcinol (AR-C17) is a prominent functional component of whole wheat and rye, and has been demonstrated to improve the thermogenic capacity of aged mice via the regulation of Sirt3. However, the effect of AR-C17 on aging-associated hepatic FA oxidation dysfunction remains unclear. Here, 18-month-old C57BL/6J mice were orally administered with AR-C17 at a dose of 150 mg/kg/day for 8 weeks. Systemic glucose and lipid metabolism, hepatic FA oxidation, and the lipolysis of white adipose tissues (WAT) were measured. The results showed that AR-C17 improved the hepatic FA oxidation, and especially acylcarnitine metabolism, of aged mice during cold stimulation, with the enhancement of systemic glucose and lipid metabolism. Meanwhile, AR-C17 improved the WAT lipolysis of aged mice, promoting hepatic acylcarnitine production. Furthermore, the adipose-specific Sirt3 knockout mice were used to investigate and verify the regulation mechanism of AR-C17 on aging-associated hepatic FA oxidation dysfunction. The results showed that AR-C17 failed to improve the WAT lipolysis and hepatic FA oxidation of aged mice in the absence of adipose Sirt3, indicating that AR-C17 might indirectly influence hepatic FA oxidation via regulating WAT Sirt3. Our findings suggest that AR-C17 might improve aging-associated hepatic FA oxidation dysfunction via regulating adipose Sirt3.


Carnitine/analogs & derivatives , Resorcinols , Sirtuin 3 , Animals , Mice , Mice, Inbred C57BL , Obesity , Lipid Metabolism , Aging , Glucose , Mice, Knockout , Fatty Acids
14.
PLoS One ; 19(4): e0301990, 2024.
Article En | MEDLINE | ID: mdl-38625851

Cardiac remodeling is the primary pathological feature of chronic heart failure (HF). Exploring the characteristics of cardiac remodeling in the very early stages of HF and identifying targets for intervention are essential for discovering novel mechanisms and therapeutic strategies. Silent mating type information regulation 2 homolog 3 (SIRT3), as a major mitochondrial nicotinamide adenine dinucleotide (NAD)-dependent deacetylase, is required for mitochondrial metabolism. However, whether SIRT3 plays a role in cardiac remodeling by regulating the biosynthesis of mitochondrial cardiolipin (CL) is unknown. In this study, we induced pressure overload in wild-type (WT) and SIRT3 knockout (SIRT3-/-) mice via transverse aortic constriction (TAC). Compared with WT mouse hearts, the hearts of SIRT3-/- mice exhibited more-pronounced cardiac remodeling and fibrosis, greater reactive oxygen species (ROS) production, decreased mitochondrial-membrane potential (ΔΨm), and abnormal mitochondrial morphology after TAC. Furthermore, SIRT3 deletion aggravated TAC-induced decrease in total CL content, which might be associated with the downregulation of the CL synthesis related enzymes cardiolipin synthase 1 (CRLS1) and phospholipid-lysophospholipid transacylase (TAFAZZIN). In our in vitro experiments, SIRT3 overexpression prevented angiotensin II (AngII)- induced aberrant mitochondrial function, CL biosynthesis disorder, and peroxisome proliferator-activated receptor gamma (PPARγ) downregulation in cardiomyocytes; meanwhile, SIRT3 knockdown exacerbated these effects. Moreover, the addition of GW9662, a PPARγ antagonist, partially counteracted the beneficial effects of SIRT3 overexpression. In conclusion, SIRT3 regulated PPARγ-mediated CL biosynthesis, maintained the structure and function of mitochondria, and thereby protected the myocardium against cardiac remodeling.


