Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 874
1.
Biomed Res Int ; 2024: 8544837, 2024.
Article En | MEDLINE | ID: mdl-38803515

The loss of RAB25 expression-RAS superfamily of GTPase characteristic of numerous breast cancers-corresponds with H-RAS point mutations, particularly in triple-negative breast cancers (TNBC), a subtype associated with a poor prognosis. To address the poorly understood factors dictating the progression of TNBC tumors, we examine the cooperative effects that loss of RAB25 expression in human mammary epithelial cell (HMEC) lines with H-RAS mutations confers in tumorigenesis. HMECs were immortalized by transduction with LXSN CDK4 R24C, a mutant form of cyclin-dependent kinase, followed by transduction with hTERT, a catalytic subunit of the telomerase enzyme. We found that with the loss of RAB25 and overexpression of mutant H-RAS61L, immortal HMECs transformed toward anchorage-independent growth and acquired an increased ability to migrate. Furthermore, cells express low CD24, high CD44, and low claudin levels, indicating stem-like properties upon transformation. Besides, loss of RAB25 and overexpression of H-RAS61L resulted in increased expression of transcription factors Snail and Slug that drive these cells to lose E-cadherin and undergo epithelial-mesenchymal transition (EMT). This study confirms that loss of RAB25 and overexpression of mutant H-RAS can drive HMECs toward a mesenchymal stem-like state. Our findings reveal that RAB25 functions as a tumor suppressor gene, and loss of RAB25 could serve as a novel biomarker of the claudin-low type of TNBC.


Cell Transformation, Neoplastic , Claudins , Epithelial Cells , Epithelial-Mesenchymal Transition , rab GTP-Binding Proteins , Humans , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition/genetics , Claudins/genetics , Claudins/metabolism , Female , Mammary Glands, Human/metabolism , Mammary Glands, Human/pathology , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Oncogenes/genetics , Snail Family Transcription Factors/metabolism , Snail Family Transcription Factors/genetics , Mutation/genetics
2.
J Exp Clin Cancer Res ; 43(1): 135, 2024 May 04.
Article En | MEDLINE | ID: mdl-38702792

BACKGROUND: Rhabdomyosarcoma (RMS) is a rare malignancy and the most common soft tissue sarcoma in children. Vasculogenic mimicry (VM) is a novel tumor microcirculation model different from traditional tumor angiogenesis, which does not rely on endothelial cells to provide sufficient blood supply for tumor growth. In recent years, VM has been confirmed to be closely associated with tumor progression. However, the ability of RMS to form VM has not yet been reported. METHODS: Immunohistochemistry, RT-qPCR and western blot were used to test the expression level of SNAI2 and its clinical significance. The biological function in regulating vasculogenic mimicry and malignant progression of SNAI2 was examined both in vitro and in vivo. Mass spectrometry, co-immunohistochemistry, immunofluorescence staining, and ubiquitin assays were performed to explore the regulatory mechanism of SNAI2. RESULTS: Our study indicated that SNAI2 was abnormally expressed in patients with RMS and RMS cell lines and promoted the proliferation and metastasis of RMS. Through cell tubule formation experiments, nude mice Matrigel plug experiments, and immunohistochemistry (IHC), we confirmed that RMS can form VM and that SNAI2 promotes the formation of VM. Due to SNAI2 is a transcription factor that is not easily drugged, we used Co-IP combined with mass spectrometry to screen for the SNAI2-binding protein USP7 and TRIM21. USP7 depletion inhibited RMS VM formation, proliferation and metastasis by promoting SNAI2 degradation. We further demonstrated that TRIM21 is expressed at low levels in human RMS tissues and inhibits VM in RMS cells. TRIM21 promotes SNAI2 protein degradation through ubiquitination in the RMS. The deubiquitinase USP7 and E3 ligase TRIM21 function in an antagonistic rather than competitive mode and play a key role in controlling the stability of SNAI2 to determine the VM formation and progression of RMS. CONCLUSION: Our findings reveal a previously unknown mechanism by which USP7 and TRIM21 balance the level of SNAI2 ubiquitination, determining RMS vasculogenic mimicry, proliferation, and migration. This new mechanism may provide new targeted therapies to inhibit the development of RMS by restoring TRIM21 expression or inhibiting USP7 expression in RMS patients with high SNAI2 protein levels.


Neovascularization, Pathologic , Rhabdomyosarcoma , Ribonucleoproteins , Snail Family Transcription Factors , Ubiquitin-Specific Peptidase 7 , Humans , Snail Family Transcription Factors/metabolism , Snail Family Transcription Factors/genetics , Animals , Mice , Ubiquitin-Specific Peptidase 7/metabolism , Ubiquitin-Specific Peptidase 7/genetics , Rhabdomyosarcoma/metabolism , Rhabdomyosarcoma/pathology , Rhabdomyosarcoma/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Female , Disease Progression , Cell Proliferation , Male , Homeostasis , Cell Line, Tumor , Mice, Nude , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination
3.
Anal Cell Pathol (Amst) ; 2024: 8972022, 2024.
Article En | MEDLINE | ID: mdl-38715918

