Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.121
1.
PLoS One ; 19(5): e0302967, 2024.
Article En | MEDLINE | ID: mdl-38722908

Ricin is a highly toxic protein, capable of inhibiting protein synthesis within cells, and is produced from the beans of the Ricinus communis (castor bean) plant. Numerous recent incidents involving ricin have occurred, many in the form of mailed letters resulting in both building and mail sorting facility contamination. The goal of this study was to assess the decontamination efficacy of several commercial off-the-shelf (COTS) cleaners and decontaminants (solutions of sodium hypochlorite [bleach], quaternary ammonium, sodium percarbonate, peracetic acid, and hydrogen peroxide) against a crude preparation of ricin toxin. The ricin was inoculated onto four common building materials (pine wood, drywall joint tape, countertop laminate, and industrial carpet), and the decontaminants were applied to the test coupons using a handheld sprayer. Decontamination efficacy was quantified using an in-vitro cytotoxicity assay to measure the quantity of bioactive ricin toxin extracted from test coupons as compared to the corresponding positive controls (not sprayed with decontaminant). Results showed that decontamination efficacy varied by decontaminant and substrate material, and that efficacy generally improved as the number of spray applications or contact time increased. The solutions of 0.45% peracetic acid and the 20,000-parts per million (ppm) sodium hypochlorite provided the overall best decontamination efficacy. The 0.45% peracetic acid solution achieved 97.8 to 99.8% reduction with a 30-min contact time.


Decontamination , Ricin , Decontamination/methods , Sodium Hypochlorite/pharmacology , Sodium Hypochlorite/chemistry , Construction Materials , Peracetic Acid/pharmacology , Peracetic Acid/chemistry , Hydrogen Peroxide/chemistry , Animals , Disinfectants/pharmacology , Disinfectants/chemistry
5.
PLoS One ; 19(4): e0299105, 2024.
Article En | MEDLINE | ID: mdl-38557606

Bacterial blight is a serious disease of carrot production worldwide. Under favorable conditions, the causal organism Xanthomonas hortorum pv. carotae causes serious loss especially in seed production because of its seed-borne character. Unlike fungal diseases, the treatment of bacterial diseases is limited and methods such as hot water or sodium hypochlorite (bleach) treatment are mainly used by seed companies. Here, we compared the efficacy of hot water treatment, sodium hypochlorite treatment and treatment with three phenolic compounds-carvacrol, thymol and eugenol, to eliminate Xanthomonas growth in vitro and subsequently in vivo on seeds of Xhc low, medium and highly infested carrot seed lots. The complete elimination of Xhc from germinated plants was obtained only for Xhc low infested seed lot with 1% sodium hypochlorite and carvacrol solutions in concentrations of 0.0196%- 0.313%. The significant reduction of Xhc presence in germinated plants of Xhc medium infested seed lot was achieved with 1% sodium hypochlorite treatment and hot water treatment. However, hot water treatment resulted in a significant reduction of seed germination percentage as well. Considering the elimination of Xhc infection from germinated plants and the effect on seed germination and plant vigor, 0.0196% carvacrol solution was suggested as an alternative to 1% sodium hypochlorite treatment regarding additional costs related to the liquidation of used treated water and to hot water treatment that has been proved to be insufficient to obtain disease-free plants.


Daucus carota , Sodium Hypochlorite/pharmacology , Cymenes , Seeds/microbiology
6.
Biochem Biophys Res Commun ; 710: 149892, 2024 May 28.
Article En | MEDLINE | ID: mdl-38581951

Chlorination is a potent disinfectant against various microorganisms, including bacteria and viruses, by inducing protein modifications and functional changes. Chlorine, in the form of sodium hypochlorite, stands out as the predominant sanitizer choice due to its cost-effectiveness and powerful antimicrobial properties. Upon exposure to chlorination, proteins undergo modifications, with amino acids experiencing alterations through the attachment of chloride or oxygen atoms. These modifications lead to shifts in protein function and the modulation of downstream signaling pathways, ultimately resulting in a bactericidal effect. However, certain survival proteins, such as chaperones or transcription factors, aid organisms in overcoming harsh chlorination conditions. The expression of YabJ, a highly conserved protein from Staphylococcus aureus, is regulated by a stress-activated sigma factor called sigma B (σB). This research revealed that S. aureus YabJ maintains its structural integrity even under intense chlorination conditions and harbors sodium hypochlorite molecules within its surface pocket. Notably, the pocket of S. aureus YabJ is primarily composed of amino acids less susceptible to chlorination-induced damage, rendering it resistant to such effects. This study elucidates how S. aureus YabJ evades the detrimental effects of chlorination and highlights its role in sequestering sodium hypochlorite within its structure. Consequently, this process enhances resilience and facilitates adaptation to challenging environmental conditions.