Cardiolipins , Sirtuin 3 , Animals , Mice , Cardiolipins/metabolism , Mice, Knockout , Myocytes, Cardiac/metabolism , PPAR gamma/metabolism , Sirtuin 3/genetics , Sirtuin 3/metabolism , Ventricular Remodeling
15.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 279-289, 2024 Mar 20.
Article Zh | MEDLINE | ID: mdl-38645862

Objective: To identify inflamm-aging related biomarkers in osteoarthritis (OA). Methods: Microarray gene profiles of young and aging OA patients were obtained from the Gene Expression Omnibus (GEO) database and aging-related genes (ARGs) were obtained from the Human Aging Genome Resource (HAGR) database. The differentially expressed genes of young OA and older OA patients were screened and then intersected with ARGs to obtain the aging-related genes of OA. Enrichment analysis was performed to reveal the potential mechanisms of aging-related markers in OA. Three machine learning methods were used to identify core senescence markers of OA and the receiver operating characteristic (ROC) curve was used to assess their diagnostic performance. Peripheral blood mononuclear cells were collected from clinical OA patients to verify the expression of senescence-associated secretory phenotype (SASP) factors and senescence markers. Results: A total of 45 senescence-related markers were obtained, which were mainly involved in the regulation of cellular senescence, the cell cycle, inflammatory response, etc. Through the screening with the three machine learning methods, 5 core senescence biomarkers, including FOXO3, MCL1, SIRT3, STAG1, and S100A13, were obtained. A total of 20 cases of normal controls and 40 cases of OA patients, including 20 cases in the young patient group and 20 in the elderly patient group, were enrolled. Compared with those of the young patient group, C-reactive protein (CRP), interleukin (IL)-6, and IL-1ß levels increased and IL-4 levels decreased in the elderly OA patient group (P<0.01); FOXO3, MCL1, and SIRT3 mRNA expression decreased and STAG1 and S100A13 mRNA expression increased (P<0.01). Pearson correlation analysis demonstrated that the selected markers were associated with some indicators, including erythrocyte sedimentation rate (ESR), IL-1ß, IL-4, CRP, and IL-6. The area under the ROC curve of the 5 core aging genes was always greater than 0.8 and the C-index of the calibration curve in the nomogram prediction model was 0.755, which suggested the good calibration ability of the model. Conclusion: FOXO3, MCL1, SIRT3, STAG1, and S100A13 may serve as novel diagnostic biomolecular markers and potential therapeutic targets for OA inflamm-aging.


Aging , Biomarkers , Computational Biology , Machine Learning , Osteoarthritis , Humans , Osteoarthritis/genetics , Osteoarthritis/diagnosis , Osteoarthritis/metabolism , Biomarkers/metabolism , Biomarkers/blood , Computational Biology/methods , Aging/genetics , Inflammation/genetics , Inflammation/metabolism , Forkhead Box Protein O3/metabolism , Forkhead Box Protein O3/genetics , Cellular Senescence/genetics , Sirtuin 3/genetics , Sirtuin 3/metabolism , Gene Expression Profiling , Aged , Male
16.
Eur J Pharmacol ; 972: 176557, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38574839

Cerebral ischemia-reperfusion injury (CIRI) can induce massive death of ischemic penumbra neurons via oxygen burst, exacerbating brain damage. Parthanatos is a form of caspase-independent cell death involving excessive activation of PARP-1, closely associated with intense oxidative stress following CIRI. 4'-O-methylbavachalcone (MeBavaC), an isoprenylated chalcone component in Fructus Psoraleae, has potential neuroprotective effects. This study primarily investigates whether MeBavaC can act on SIRT3 to alleviate parthanatos of ischemic penumbra neurons induced by CIRI. MeBavaC was oral gavaged to the middle cerebral artery occlusion-reperfusion (MCAO/R) rats after occlusion. The effects of MeBavaC on cerebral injury were detected by the neurological deficit score and cerebral infarct volume. In vitro, PC-12 cells were subjected to oxygen and glucose deprivation/reoxygenation (OGD/R), and assessed cell viability and cell injury. Also, the levels of ROS, mitochondrial membrane potential (MMP), and intracellular Ca2+ levels were detected to reflect mitochondrial function. We conducted western blotting analyses of proteins involved in parthanatos and related signaling pathways. Finally, the exact mechanism between the neuroprotection of MeBavaC and parthanatos was explored. Our results indicate that MeBavaC reduces the cerebral infarct volume and neurological deficit scores in MCAO/R rats, and inhibits the decreased viability of PC-12 cells induced by OGD/R. MeBavaC also downregulates the expression of parthanatos-related death proteins PARP-1, PAR, and AIF. However, this inhibitory effect is weakened after the use of a SIRT3 inhibitor. In conclusion, the protective effect of MeBavaC against CIRI may be achieved by inhibiting parthanatos of ischemic penumbra neurons through the SIRT3-PARP-1 axis.