Preeclampsia (PE) manifests as a pregnancy-specific complication arising from compromised placentation characterized by inadequate trophoblast invasion. A growing body of evidence underscores the pivotal involvement of pseudogenes, a subset of long noncoding RNAs, in the pathological processes of PE. This study presents a novel finding, demonstrating a significant downregulation of the pseudogene PDIA3P1 in PE placental tissues compared to normal tissues. In vitro functional assays revealed that suppressing PDIA3P1 hindered trophoblast proliferation, invasion, and migration, concurrently upregulating the expression of secreted frizzled-related protein 1 (SFRP1). Further exploration of the regulatory role of PDIA3P1 in PE, utilizing human trophoblasts, established that PDIA3P1 exerts its function by binding to HuR, thereby enhancing the stability of Snail expression in trophoblasts. Overall, our findings suggest a crucial role for PDIA3P1 in regulating trophoblast properties and contributing to the pathogenesis of PE, offering potential targets for prognosis and therapeutic intervention.


Down-Regulation , Pre-Eclampsia , RNA, Long Noncoding , Snail Family Transcription Factors , Trophoblasts , Adult , Female , Humans , Pregnancy , Cell Movement/genetics , Cell Proliferation/genetics , Down-Regulation/genetics , Phenotype , Pre-Eclampsia/genetics , Pre-Eclampsia/metabolism , Pre-Eclampsia/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Snail Family Transcription Factors/metabolism , Snail Family Transcription Factors/genetics , Trophoblasts/metabolism , Trophoblasts/pathology
4.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167202, 2024 Jun.
Article En | MEDLINE | ID: mdl-38670440

BACKGROUND & AIMS: Hypertrophic scar (HS) is a skin fibroproliferative disorder occurring after burns, surgeries or traumatic injuries, and it has caused a tremendous economic and medical burden. Its molecular mechanism is associated with the abnormal proliferation and transition of fibroblasts and excessive deposition of extracellular matrix. Cartilage intermediate layer protein 2 (CILP2), highly homologous to cartilage intermediate layer protein 1 (CILP1), is mainly secreted predominantly from chondrocytes in the middle/deeper layers of articular cartilage. Recent reports indicate that CILP2 is involved in the development of fibrotic diseases. We investigated the role of CILP2 in the progression of HS. METHODS AND RESULTS: It was found in this study that CILP2 expression was significantly higher in HS than in normal skin, especially in myofibroblasts. In a clinical cohort, we discovered that CILP2 was more abundant in the serum of patients with HS, especially in the early stage of HS. In vitro studies indicated that knockdown of CILP2 suppressed proliferation, migration, myofibroblast activation and collagen synthesis of hypertrophic scar fibroblasts (HSFs). Further, we revealed that CILP2 interacts with ATP citrate lyase (ACLY), in which CILP2 stabilizes the expression of ACLY by reducing the ubiquitination of ACLY, therefore prompting Snail acetylation and avoiding reduced expression of Snail. In vivo studies indicated that knockdown of CILP2 or ACLY inhibitor, SB-204990, significantly alleviated HS formation. CONCLUSION: CILP2 exerts a vital role in hypertrophic scar formation and might be a detectable biomarker reflecting the progression of hypertrophic scar and a therapeutic target for hypertrophic scar.


Cicatrix, Hypertrophic , Snail Family Transcription Factors , Adult , Animals , Female , Humans , Male , Mice , Acetylation , Cell Movement , Cell Proliferation , Cicatrix, Hypertrophic/metabolism , Cicatrix, Hypertrophic/pathology , Cicatrix, Hypertrophic/genetics , Fibroblasts/metabolism , Fibroblasts/pathology , Myofibroblasts/metabolism , Myofibroblasts/pathology , Snail Family Transcription Factors/metabolism , Snail Family Transcription Factors/genetics , ATP Citrate (pro-S)-Lyase/metabolism
5.
Development ; 151(10)2024 May 15.
Article En | MEDLINE | ID: mdl-38646822

The precise assembly of tissues and organs relies on spatiotemporal regulation of gene expression to coordinate the collective behavior of cells. In Drosophila embryos, the midgut musculature is formed through collective migration of caudal visceral mesoderm (CVM) cells, but how gene expression changes as cells migrate is not well understood. Here, we have focused on ten genes expressed in the CVM and the cis-regulatory sequences controlling their expression. Although some genes are continuously expressed, others are expressed only early or late during migration. Late expression relates to cell cycle progression, as driving string/Cdc25 causes earlier division of CVM cells and accelerates the transition to late gene expression. In particular, we found that the cell cycle effector transcription factor E2F1 is a required input for the late gene CG5080. Furthermore, whereas late genes are broadly expressed in all CVM cells, early gene transcripts are polarized to the anterior or posterior ends of the migrating collective. We show this polarization requires transcription factors Snail, Zfh1 and Dorsocross. Collectively, these results identify two sequential gene expression programs bridged by cell division that support long-distance directional migration of CVM cells.