Staphylococcal Infections , Staphylococcus aureus , Humans , Chlorides/metabolism , Sodium Hypochlorite/pharmacology , Sodium Hypochlorite/metabolism , Bacterial Proteins/metabolism , Amino Acids/metabolism
7.
Microbiol Res ; 284: 127731, 2024 Jul.
Article En | MEDLINE | ID: mdl-38653011

Aeromonas veronii, a significant pathogen in aquatic environments, poses a substantial threat to both human and animal health, particularly in aquaculture. In this study, we isolated A. veronii strain GD2019 from diseased largemouth bass (Micropterus salmoides) during a severe outbreak of aeromonad septicemia in Guangdong Province, China. The complete genome sequence of A. veronii GD2019 revealed that GD2019 contains a single chromosome of 4703,168 bp with an average G+C content of 58.3%. Phylogenetic analyses indicated that GD2019 forms a separate sub-branch in A. veronii and comparative genomic analyses identified the existence of an intact Type III secretion system. Moreover, to investigate the genes that are required for the conditional fitness of A. veronii under various stresses, a high-density transposon insertion library in GD2019 was generated by a Tn5-based transposon and covers 6311 genomic loci including 4155 genes and 2156 intergenic regions. Leveraging this library, 630 genes were classified as essential genes for growth in rich-nutrient LB medium. Furthermore, the genes GE001863/NtrC and GE002550 were found to confer tolerance to sodium hypochlorite in A. veronii. GE002562 and GE002614 were associated with the resistance to carbenicillin. Collectively, our results provide abundant genetic information on A. veronii, shedding light on the pathogenetic mechanisms of Aeromonas.


Aeromonas veronii , DNA Transposable Elements , Drug Resistance, Bacterial , Fish Diseases , Genome, Bacterial , Phylogeny , Sodium Hypochlorite , Whole Genome Sequencing , Aeromonas veronii/genetics , Aeromonas veronii/drug effects , DNA Transposable Elements/genetics , Animals , Sodium Hypochlorite/pharmacology , Drug Resistance, Bacterial/genetics , Fish Diseases/microbiology , China , Gram-Negative Bacterial Infections/microbiology , Bass/microbiology , Anti-Bacterial Agents/pharmacology , Base Composition , Mutagenesis, Insertional
8.
Arch Oral Biol ; 163: 105966, 2024 Jul.
Article En | MEDLINE | ID: mdl-38657440

OBJECTIVE: This study evaluated the antimicrobial effect and cytotoxicity of hypochlorous acid(HClO) obtained from an innovative electrolytic device. DESIGN: The root canals of fifty extracted human teeth were inoculated with Enterococcus faecalis and divided into 5 groups (n = 10): DW (control); 2% chlorhexidine gel(CHX); 2.5% sodium hypochlorite(NaOCl); 250 ppm HClO and 500 ppm HClO. The counting of colony forming units evaluated the decontamination potential of each group. Cytotoxicity was evaluated after inoculation of tested protocols in fibroblastic cells for 3 min, calculating the cell viability. Specific statistical analysis was performed (α = 5%). RESULTS: The highest bacterial reduction was observed in experimental groups, with no statistical differences from each other (p > 0.05). The highest number of viable cells was observed in control group, followed by 250 ppm HClO and 500 ppm HClO groups, with statistical differences from each other (p < 0.05). CONCLUSIONS: It could be concluded that HClO presented high antimicrobial activity and low cytotoxicity at both tested concentrations.


Cell Survival , Enterococcus faecalis , Hypochlorous Acid , Root Canal Irrigants , Sodium Hypochlorite , Hypochlorous Acid/pharmacology , Enterococcus faecalis/drug effects , Humans , Sodium Hypochlorite/pharmacology , Cell Survival/drug effects , Root Canal Irrigants/pharmacology , In Vitro Techniques , Chlorhexidine/pharmacology , Dental Pulp Cavity/microbiology , Dental Pulp Cavity/drug effects , Fibroblasts/drug effects , Anti-Infective Agents/pharmacology , Electrolysis
9.
Clin Oral Investig ; 28(5): 265, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38652209