Chalcones , Neuroprotective Agents , Parthanatos , Rats, Sprague-Dawley , Reperfusion Injury , Sirtuins , Animals , Rats , Male , Chalcones/pharmacology , Chalcones/therapeutic use , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Reperfusion Injury/drug therapy , Reperfusion Injury/pathology , Reperfusion Injury/metabolism , Parthanatos/drug effects , Ischemic Stroke/drug therapy , Ischemic Stroke/pathology , Ischemic Stroke/metabolism , Reactive Oxygen Species/metabolism , PC12 Cells , Membrane Potential, Mitochondrial/drug effects , Neurons/drug effects , Neurons/pathology , Neurons/metabolism , Calcium/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/complications , Cell Survival/drug effects , Sirtuin 3/metabolism , Sirtuin 3/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Mitochondria/drug effects , Mitochondria/metabolism
17.
Pharmacol Ther ; 257: 108639, 2024 May.
Article En | MEDLINE | ID: mdl-38561088

Sirtuin3 (SIRT3) is a nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylase located in the mitochondria, which mainly regulates the acetylation of mitochondrial proteins. In addition, SIRT3 is involved in critical biological processes, including oxidative stress, inflammation, DNA damage, and apoptosis, all of which are closely related to the progression of liver disease. Liver fibrosis characterized by the deposition of extracellular matrix is a result of long termed or repeated liver damage, frequently accompanied by damaged hepatocytes, the recruitment of inflammatory cells, and the activation of hepatic stellate cells. Based on the functions and pharmacology of SIRT3, we will review its roles in liver fibrosis from three aspects: First, the main functions and pharmacological effects of SIRT3 were investigated based on its structure. Second, the roles of SIRT3 in major cells in the liver were summarized to reveal its mechanism in developing liver fibrosis. Last, drugs that regulate SIRT3 to prevent and treat liver fibrosis were discussed. In conclusion, exploring the pharmacological effects of SIRT3, especially in the liver, may be a potential strategy for treating liver fibrosis.


Liver Diseases , Sirtuin 3 , Humans , Sirtuin 3/genetics , Sirtuin 3/metabolism , Mitochondrial Proteins , Oxidative Stress/physiology , Liver Cirrhosis/drug therapy
18.
Bioorg Chem ; 146: 107327, 2024 May.
Article En | MEDLINE | ID: mdl-38579616

Colorectal cancer (CRC) is well known as a prevalent malignancy affecting the digestive tract, yet its precise etiological determinants remain to be elusive. Accordingly, identifying specific molecular targets for colorectal cancer and predicting potential malignant tumor behavior are potential strategies for therapeutic interventions. Of note, apoptosis (type I programmed cell death) has been widely reported to play a pivotal role in tumorigenesis by exerting a suppressive effect on cancer development. Moreover, autophagy-dependent cell death (type II programmed cell death) has been implicated in different types of human cancers. Thus, investigating the molecular mechanisms underlying apoptosis and autophagy-dependent cell death is paramount in treatment modalities of colorectal cancer. In this study, we uncovered that a new small-molecule activator of SIRT3, named MY-13, triggered both autophagy-dependent cell death and apoptosis by modulating the SIRT3/Hsp90/AKT signaling pathway. Consequently, this compound inhibited tumor cell proliferation and migration in RKO and HCT-116 cell lines. Moreover, we further demonstrated that the small-molecule activator significantly suppressed tumor growth in vivo. In conclusion, these findings demonstrate that the novel small-molecule activator of SIRT3 may hold a therapeutic potential as a drug candidate in colorectal cancer.