Cell Division , Cell Movement , Drosophila Proteins , Gene Expression Regulation, Developmental , Animals , Cell Movement/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Cell Division/genetics , Mesoderm/metabolism , Mesoderm/cytology , Transcription Factors/metabolism , Transcription Factors/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila melanogaster/embryology , E2F1 Transcription Factor/metabolism , E2F1 Transcription Factor/genetics , Embryo, Nonmammalian/metabolism , Embryo, Nonmammalian/cytology , Drosophila/genetics , Drosophila/metabolism , Drosophila/embryology , Snail Family Transcription Factors/metabolism , Snail Family Transcription Factors/genetics
6.
Cells ; 13(8)2024 Apr 17.
Article En | MEDLINE | ID: mdl-38667311

Actin is a protein of central importance to many cellular functions. Its localization and activity are regulated by interactions with a high number of actin-binding proteins. In a yeast two-hybrid (Y2H) screening system, snail family transcriptional repressor 2 (SNAI2 or slug) was identified as a yet unknown potential actin-binding protein. We validated this interaction using immunoprecipitation and analyzed the functional relation between slug and actin. Since both proteins have been reported to be involved in DNA double-strand break (DSB) repair, we focused on their interaction during this process after treatment with doxorubicin or UV irradiation. Confocal microscopy elicits that the overexpression of actin fused to an NLS stabilizes complexes of slug and γH2AX, an early marker of DNA damage repair.


Actins , Protein Binding , Snail Family Transcription Factors , Snail Family Transcription Factors/metabolism , Snail Family Transcription Factors/genetics , Actins/metabolism , Humans , Cell Nucleus/metabolism , Histones/metabolism , Two-Hybrid System Techniques , DNA Repair , Doxorubicin/pharmacology , DNA Breaks, Double-Stranded , Ultraviolet Rays , Animals
7.
Sci Rep ; 14(1): 9616, 2024 04 26.
Article En | MEDLINE | ID: mdl-38671227

In this study, we aimed to study the role of TCONS_00006091 in the pathogenesis of oral squamous cellular carcinoma (OSCC) transformed from oral lichen planus (OLP). This study recruited 108 OSCC patients which transformed from OLP as the OSCC group and 102 OLP patients with no sign of OSCC as the Control group. ROC curves were plotted to measure the diagnostic values of TCONS_00006091, miR-153, miR-370 and let-7g, and the changes in gene expressions were measured by RT-qPCR. Sequence analysis and luciferase assays were performed to analyze the molecular relationships among these genes. Cell proliferation and apoptosis were observed via MTT and FCM. TCONS_00006091 exhibited a better diagnosis value for OSCC transformed from OLP. OSCC group showed increased TCONS_00006091 expression and decreased expressions of miR-153, miR-370 and let-7g. The levels of SNAI1, IRS and HMGA2 was all significantly increased in OSCC patients. And TCONS_00006091 was found to sponge miR-153, miR-370 and let-7g, while these miRNAs were respectively found to targe SNAI1, IRS and HMGA2. The elevated TCONS_00006091 suppressed the expressions of miR-153, miR-370 and let-7g, leading to the increased expression of SNAI1, IRS and HMGA2. Also, promoted cell proliferation and suppressed apoptosis were observed upon the over-expression of TCONS_00006091. This study demonstrated that the expressions of miR-153, miR-370 and let-7g were down-regulated by the highly expressed TCONS_00006091 in OSCC patients, which accordingly up-regulated the expressions of SNAI1, IRS and HMGA2, resulting in the promoted cell proliferation and suppressed cell apoptosis.


Apoptosis , Carcinoma, Squamous Cell , Cell Proliferation , Gene Expression Regulation, Neoplastic , HMGA2 Protein , MicroRNAs , Mouth Neoplasms , Snail Family Transcription Factors , Humans , Snail Family Transcription Factors/genetics , Snail Family Transcription Factors/metabolism , HMGA2 Protein/genetics , HMGA2 Protein/metabolism , Mouth Neoplasms/genetics , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Proliferation/genetics , Female , Male , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Apoptosis/genetics , Middle Aged , Up-Regulation , Cell Line, Tumor , Lichen Planus, Oral/genetics , Lichen Planus, Oral/metabolism , Lichen Planus, Oral/pathology
8.
Arterioscler Thromb Vasc Biol ; 44(5): e145-e167, 2024 May.
Article En | MEDLINE | ID: mdl-38482696