OBJECTIVES: This ex vivo human study aimed to evaluate the efficacy of NaOCl and chlorhexidine gluconate (CHG) irrigations in eliminating Enterococcus faecalis from the RCS of primary molars. MATERIALS AND METHODS: Disinfected extracted primary molars were inoculated with E. faecalis for 24 h. Then, the RCS samples were then irrigated with either 2.5% NaOCl, 0.2% and 2% CHG, or sham saline. The samples were collected immediately after irrigation; and 24 h later, the bacterial viability and counts were measured using blood agar and qRT-PCR, respectively. Histological sections were used to measure E. faecalis penetration and viability in dentin tubules using fluorescence microscopy. RESULTS: The recovery of viable E. faecalis after the irrigation of the primary molars showed more significant bactericidal effects of NaOCl and 0.2% and 2% CHG than of saline. Immediately after the irrigation, the NaOCl group showed the greatest reduction in E. faecalis; and 24 h later, all the groups had lower viable E. faecalis than the saline control. The bacterial penetration was also lowest in the NaOCl group, although there was no difference in bacterial viability in the tubules between the groups. CONCLUSION: In primary teeth, NaOCl and CHG showed similar degrees of bacterial elimination efficacy in terms of E.faecalis. CLINICAL RELEVANCE: Within the limitations of this study, NaOCl and CHG have the similar ability to perform endodontic irrigation of primary ex vivo teeth regarding the elimination of E.faecalis, but NaOCl penetrates dentin tubules better.


Chlorhexidine , Chlorhexidine/analogs & derivatives , Dental Pulp Cavity , Enterococcus faecalis , Molar , Root Canal Irrigants , Sodium Hypochlorite , Tooth, Deciduous , Chlorhexidine/pharmacology , Enterococcus faecalis/drug effects , Humans , Sodium Hypochlorite/pharmacology , Root Canal Irrigants/pharmacology , Molar/microbiology , Tooth, Deciduous/microbiology , Dental Pulp Cavity/microbiology , In Vitro Techniques , Microscopy, Fluorescence , Anti-Infective Agents, Local/pharmacology , Real-Time Polymerase Chain Reaction , Microbial Viability/drug effects
10.
Adv Skin Wound Care ; 37(5): 271-275, 2024 May 01.
Article En | MEDLINE | ID: mdl-38648241

ABSTRACT: This case report reviews the effect of combining a 250-cc bottle of standard antimicrobial, buffered sodium hypochlorite with a surgical method, low-pressure jet lavage irrigation in the outpatient setting to control difficult wound contamination. A 73-year-old man had been in treatment for over 8 years, undergoing at least 18 surgical wound debridement procedures for an extensive undermined pelvic pressure injury involving the sacrum, ischium, and greater trochanter. Cultures and polymerase chain reaction diagnostics revealed a multibacterial presence. Autofluorescent imaging (AFI) was used in 21 examinations performed after a 72-hour delay over a long weekend. The AFI contamination exceeded log 4 colony-forming units/g of tissue in all pretreatment examinations and was reduced to less than log 2 colony-forming units in 6 of 21 examinations, with the remaining 15 showing an estimated 80% or higher removal of the bacterial porphyrin "red" appearance. A total of 54 AFI examinations were performed using the combination treatment, and no adverse reactions were encountered. Treatment paradigms can be improved with a multifactorial approach.


Pressure Ulcer , Sodium Hypochlorite , Therapeutic Irrigation , Humans , Male , Aged , Sodium Hypochlorite/therapeutic use , Sodium Hypochlorite/administration & dosage , Sodium Hypochlorite/pharmacology , Therapeutic Irrigation/methods , Pressure Ulcer/therapy , Pressure Ulcer/microbiology , Debridement/methods , Treatment Outcome
11.
Clin Oral Investig ; 28(5): 281, 2024 Apr 27.
Article En | MEDLINE | ID: mdl-38676852