Autophagic Cell Death , Colorectal Neoplasms , Sirtuin 3 , Humans , Colorectal Neoplasms/metabolism , Autophagy , Cell Proliferation , Apoptosis , Cell Line, Tumor
19.
Clin Exp Pharmacol Physiol ; 51(6): e13856, 2024 Jun.
Article En | MEDLINE | ID: mdl-38621772

Colorectal cancer (CRC) is a typical and lethal digestive system malignancy. In this study, we investigated the effect of sirtuin 3 (SIRT3) expression, a fidelity mitochondrial protein, on the proliferation of CRC cells and the mechanisms involved. Using the University of Alabama at Birmingham Cancer Data Analysis Portal database and the Clinical Proteomic Tumour Analysis Consortium database, we discovered that low expression of SIRT3 in CRC was a negative factor for survival prognosis (P < .05). Meanwhile, SIRT3 expression was correlated with distant metastasis and tumour, node, metastasis stage of CRC patients (P < .05). Subsequently, we observed that CRC cells with stable SIRT3 expression exhibited a significant decrease in proliferative capacities both in vitro and in vivo, compared to their counterparts (P < .05). Further investigation using western blot, immunoprecipitation and TOPflash/FOPflash assay showed the mechanism of growth retardation of these cells was highly associated with the degradation of ß-catenin in cytosol, and the localization of ß-catenin/α-catenin complex in the nucleus. In conclusion, our findings suggest that the inhibition of CRC cell proliferation by SIRT3 is closely associated with the inactivation of the Wnt/ß-catenin signalling pathway.


Colorectal Neoplasms , Sirtuin 3 , Humans , Sirtuin 3/genetics , Sirtuin 3/metabolism , Sirtuin 3/pharmacology , Cell Line, Tumor , beta Catenin/metabolism , Proteomics , Wnt Signaling Pathway , Cell Proliferation , Colorectal Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Cell Movement
20.
Food Funct ; 15(9): 4954-4969, 2024 May 07.
Article En | MEDLINE | ID: mdl-38602356

Overdose of Acetaminophen (APAP) is a major contributor to acute liver injury (ALI), a complex pathological process with limited effective treatments. Emerging evidence links lipid peroxidation to APAP-induced ALI. Cynarin (Cyn), a hydroxycinnamic acid derivative, exhibits liver protective effects, but whether it mitigates APAP-induced ALI is unclear. Our aim was to verify the protective impact of Cyn on APAP-induced ALI and elucidate the molecular mechanisms governing this process. Herein, the regulation of the Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) interaction was determined to be a novel mechanism underlying this protective impact of Cyn against APAP-induced ALI. Nrf2 deficiency increased the severity of APAP-induced ALI and lipid peroxidation and counteracted the protective effect of Cyn against this pathology. Additionally, Cyn promoted the dissociation of Nrf2 from Keap1, enhancing the nuclear translocation of Nrf2 and the transcription of downstream antioxidant proteins, thereby inhibiting lipid peroxidation. Molecular docking demonstrated that Cyn bound competitively to Keap1, and overexpression of Keap1 reversed Nrf2-activated anti-lipid peroxidation. Additionally, Cyn activated the adenosine monophosphate-activated protein kinase (AMPK)/sirtuin (SIRT)3 signaling pathway, which exhibits a protective effect on APAP-induced ALI. These findings propose that Cyn alleviates APAP-induced ALI by enhancing the Keap1/Nrf2-mediated lipid peroxidation defense via activation of the AMPK/SIRT3 signaling pathway.


AMP-Activated Protein Kinases , Acetaminophen , Chemical and Drug Induced Liver Injury , Kelch-Like ECH-Associated Protein 1 , Lipid Peroxidation , NF-E2-Related Factor 2 , Signal Transduction , Acetaminophen/adverse effects , NF-E2-Related Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Animals , Lipid Peroxidation/drug effects , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/metabolism , Signal Transduction/drug effects , Mice , Male , AMP-Activated Protein Kinases/metabolism , Sirtuin 3/metabolism , Sirtuin 3/genetics , Mice, Inbred C57BL , Humans , Coumaric Acids/pharmacology , Liver/metabolism , Liver/drug effects
...