BACKGROUND: New blood vessel formation requires endothelial cells to transition from a quiescent to an invasive phenotype. Transcriptional changes are vital for this switch, but a comprehensive genome-wide approach focused exclusively on endothelial cell sprout initiation has not been reported. METHODS: Using a model of human endothelial cell sprout initiation, we developed a protocol to physically separate cells that initiate the process of new blood vessel formation (invading cells) from noninvading cells. We used this model to perform multiple transcriptomics analyses from independent donors to monitor endothelial gene expression changes. RESULTS: Single-cell population analyses, single-cell cluster analyses, and bulk RNA sequencing revealed common transcriptomic changes associated with invading cells. We also found that collagenase digestion used to isolate single cells upregulated the Fos proto-oncogene transcription factor. Exclusion of Fos proto-oncogene expressing cells revealed a gene signature consistent with activation of signal transduction, morphogenesis, and immune responses. Many of the genes were previously shown to regulate angiogenesis and included multiple tip cell markers. Upregulation of SNAI1 (snail family transcriptional repressor 1), PTGS2 (prostaglandin synthase 2), and JUNB (JunB proto-oncogene) protein expression was confirmed in invading cells, and silencing JunB and SNAI1 significantly reduced invasion responses. Separate studies investigated rounding 3, also known as RhoE, which has not yet been implicated in angiogenesis. Silencing rounding 3 reduced endothelial invasion distance as well as filopodia length, fitting with a pathfinding role for rounding 3 via regulation of filopodial extensions. Analysis of in vivo retinal angiogenesis in Rnd3 heterozygous mice confirmed a decrease in filopodial length compared with wild-type littermates. CONCLUSIONS: Validation of multiple genes, including rounding 3, revealed a functional role for this gene signature early in the angiogenic process. This study expands the list of genes associated with the acquisition of a tip cell phenotype during endothelial cell sprout initiation.


Gene Expression Profiling , Human Umbilical Vein Endothelial Cells , Neovascularization, Physiologic , Proto-Oncogene Proteins c-fos , Transcriptome , rho GTP-Binding Proteins , Animals , Humans , Mice , Cells, Cultured , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/genetics , Endothelial Cells/metabolism , Gene Expression Profiling/methods , Human Umbilical Vein Endothelial Cells/metabolism , Neovascularization, Physiologic/genetics , Phenotype , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , rho GTP-Binding Proteins/metabolism , rho GTP-Binding Proteins/genetics , Signal Transduction , Single-Cell Analysis , Snail Family Transcription Factors/metabolism , Snail Family Transcription Factors/genetics
9.
Gene ; 914: 148405, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38521110

The trophoblast epithelial-to-mesenchymal transition (EMT) is a procedure related to embryo implantation, spiral artery establishment and fetal-maternal communication, which is a key event for successful pregnancy. Inadequate EMT is one of the pathological mechanisms of recurrent miscarriage (RM). Whole-exome sequencing revealed that the mutation of bromodomain PHD-finger transcription factor (BPTF) was strongly associated with RM. In the present study, the effects of BPTF on EMT and the underlying mechanism were investigated. We found that the expression of BPTF in the villi of RM patients was significantly downregulated. Gene Ontology (GO) analysis revealed that BPTF participated in cell adhesion. The knockdown of BPTF prevented EMT and attenuated trophoblast invasion in vitro. BPTF activated Slug transcription by binding directly to the promoter region of the Slug gene. Interestingly, the protein levels of both Slug and BPTF were decreased in the villous cytotrophoblasts (VCTs) of RM villi. In conclusion, BPTF participates in the regulation of trophoblast EMT by activating Slug expression, suggesting that BPTF defects are an important factor in RM pathogenesis.


Antigens, Nuclear , Bromodomain Containing Proteins , Epithelial-Mesenchymal Transition , Nerve Tissue Proteins , Snail Family Transcription Factors , Transcription Factors , Trophoblasts , Trophoblasts/metabolism , Humans , Female , Snail Family Transcription Factors/metabolism , Snail Family Transcription Factors/genetics , Pregnancy , Transcription Factors/genetics , Transcription Factors/metabolism , Abortion, Habitual/genetics , Abortion, Habitual/metabolism , Cell Adhesion , Promoter Regions, Genetic , Adult
10.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119705, 2024 Jun.
Article En | MEDLINE | ID: mdl-38513918

Snail transcription factors play essential roles in embryonic development and participate in many physiological processes. However, these genes have been implicated in the development and progression of various types of cancer. In epithelial ovarian cancer, high expression of these transcription factors is usually associated with the acquisition of a more aggressive phenotype and thus, considered to be a poor prognostic factor. Numerous molecular signals create a complex network of signaling pathways regulating the expression and stability of Snails, which in turn control genes involved in vital cellular functions of ovarian cancer cells, such as invasion, survival, proliferation and chemoresistance.


Gene Expression Regulation, Neoplastic , Ovarian Neoplasms , Snail Family Transcription Factors , Humans , Snail Family Transcription Factors/metabolism , Snail Family Transcription Factors/genetics , Female , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Signal Transduction , Cell Proliferation , Animals , Carcinoma, Ovarian Epithelial/genetics , Carcinoma, Ovarian Epithelial/metabolism , Carcinoma, Ovarian Epithelial/pathology , Drug Resistance, Neoplasm/genetics
11.
Indian J Pathol Microbiol ; 67(1): 21-28, 2024.
Article En | MEDLINE | ID: mdl-38358184