OBJECTIVES: To evaluate periodontal wound healing following scaling and root planing (SRP) in conjunction with the application of sodium hypochlorite/amino acids and cross-linked hyaluronic acid (xHyA) gels in dogs. MATERIALS AND METHODS: In four beagle dogs, 2-wall intrabony defects were created and metal strips were placed around the teeth. Clinical parameters were measured 4 weeks after plaque accumulation. The experimental root surfaces were subjected to SRP with either the subgingival application of a sodium hypochlorite/amino acid gel and a xHyA gel (test group) or SRP alone (control group) using a split-mouth design. Clinical parameters were re-evaluated at 6 weeks. The animals were sacrificed at 8 weeks for histological analysis. RESULTS: The test group showed significant improvements in all clinical parameters compared to the control group. Histologically, the test group exhibited statistically significantly greater new bone formation [i.e., length of newly formed bone, new bone area] compared with the control group (p < 0.05). Furthermore, statistically significantly greater formation of new attachment [i.e., linear length of new cementum adjacently to newly formed bone with inserting collagen fibers] and new cementum was detected in the test group compared with the control group at 8 weeks (p < 0.05 and p < 0.01, respectively). CONCLUSION: The adjunctive subgingival application of sodium hypochlorite/amino acid and xHyA gels to SRP offers an innovative novel approach to enhance periodontal wound healing/regeneration. CLINICAL RELEVANCE: The present findings have for the first-time shown histologic evidence for periodontal regeneration in support of this novel treatment modality.


Amino Acids , Dental Scaling , Gels , Hyaluronic Acid , Sodium Hypochlorite , Wound Healing , Animals , Dogs , Sodium Hypochlorite/pharmacology , Hyaluronic Acid/pharmacology , Hyaluronic Acid/therapeutic use , Wound Healing/drug effects , Amino Acids/therapeutic use , Root Planing
12.
Clin Oral Investig ; 28(5): 282, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38683234

OBJECTIVES: This study aimed to compare the antimicrobial action, cytotoxicity, cleaning ability, and erosion of dentine of hypochlorous acid (HClO) obtained from an electrolytic device at two different concentrations (Dentaqua) and three concentrations of sodium hypochlorite (NaOCl). METHODS: Microbiological test-The root canals of sixty single-rooted extracted human teeth were inoculated with Enterococcus faecalis and divided into 6 groups (n = 10), according to decontamination protocol: DW (control); 1% NaOCl; 2.5% NaOCl; 5.25% NaOCl; 250 ppm HClO and 500 ppm HClO. The colony-forming units were counted to evaluate the decontamination potential of each group, calculating the reduction in bacterial percentage. Cytotoxicity test-Cytotoxicity was evaluated after inoculation of the same tested protocols in fibroblastic cells for 3 min, calculating the cell viability percentages. Specifical statistical analysis was performed (α = 5%). Cleaning ability and erosion-Fifty-six single-rooted bovine lower incisors were divided into seven groups of 8 roots each, being the test groups 1% NaOCl; 2.5% NaOCl; 5,25% NaOCl; 250 ppm HClO and 500 ppm HClO, and a negative and positive control. Negative control was not contaminated, and the other groups were inoculated with Enterococcus faecalis. SEM images were ranked as from the cleanest to the least clean. Erosion was also assessed, being ranked from the least to the most eroded dentine. RESULTS: The highest bacterial reduction was observed in experimental groups, with no statistical differences between them (p > 0.05). The highest number of viable cells was observed in control group, followed by 250 ppm HClO and 500 ppm HClO groups, with statistical differences between them (p < 0.05). 1% NaOCl; 2.5% NaOCl; 5.25% NaOCl and 500 ppm HClO displayed the cleanest areas. All sodium hypochlorite groups displayed erosion with higher ranks with greater concentration, while hypochlorous acid did not display any erosion regardless the concentration. CONCLUSIONS: It is possible to conclude that HClO obtained from an electrolytic device presented high antimicrobial activity and low cytotoxicity in both tested concentrations. 500 ppm HClO did not display erosion and showed great cleaning ability. CLINICAL RELEVANCE: The use of 500 ppm hypochlorous acid may reduce unfavorable behavior of sodium hypochlorite whilst maintaining its antimicrobial action.


Dental Pulp Cavity , Enterococcus faecalis , Hypochlorous Acid , Root Canal Irrigants , Sodium Hypochlorite , Sodium Hypochlorite/pharmacology , Hypochlorous Acid/pharmacology , Enterococcus faecalis/drug effects , Humans , Root Canal Irrigants/pharmacology , Dental Pulp Cavity/microbiology , Animals , Cattle , In Vitro Techniques , Dentin/drug effects , Dentin/microbiology , Cell Survival/drug effects , Anti-Infective Agents/pharmacology , Electrolysis
13.
Exp Parasitol ; 261: 108753, 2024 Jun.
Article En | MEDLINE | ID: mdl-38621506