Objective: To explore the relationships among the epithelial to mesenchymal transition (EMT)-related factors (SNAIL, TWIST, and E-Cadherin) and clinicopathological parameters and gastric mesangial tumor deposits (TDs) in advanced gastric cancer (AGC) patients and their value in gastric cancer prognosis judgment. Materials and Methods: The data of 190 patients who underwent radical resection of ACG were analyzed retrospectively, including 75 cases of TDs (+) and 115 cases of TDs (-). The expression of EMT-related transforming factors Snail, Twist, and E-cadherin in the primary tumor, paracancerous normal tissues, and TDs was detected by immunohistochemistry. Results: SNAIL and TWIST were overexpressed in primary tumors and TDs, whereas E-Cadherin was down-expressed in primary tumors. SNAIL was correlated significantly with tumor differentiation, lymph node metastases, and TDs (P < 0.05); TWIST was correlated strongly with tumor location, lymph node metastases, and TDs (P < 0.05); E-Cadherin was correlated closely with tumor differentiation and lymph node metastases (P < 0.05). Kaplan-Meier curves showed that SNAIL expression was correlated with DFS (P < 0.05), and TWIST expression was correlated with OS (P < 0.05). Tumor differentiation, lymph node metastasis, and TWIST expression were prognostic-independent risk factors of AGC patients (P < 0.05). Conclusion: The occurrence and development of gastric cancer and the formation of TDs may be related to EMT, analyzing the expression of EMT-related transforming proteins may be helpful to judge the prognosis of gastric cancer.


Stomach Neoplasms , Transcription Factors , Humans , Biomarkers, Tumor/metabolism , Cadherins/metabolism , Clinical Relevance , Epithelial-Mesenchymal Transition , Extranodal Extension , Lymphatic Metastasis , Prognosis , Retrospective Studies , Snail Family Transcription Factors/genetics , Stomach Neoplasms/diagnosis , Stomach Neoplasms/pathology , Transcription Factors/metabolism
12.
Cancer Biomark ; 39(3): 231-243, 2024.
Article En | MEDLINE | ID: mdl-38217587

BACKGROUND: Epithelial-mesenchymal transition (EMT) is an important biological process by which malignant tumor cells to acquire migration and invasion abilities. This study explored the role of KLF5 in the EMT process of in cervical cancer cell lines. OBJECTIVE: Krüpple-like factor 5 (KLF5) is a basic transcriptional factor that plays a key role in cell-cycle arrest and inhibition of apoptosis. However, the molecular mechanism by which KLF5 mediates the biological functions of cervical cancer cell lines has not been elucidated. Here, we focus on the potential function of ELF5 in regulating the EMT process in in vitro model of cervical cancer cell lines. METHOD: Western-blot and real-time quantitative PCR were used to detect the expression of EMT-related genes in HeLa cells. MTT assays, cell scratch and Transwell assays were used to assess HeLa cells proliferation and invasion capability. Using the bioinformatics tool JASPAR, we identified a high-scoring KLF5-like binding sequence in the SNAI1 gene promoter. Luciferase reporter assays was used to detect transcriptional activity for different SNAI1 promoter truncates. RESULT: After overexpressing the KLF5 gene in HeLa cells, KLF5 not only significantly inhibited the invasion and migration of HeLa cells, but also increased the expression of E-cadherin and decreased the expression of N-cadherin and MMP9. In addition, the mRNA expression of upstream regulators of E-cadherin, such as SNAI1, SLUG, ZEB1/2 and TWIST1 was also decreased. Furthermore, KLF5 inhibiting the expression of the SNAI1 gene via binding its promoter region, and the EMT of Hela cells was promoted after overexpression of the SNAI1 gene. CONCLUSION: These results indicate that KLF5 can downregulate the EMT process of HeLa cells by decreasing the expression of the SNAI1 gene, thereby inhibiting the migration and invasion of HeLa cervical cancer cells.


Uterine Cervical Neoplasms , Female , Humans , HeLa Cells , Uterine Cervical Neoplasms/pathology , Cell Line, Tumor , Factor V/genetics , Factor V/metabolism , Cadherins/genetics , Cadherins/metabolism , Epithelial-Mesenchymal Transition/genetics , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Snail Family Transcription Factors/genetics , Snail Family Transcription Factors/metabolism
13.
Int J Biol Sci ; 20(3): 953-967, 2024.
Article En | MEDLINE | ID: mdl-38250150

Deubiquitinase (DUB) dysregulation is closely associated with multiple diseases, including tumors. In this study, we used data from The Cancer Genome Atlas and Gene Expression Omnibus databases to analyze the expression of 51 ubiquitin-specific proteases (USPs) in gastric cancer (GC) tissues and adjacent non-neoplastic tissues. The Kaplan-Meier Plotter database was used to analyze the association of the differentially expressed USPs with the overall survival of patients with GC. The results showed that five USPs (USP5, USP10, USP13, USP21, and USP35) were highly expressed in GC tissues and were associated with poor prognosis in patients with GC. Because the epithelial-mesenchymal transition enables epithelial cells to acquire mesenchymal features and contributes to poor prognosis, we investigated whether these USPs had regulatory effects on the key epithelial-mesenchymal transition transcription factor Snail1. Our results showed that USP35 exhibited the most significant regulation on Snail1. Overexpression of USP35 increased and its knockdown decreased Snail1 protein levels. Mechanistically, USP35 interacted with Snail1 and removed its polyubiquitinated chain, thereby increasing its stability. Furthermore, USP35 promoted the invasion and migration of GC cells depending on its DUB activity. USP35 knockdown exhibited the opposite effect. Snail1 depletion partially abrogated the biological effects of USP35. Experiments using nude mouse tail vein injections indicated that wild-type USP35, but not the catalytically inactive USP35-C450A mutant, dramatically enhanced cell colonization and tumorigenesis in the lungs of mice. In addition, USP35 positively correlated with Snail1 expression in clinical GC tissues. Helicobacter pylori infection increased USP35 and Snail1 expression levels. Altogether, we found that USP35 can deubiquitinate Snail1 and increase its expression, thereby contributing to the malignant progression of GC. Therefore, USP35 may serve as a viable target for GC treatment.