Toxocara cati and T. canis are parasitic nematodes found in the intestines of cats and dogs respectively, with a cosmopolitan distribution, and the potential for anthropozoonotic transmission, resulting in human toxocariasis. Spread of Toxocara spp. is primarily through the ingestion of embryonated eggs contaminating surfaces or uncooked food, or through the ingestion of a paratenic host containing a third-stage larva. The Toxocara spp. eggshell is composed of a lipid layer providing a permeability barrier, a chitinous layer providing structural strength, and thin vitelline and uterine layers, which combined create a biologically resistant structure, making the Toxocara spp. egg very hardy, and capable of surviving for years in the natural environment. The use of sodium hypochlorite, household bleach, as a disinfectant for Toxocara spp. eggs has been reported, with results varying from ineffective to limited effectiveness depending on parameters including contact time, concentration, and temperature. Desiccation or humidity levels have also been reported to have an impact on larval development and/or survival of Toxocara spp. eggs. However, to date, after a thorough search of the literature, no relevant publications have been found that evaluated the use of sodium hypochlorite and desiccation in combination. These experiments aim to assess the effects of using a combination of desiccation and 10% bleach solution (0.6% sodium hypochlorite) on fertilized or embryonated eggs of T. cati, T. canis, and T. vitulorum. Results of these experiments highlight the synergistic effects of desiccation and bleach, and demonstrate a relatively simple method for surface inactivation, resulting in a decrease in viability or destruction of T. cati, T. canis and T. vitulorum eggs. Implications for these findings may apply to larger scale elimination of ascarid eggs from both research, veterinary, and farming facilities to mitigate transmission.


Desiccation , Sodium Hypochlorite , Toxocara , Animals , Sodium Hypochlorite/pharmacology , Toxocara/drug effects , Toxocara/physiology , Ovum/drug effects , Disinfectants/pharmacology , Dogs , Toxocariasis/parasitology , Toxocariasis/prevention & control , Female , Cats , Toxocara canis/drug effects , Toxocara canis/physiology , Larva/drug effects
14.
J Dent ; 144: 104961, 2024 May.
Article En | MEDLINE | ID: mdl-38527516

OBJECTIVES: Lipopeptide Biosurfactant (LB) is a bacteria derived compound able to reduce surface tension between water and hydrophobic substances and exhibit antimicrobial and anti-biofilm properties. This study aimed to investigate the antimicrobial and anti-biofilm effect of a Lipopeptide Biosurfactant (LB) on Enterococcus faecalis, and its potential use in root canal treatment, either as a standalone irrigation solution or in conjunction with sodium hypochlorite (NaOCl). METHODS: LB was extracted from Bacillus clausii isolate and the dry extract was diluted in deionized water. The antimicrobial effect of LB against planktonic E. faecalis was evaluated by determining the Minimal Inhibitory Concentration (MIC50). The anti-biofilm effect was evaluated by Minimal Biofilm Inhibitory Concentration (MBIC50) and Minimal Biofilm Eradication Concentration (MBEC50) assays on biofilm grown on dentin specimen surface. To evaluate the effectiveness of LB as a single irrigation solution and as a pre-irrigation prior to NaOCl, live and dead bacterial cells were quantified using Confocal Laser Scanning Microscopy (CLSM), and cell biomass was assessed. RESULTS: LB exhibited an MIC50 and MBIC50 of 100 ppm, with an MBEC50 of 1000 ppm, resulting in 52.94 % biofilm inhibition and 60.95 % biofilm eradication on dentin specimens. The effectiveness was concentration-dependent, at 500 ppm, LB demonstrated comparable antimicrobial efficacy to 2.5 % NaOCl. Pre-irrigation with LB resulted in lower biofilm biomass compared to NaOCl alone. CONCLUSION: Pre-irrigation with LB enhanced the antimicrobial effect when followed by NaOCl irrigation. Consequently, LB shows promise as both a standalone root canal irrigation solution and as an adjunct to NaOCl in root canal treatment. CLINICAL SIGNIFICANCE: The study highlights the potential of Lipopeptide Biosurfactant (LB) as an environmentally friendly irrigation solution for root canal treatment, demonstrating potent antimicrobial and anti-biofilm properties against Enterococcus faecalis. LB exhibits concentration-dependent efficacy comparable to 2.5 % NaOCl and can be used as a standalone irrigation solution or in conjunction with NaOCl.


Biofilms , Enterococcus faecalis , Lipopeptides , Microbial Sensitivity Tests , Root Canal Irrigants , Sodium Hypochlorite , Surface-Active Agents , Biofilms/drug effects , Root Canal Irrigants/pharmacology , Enterococcus faecalis/drug effects , Surface-Active Agents/pharmacology , Sodium Hypochlorite/pharmacology , Lipopeptides/pharmacology , Humans , Microscopy, Confocal , Dentin/microbiology , Dentin/drug effects , Bacillus/drug effects , Dental Pulp Cavity/microbiology , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology
15.
J Hazard Mater ; 470: 134102, 2024 May 15.
Article En | MEDLINE | ID: mdl-38554506

The inappropriate use of antibiotics is widely recognized as the primary driver of bacterial antibiotic resistance. However, less attention has been given to the potential induction of multidrug-resistant bacteria through exposure to disinfectants. In this study, Klebsiella pneumonia, an opportunistic pathogen commonly associated with hospital and community-acquired infection, was experimentally exposed to NaClO at both minimum inhibitory concentration (MIC) and sub-MIC levels over a period of 60 days. The result demonstrated that NaClO exposure led to enhanced resistance of K. pneumonia to both NaClO itself and five antibiotics (erythromycin, polymyxin B, gentamicin, tetracycline, and ciprofloxacin). Concurrently, the evolved resistant strains exhibited fitness costs, as evidenced by decreased growth rates. Whole population sequencing revealed that both concentrations of NaClO exposure caused genetic mutations in the genome of K. pneumonia. Some of these mutations were known to be associated with antibiotic resistance, while others had not previously been identified as such. In addition, 11 identified mutations were located in the virulence factors, demonstrating that NaClO exposure may also impact the pathogenicity of K. pneumoniae. Overall, this study highlights the potential for the widespread use of NaClO-containing disinfectants during the COVID-19 pandemic to contribute to the emergence of antibiotic-resistant bacteria. ENVIRONMENTAL IMPLICATION: Considering the potential hazardous effects of disinfectant residues on environment, organisms and biodiversity, the sharp rise in use of disinfectants during COVID-19 pandemic has been considered highly likely to cause worldwide secondary disasters in ecosystems and human health. This study demonstrated that NaClO exposure enhanced the resistance of K. pneumonia to both NaClO and five antibiotics (erythromycin, polymyxin B, gentamicin, tetracycline, and ciprofloxacin), highlighting the widespread use of NaClO-containing disinfectants during the COVID-19 pandemic may increase the emergence of antibiotic-resistant bacteria in the environment.


Anti-Bacterial Agents , COVID-19 , Disinfectants , Klebsiella pneumoniae , Microbial Sensitivity Tests , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Anti-Bacterial Agents/pharmacology , Humans , Sodium Hypochlorite/pharmacology , Drug Resistance, Bacterial , SARS-CoV-2/drug effects , Mutation , Drug Resistance, Multiple, Bacterial , Klebsiella Infections/drug therapy
16.
J Endod ; 50(6): 814-819, 2024 Jun.
Article En | MEDLINE | ID: mdl-38452867

INTRODUCTION: In endodontic treatment, it is important to remove or inactivate biofilms in the root canal system. We investigated the effects of different concentrations and application times of sodium hypochlorite (NaOCl) on the viability of bacteria in ex vivo polymicrobial biofilms of different maturation levels. METHODS: Polymicrobial biofilms were prepared from dental plaque samples and grown for 1, 2, and 3 weeks under anaerobic conditions on collagen-coated hydroxyapatite discs as an ex vivo biofilm model. The biofilms were then exposed to NaOCl at concentrations ranging from 0.1% to 2% for 1 or 3 minutes. The control group was exposed to sterile distilled water. Viability staining was performed and examined by confocal laser scanning microscopy to determine the percentage of biofilm bacteria killed by NaOCl. Scanning electron microscopy was also performed to visually examine the biofilms. RESULTS: Application of NaOCl at 0.5%-2% for both 1 and 3 min killed significantly more bacteria when compared to the controls (P < .05). Cell viability tended to be lower after the application of NaOCl for 3 minutes than that for 1 minute. CONCLUSIONS: Our experiments using an ex vivo model showed that within the range of 0.1%-2% of NaOCl, higher NaOCl concentrations and longer application times were more effective in killing biofilm bacteria, and that mature biofilms were more resistant to NaOCl than younger biofilms.