Endopeptidases , Helicobacter Infections , Snail Family Transcription Factors , Stomach Neoplasms , Animals , Humans , Mice , Carcinogenesis , Cell Transformation, Neoplastic , Endopeptidases/genetics , Mice, Nude , Stomach Neoplasms/genetics , Ubiquitin Thiolesterase/genetics , Ubiquitin-Specific Proteases/genetics , Snail Family Transcription Factors/genetics
14.
Mol Biol Rep ; 51(1): 226, 2024 Jan 28.
Article En | MEDLINE | ID: mdl-38281235

BACKGROUND: Prostate cancer (PCa) remains one of the most complex tumors in men. The assessment of gene expression is expected to have a profound impact on cancer diagnosis, prognosis, and treatment decisions. The aim of this study was to determine the utility of the epithelial-mesenchymal transition (EMT) transcription factors Twist and Snai1 in the treatment of naïve prostate cancer. METHODS AND RESULTS: We analyzed formalin-fixed paraffin-embedded (FFPE) prostate tissues from 108 PCa patients and 20 control biopsies using real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR) and 2-ΔΔCt methods for Twist and Snail gene expression. The expression of Twist and Snai1 mRNA was significantly overexpressed in primary tissues of PCa patients compared with controls using ROC curve. Statistical analysis showed that the mRNAs of these two genes expression Snai1 and Twist were positively correlated with tumor development and prognostic parameters as Gleason score (p < 0.001; r = 0.707) and (p < 0.001; r = 0.627) respectively. The results of Kaplan-Meier analysis showed that mRNA expression of Snai1 and Twist genes expression were significant predictors of poor overall survival (OS) (Log rank p < 0.001) and progression-free survival (PFS) of patients (Log rank p < 0.001). Furthermore, our results showed that the expression of Snai1 and Twist genes expression in primary tissues of PCa patients could predict resistance to androgen deprivation therapy (p < 0.001) and resistance to the acidic drugs abiraterone or enzalutamide (p < 0.001). However, these two transcription factors failed to predict taxanes resistance at the time of diagnosis (p > 0.05). CONCLUSION: These results suggest that Snai1 and Twist are overexpressed during the onset and progression of PCa malignancies and may be theranostic markers of resistance to ADT, abiraterone, or enzalutamide therapy.


Benzamides , Nitriles , Phenylthiohydantoin , Prostatic Neoplasms , Snail Family Transcription Factors , Twist-Related Protein 1 , Humans , Male , Androgen Antagonists , Benzamides/therapeutic use , Biomarkers, Tumor/genetics , Nitriles/therapeutic use , Phenylthiohydantoin/therapeutic use , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , RNA, Messenger/genetics , Twist-Related Protein 1/genetics , Snail Family Transcription Factors/genetics
15.
Recent Pat Anticancer Drug Discov ; 19(3): 342-353, 2024.
Article En | MEDLINE | ID: mdl-37005514

BACKGROUND: Epithelial-to-mesenchymal transition (EMT) plays a role in the invasion and metastasis of cancer cells. During this phenomenon, Snail can promote tumor progression by upregulating mesenchymal factors and downregulating the expression of pro-apoptotic proteins. OBJECTIVE: Therefore, interventions on the expression rate of Snails may show beneficial therapeutic applications. METHODS: In this study, the C-terminal region of Snail1, capable of binding to E-box genomic sequences, was subcloned into the pAAV-IRES-EGFP backbone to make complete AAV-CSnail viral particles. B16F10 as a metastatic melanoma cell line, with a null expression of wild type TP53 was transduced by AAV-CSnail. Moreover, the transduced cells were analyzed for in vitro expression of apoptosis, migration, and EMT-related genes, and in vivo inhibition of metastasis. RESULTS: In more than 80% of the AAV-CSnail transduced cells, the CSnail gene expression competitively reduced the wild-type Snail functionality and consequently lowered the mRNA expression level of EMT-related genes. Furthermore, the transcription level of cell cycle inhibitory factor p21 and pro-apoptotic factors were promoted. The scratch test showed a decrease in the migration ability of AAV-CSnail transduced group compared to control. Finally, metastasis of cancer cells to lung tissue in the AAV-CSnail-treated B16F10 melanoma mouse model was significantly reduced, pointing out to prevention of EMT by the competitive inhibitory effect of CSnail on Snail1 and increased apoptosis of B16F10 cells. CONCLUSION: The capability of this successful competition in reducing the growth, invasion, and metastasis of melanoma cells indicates that gene therapy is a promising strategy for the control of the growth and metastasis of cancer cells.