Biofilms , Sodium Hypochlorite , Sodium Hypochlorite/pharmacology , Biofilms/drug effects , Humans , Time Factors , Root Canal Irrigants/pharmacology , Microbial Viability/drug effects , Microscopy, Confocal , Dental Plaque/microbiology , Microscopy, Electron, Scanning
17.
BMC Oral Health ; 24(1): 293, 2024 Mar 02.
Article En | MEDLINE | ID: mdl-38431616

Photon-initiated photoacoustic streaming (PIPS) with an Er: YAG laser has been introduced in root canal treatment to improve irrigation and facilitate the removal of bacteria in the root canal system. This study aimed to compare the antibacterial effectiveness of two different root canal irrigation techniques, conventional needle irrigation (CNI) and PIPS, using 1% sodium hypochlorite (NaOCl), in the treatment of teeth with apical periodontitis. Sixty patients with a total of sixty teeth affected by apical periodontitis were included in this study. The teeth underwent root canal therapy, and after mechanical instrumentation, they were randomly assigned to two groups (n = 30) based on the final irrigation protocol: CNI or PIPS with 1% NaOCl. Bacterial suspensions in the root canals were evaluated using Adenosine 5'-triphosphate (ATP) assay kit after mechanical instrumentation and after final irrigation. Then, a follow-up was conducted after 7 days. The results revealed that final irrigation significantly reduced ATP values in both the CNI and PIPS groups (P < 0.001). The ATP values after final irrigation was greater in the CNI group compared to the PIPS group (P < 0.001). After a 7-day follow-up, percussion tenderness and fistula were significantly resolved in both groups (P < 0.05). A multivariate linear regression model was used to identify the factors that influence post irrigation ATP values. The analysis demonstrated that pre-operative percussion tenderness (P = 0.006), the presence of a fistula (P < 0.001) and the method used in the final irrigation (P < 0.001) had a significant impact on the ATP value after final irrigation. These results indicate that employing PIPS with 1% NaOCl as the final irrigation protocol exhibited superior antibacterial effectiveness and has the potential to enhance clinical outcomes in the treatment of teeth afflicted with apical periodontitis.


Fistula , Periapical Periodontitis , Humans , Dental Pulp Cavity , Root Canal Preparation , Anti-Bacterial Agents/therapeutic use , Sodium Hypochlorite/therapeutic use , Sodium Hypochlorite/pharmacology , Periapical Periodontitis/therapy , Adenosine Triphosphate , Fistula/drug therapy , Root Canal Irrigants/therapeutic use , Root Canal Irrigants/pharmacology , Therapeutic Irrigation/methods
18.
Sci Rep ; 14(1): 6315, 2024 03 15.
Article En | MEDLINE | ID: mdl-38491076

The aim was to investigate the influence of endodontic irrigation solutions and protocols on the micro-tensile bond strength (µTBS) to dentin using an etch-and-rinse (ER) or self-etch (SE) adhesive approach. Eighty extracted human molars were ground to dentin. After pretreating for 27 min (21 min-3 min-3 min) with five different endodontic irrigation protocols (Group 1: NaOCl-EDTA-NaOCl; Group 2: NaOCl-NaOCl-EDTA; Group 3: NaOCl-NaCl-NaOCl; Group 4: Dual Rinse-Dual Rinse-Dual Rinse; Group 5: NaCl-NaCl-NaCl), an ER (Optibond FL, Kerr) or a SE (Clearfil SE Bond, Kuraray) adhesive system was applied. After light-curing, composite build-ups were made and cut into dentin-composite sticks. µTBS and failure modes were analyzed. Nonparametric statistical analyses (α = 0.05) were performed for comparison of the five groups within each type of adhesive as well as between the two adhesive systems used. The use of an ER instead of a SE adhesive system resulted in significantly higher µTBS for all irrigation protocols except for group 1 (NaOCl-EDTA-NaOCl) and 2 (NaOCl-NaOCl-EDTA). A statistical difference between the five different endodontic irrigation protocols was only found within the SE adhesive group, where group 1 (NaOCl-EDTA-NaOCl) achieved highest values. The use of an ER adhesive system cancels out the effect of the endodontic irrigation solution. The highest µTBS was achieved when using a NaOCl-EDTA-NaOCl-irrigation protocol in combination with Clearfil SE Bond, which shows that the selection of the endodontic irrigation should match the corresponding SE adhesive system.


Sodium Chloride , Sodium Hypochlorite , Humans , Edetic Acid/pharmacology , Edetic Acid/chemistry , Sodium Hypochlorite/pharmacology , Sodium Hypochlorite/chemistry , Sodium Chloride/pharmacology , Dentin/chemistry , Dentin-Bonding Agents/chemistry , Materials Testing , Tensile Strength
19.
Clin Oral Investig ; 28(3): 190, 2024 Mar 02.
Article En | MEDLINE | ID: mdl-38430333

OBJECTIVES: An adjunct in non-surgical periodontal therapy might be sodium hypochlorite (NaOCl)-based agents. The purpose of the present in vitro study was to get deeper knowledge on the influence of different parameters as time after mixing, pH, and chemical composition of an amino acid 0.475% NaOCl (AA-NaOCl) gel consisting of two components on its anti-biofilm activity. MATERIALS AND METHODS: Six-species biofilms were cultured for 5 days, before AA-NaOCl gel was applied. In the different series, the influence of the time after mixing of the two components before application, of the concentration of NaOCl in the gel mixture, of the pH of the gel mixture, and of an exchange of the amino acid component by hyaluronic acid (HA), was analyzed. RESULTS: Mixing time point experiments showed that the AA-NaOCl gel is capable of statistically significantly reducing colony-forming unit (cfu) counts up to 30 min after mixing, but only up to 20 min after mixing the reduction was more than 2 log10 cfu. The pH experiments indicate that a reduced pH results in a reduced activity of the NaOCl formulation. NaOCl concentrations in the formulation in the range from 0.475 to 0.2% provide adequate activity on biofilms. A HA/NaOCl gel was equally active against the biofilm as the AA-NaOCl gel. CONCLUSION: Mixing of the components should be made in a timeframe of 20 min before applications. An optimization of the composition of the NaOCl formulation might be possible and should be a topic in further in vitro studies. CLINICAL RELEVANCE: The AA-NaOCl gel formulation can be mixed up to 20 min before application. Further, the study indicates that the composition of the NaOCl gel formulation can be optimized.


Periodontal Diseases , Sodium Hypochlorite , Humans , Sodium Hypochlorite/pharmacology , Sodium Hypochlorite/chemistry , Enterococcus faecalis , Periodontal Diseases/drug therapy , Bacteria , Amino Acids/pharmacology
20.
J Appl Oral Sci ; 32: e20230381, 2024.
Article En | MEDLINE | ID: mdl-38537031

BACKGROUND: Denture biofilm acts as a potential reservoir for respiratory pathogens, considerably increasing the risk of lung infections, specifically aspiration pneumonia, mainly 48h after hospital admission. The establishment of a straightforward, affordable, and applicable hygiene protocol in a hospital environment for the effective control of denture biofilm can be particularly useful to prevent respiratory infections or reduce the course of established lung disease. OBJECTIVES: To evaluate the anti-biofilm effectiveness of denture cleaning protocols in hospitalized patients. METHODOLOGY: The maxillary complete dentures (MCDs) of 340 hospitalized participants were randomly cleaned once using one of the following 17 protocols (n=20): brushing with distilled water, toothpaste, or neutral liquid soap (controls); immersion in chemical solutions (1% sodium hypochlorite, alkaline peroxide, 0.12% or 2% chlorhexidine digluconate), or microwave irradiation (650 W for 3 min) combined or not with brushing. Before and after the application of the protocols, the biofilm of the intaglio surface of the MCDs was evaluated using two methods: denture biofilm coverage area (%) and microbiological quantitative cultures on blood agar and Sabouraud Dextrose Agar (CFU/mL). Data were subjected to the Wilcoxon and Kruskal-Wallis tests (α=0.05). RESULTS: All 17 protocols significantly reduced the percentage area of denture biofilm and microbial and fungal load (P<0.05). The highest percentage reductions in the area of denture biofilm were observed for 1% hypochlorite solution with or without brushing and for 2% chlorhexidine solution and microwave irradiation only in association with brushing (P<0.05). The greatest reductions in microbial and fungal load were found for the groups that used solutions of 2% chlorhexidine and 1% hypochlorite and microwave irradiation, regardless of the association with brushing (P<0.05). CONCLUSIONS: A single immersion for 10 min in 1% sodium hypochlorite, even in the absence of brushing, proved to be a straightforward, rapid, low-cost, and effective protocol for cleaning the dentures of hospitalized patients.


Chlorhexidine , Sodium Hypochlorite , Humans , Agar/pharmacology , Biofilms , Chlorhexidine/pharmacology , Denture Cleansers/pharmacology , Denture, Complete/microbiology , Dentures/microbiology , Hypochlorous Acid/pharmacology , Sodium Hypochlorite/pharmacology
...