Melanoma , Animals , Mice , Humans , Snail Family Transcription Factors/genetics , Snail Family Transcription Factors/pharmacology , Cell Line, Tumor , Melanoma/genetics , Epithelial-Mesenchymal Transition , Cell Movement , Gene Expression Regulation, Neoplastic , Neoplasm Invasiveness , Neoplasm Metastasis
16.
Biochim Biophys Acta Rev Cancer ; 1879(1): 189037, 2024 01.
Article En | MEDLINE | ID: mdl-38043804

Snail1 transcriptional factor plays a key role in the control of epithelial to mesenchymal transition, a process that remodels tumor cells increasing their invasion and chemo-resistance as well as reprograms their metabolism and provides stemness properties. During this transition, Snail1 acts as a transcriptional repressor and, as growing evidences have demonstrated, also as a direct activator of mesenchymal genes. In this review, I describe the different proteins that interact with Snail1 and are responsible for these two different functions on gene expression; I focus on the transcriptional factors that associate to Snail1 in their target promoters, both activated and repressed. I also present working models for Snail1 action both as repressor and activator and raise some issues that still need to be investigated.


Epithelial-Mesenchymal Transition , Transcription Factors , Humans , Snail Family Transcription Factors/genetics , Epithelial-Mesenchymal Transition/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation , Promoter Regions, Genetic
17.
J Biol Chem ; 300(1): 105580, 2024 Jan.
Article En | MEDLINE | ID: mdl-38141763

Cancer cells acquire malignant phenotypes through an epithelial-mesenchymal transition, which is induced by environmental factors or extracellular signaling molecules, including transforming growth factor-ß (TGF-ß). Among epithelial-mesenchymal transition-associated cell responses, cell morphological changes and cell motility are closely associated with remodeling of the actin stress fibers. Here, we examined the TGF-ß signaling pathways leading to these cell responses. Through knockdown experiments in A549 lung adenocarcinoma cells, we found that Smad3-mediated induction of Snail, but not that of Slug, is indispensable for morphological changes, stress fiber formation, and enhanced motility in cells stimulated with TGF-ß. Ectopic expression of Snail in SMAD3-knockout cells rescued the defect in morphological changes and stress fiber formation by TGF-ß, indicating that the role of Smad3 in these responses is to upregulate Snail expression. Mechanistically, Snail is required for TGF-ß-induced upregulation of Wnt5b, which in turn activates RhoA and subsequent stress fiber formation in cooperation with phosphoinositide 3-kinase. However, ectopic expression of Snail in SMAD3-knockout cells failed to rescue the defect in cell motility enhancement by TGF-ß, indicating that activation of the Smad3/Snail/Wnt5b axis is indispensable but not sufficient for enhancing cell motility; a Smad3-dependent but Snail-independent pathway to activate Rac1 is additionally required. Therefore, the Smad3-dependent pathway leading to enhanced cell motility has two branches: a Snail-dependent branch to activate RhoA and a Snail-independent branch to activate Rac1. Coordinated activation of these branches, together with activation of non-Smad signaling pathways, mediates enhanced cell motility induced by TGF-ß.


Signal Transduction , Smad3 Protein , Snail Family Transcription Factors , Stress Fibers , Transforming Growth Factor beta , rho GTP-Binding Proteins , Humans , A549 Cells , Cell Movement , Epithelial Cells/metabolism , Epithelial Cells/pathology , Epithelial-Mesenchymal Transition , Phosphatidylinositol 3-Kinases/metabolism , rho GTP-Binding Proteins/metabolism , Smad3 Protein/deficiency , Smad3 Protein/genetics , Smad3 Protein/metabolism , Snail Family Transcription Factors/deficiency , Snail Family Transcription Factors/genetics , Snail Family Transcription Factors/metabolism , Stress Fibers/metabolism , Transforming Growth Factor beta/metabolism , Enzyme Activation , Actins/metabolism , Mesoderm/metabolism , Mesoderm/pathology
18.
J Transl Med ; 21(1): 882, 2023 Dec 06.
Article En | MEDLINE | ID: mdl-38057853

Pancreatic ductal adenocarcinoma (PDAC) is characterized by a hypoxic microenvironment, a high rate of heterogeneity as well as a high likelihood of recurrence. Mounting evidence has affirmed that long non-coding RNAs (lncRNAs) participate in the carcinogenesis of PDAC cells. In this study, we revealed significantly decreased expression of GATA6-AS1 in PDAC based on the GEO dataset and our cohorts, and showed that low GATA6-AS1 expression was linked to unfavorable clinicopathologic characteristics as well as a poor prognosis. Gain- and loss-of-function studies demonstrated that GATA6-AS1 suppressed the proliferation, invasion, migration, and epithelial-mesenchymal transition (EMT) process of PDAC cells under hypoxia. In vivo data confirm the suppressive roles of GATA6-AS1/SNAI1 in tumor growth and lung metastasis of PDAC. Mechanistically, hypoxia-driven E26 transformation-specific sequence-1 (ETS1), as an upstream modulatory mechanism, was essential for the downregulation of GATA6-AS1 in PDAC cells. GATA6-AS1 inhibited the expression of fat mass and obesity-associated protein (FTO), an N6-methyladenosine (m6A) eraser, and repressed SNAI1 mRNA stability in an m6A-dependent manner. Our data suggested that GATA6-AS1 can inhibit PDAC cell proliferation, invasion, migration, EMT process and metastasis under hypoxia, and disrupting the GATA6-AS1/FTO/SNAI1 axis might be a viable therapeutic approach for refractory hypoxic pancreatic cancers.


Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , RNA, Long Noncoding , Humans , Cell Line, Tumor , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , Tumor Microenvironment , GATA6 Transcription Factor/genetics , GATA6 Transcription Factor/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Snail Family Transcription Factors/genetics , Snail Family Transcription Factors/metabolism
19.
Cell Cycle ; 22(21-22): 2436-2448, 2023 11.
Article En | MEDLINE | ID: mdl-38146657

Endometriosis is a benign high prevalent disease exhibiting malignant features. However, the underlying pathogenesis and key molecules of endometriosis remain unclear. By integrating and analysis of existing expression profile datasets, we identified coxsackie and adenovirus receptor (CXADR), as a novel key gene in endometriosis. Based on the results of immunohistochemistry (IHC), we confirmed significant down-regulation of CXADR in ectopic endometrial tissues obtained from women with endometriosis compared with healthy controls. Further in vitro investigation indicated that CXADR regulated the stability and function of the phosphatases and AKT inhibitors PHLPP2 (pleckstrin homology domain and leucine-rich repeat protein phosphatase 2) and PTEN (phosphatase and tensin homolog). Loss of CXADR led to phosphorylation of AKT and glycogen synthase kinase-3ß (GSK-3ß), which resulted in stabilization of an epithelial-mesenchymal transition (EMT) factor, SNAIL1 (snail family transcriptional repressor 1). Therefore, EMT processs was induced, and the proliferation, migration and invasion of Ishikawa cells were enhanced. Over-expression of CXADR showed opposite effects. These findings suggest a previously undefined role of AKT/GSK-3ß signaling axis in regulating EMT and reveal the involvement of a CXADR-induced EMT, in pathogenic progression of endometriosis.


Endometriosis , Proto-Oncogene Proteins c-akt , Female , Humans , Cell Adhesion Molecules , Cell Line, Tumor , Cell Movement , Endometriosis/genetics , Epithelial-Mesenchymal Transition , Glycogen Synthase Kinase 3 beta , Phosphoprotein Phosphatases/pharmacology , Phosphoric Monoester Hydrolases , Proto-Oncogene Proteins c-akt/metabolism , Snail Family Transcription Factors/genetics , Snail Family Transcription Factors/metabolism
20.
Cell Death Dis ; 14(11): 781, 2023 11 28.
Article En | MEDLINE | ID: mdl-38016947

In Alzheimer's disease (AD) more than 50% of the patients are affected by capillary cerebral amyloid-angiopathy (capCAA), which is characterized by localized hypoxia, neuro-inflammation and loss of blood-brain barrier (BBB) function. Moreover, AD patients with or without capCAA display increased vessel number, indicating a reactivation of the angiogenic program. The molecular mechanism(s) responsible for BBB dysfunction and angiogenesis in capCAA is still unclear, preventing a full understanding of disease pathophysiology. The Liver X receptor (LXR) family, consisting of LXRα and LXRß, was reported to inhibit angiogenesis and particularly LXRα was shown to secure BBB stability, suggesting a major role in vascular function. In this study, we unravel the regulatory mechanism exerted by LXRα to preserve BBB integrity in human brain endothelial cells (BECs) and investigate its role during pathological conditions. We report that LXRα ensures BECs identity via constitutive inhibition of the transcription factor SNAI2. Accordingly, deletion of brain endothelial LXRα is associated with impaired DLL4-NOTCH signalling, a critical signalling pathway involved in vessel sprouting. A similar response was observed when BECs were exposed to hypoxia, with concomitant LXRα decrease and SNAI2 increase. In support of our cell-based observations, we report a general increase in vascular SNAI2 in the occipital cortex of AD patients with and without capCAA. Importantly, SNAI2 strongly associated with vascular amyloid-beta deposition and angiopoietin-like 4, a marker for hypoxia. In hypoxic capCAA vessels, the expression of LXRα may decrease leading to an increased expression of SNAI2, and consequently BECs de-differentiation and sprouting. Our findings indicate that LXRα is essential for BECs identity, thereby securing BBB stability and preventing aberrant angiogenesis. These results uncover a novel molecular pathway essential for BBB identity and vascular homeostasis providing new insights on the vascular pathology affecting AD patients.


Alzheimer Disease , Cerebral Amyloid Angiopathy , Humans , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Blood-Brain Barrier/metabolism , Cerebral Amyloid Angiopathy/complications , Cerebral Amyloid Angiopathy/metabolism , Cerebral Amyloid Angiopathy/pathology , Endothelial Cells/metabolism , Hypoxia/metabolism , Liver X Receptors/genetics , Liver X Receptors/metabolism , Snail Family Transcription Factors/genetics , Snail Family Transcription Factors/metabolism
...