Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
PeerJ ; 12: e17620, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952982

RESUMEN

Background: This study examined the effects of microbial agents on the enzyme activity, microbial community construction and potential functions of inter-root soil of aubergine (Fragaria × ananassa Duch.). This study also sought to clarify the adaptability of inter-root microorganisms to environmental factors to provide a theoretical basis for the stability of the microbiology of inter-root soil of aubergine and for the ecological preservation of farmland soil. Methods: Eggplant inter-root soils treated with Bacillus subtilis (QZ_T1), Bacillus subtilis (QZ_T2), Bacillus amyloliquefaciens (QZ_T3), Verticillium thuringiensis (QZ_T4) and Verticillium purpureum (QZ_T5) were used to analyse the effects of different microbial agents on the inter-root soils of aubergine compared to the untreated control group (QZ_CK). The effects of different microbial agents on the characteristics and functions of inter-root soil microbial communities were analysed using 16S rRNA and ITS (internal transcribed spacer region) high-throughput sequencing techniques. Results: The bacterial diversity index and fungal diversity index of the aubergine inter-root soil increased significantly with the application of microbial fungicides; gas exchange parameters and soil enzyme activities also increased. The structural and functional composition of the bacterial and fungal communities in the aubergine inter-root soil changed after fungicide treatment compared to the control, with a decrease in the abundance of phytopathogenic fungi and an increase in the abundance of beneficial fungi in the soil. Enhancement of key community functions, reduction of pathogenic fungi, modulation of environmental factors and improved functional stability of microbial communities were important factors contributing to the microbial stability of fungicide-treated aubergine inter-root soils.


Asunto(s)
Fungicidas Industriales , Fotosíntesis , Microbiología del Suelo , Fungicidas Industriales/farmacología , Fotosíntesis/efectos de los fármacos , Microbiota/efectos de los fármacos , Solanum melongena/microbiología , Raíces de Plantas/microbiología , Suelo/química , ARN Ribosómico 16S/genética
2.
BMC Plant Biol ; 24(1): 576, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890568

RESUMEN

BACKGROUND: Little leaf disease caused by phytoplasma infection is a significant threat to eggplant (also known as brinjal) cultivation in India. This study focused on the molecular characterisation of the phytoplasma strains and insect vectors responsible for its transmission and screening of brinjal germplasm for resistance to little leaf disease. RESULTS: Surveys conducted across districts in the Tamil Nadu state of India during 2021-2022 showed a higher incidence of phytoplasma during the Zaid (March to June), followed by Kharif (June to November) and Rabi (November to March) seasons with mean incidence ranging from 22 to 27%. As the name indicates, phytoplasma infection results in little leaf (reduction in leaf size), excessive growth of axillary shoots, virescence, phyllody, stunted growth, leaf chlorosis and witches' broom symptoms. PCR amplification with phytoplasma-specific primers confirmed the presence of this pathogen in all symptomatic brinjal plants and in Hishimonus phycitis (leafhopper), providing valuable insights into the role of leafhoppers in disease transmission. BLAST search and phylogenetic analysis revealed the phytoplasma strain as "Candidatus Phytoplasma trifolii". Insect population and disease dynamics are highly influenced by environmental factors such as temperature, relative humidity and rainfall. Further, the evaluation of 22 eggplant accessions revealed immune to highly susceptible responses where over 50% of the entries were highly susceptible. Finally, additive main effect and multiplicative interaction (AMMI) and won-where biplot analyses identified G18 as a best-performing accession for little leaf resistance due to its consistent responses across multiple environments. CONCLUSIONS: This research contributes essential information on little leaf incidence, symptoms, transmission and resistance profiles of different brinjal genotypes, which together ensure effective and sustainable management of this important disease of eggplants.


Asunto(s)
Resistencia a la Enfermedad , Phytoplasma , Enfermedades de las Plantas , Hojas de la Planta , Solanum melongena , Solanum melongena/microbiología , Solanum melongena/genética , Enfermedades de las Plantas/microbiología , Phytoplasma/fisiología , Resistencia a la Enfermedad/genética , Hojas de la Planta/microbiología , India , Filogenia , Animales , Hemípteros/microbiología , Incidencia , Insectos Vectores/microbiología
3.
Curr Genet ; 70(1): 7, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743270

RESUMEN

Fermented eggplant is a traditional fermented food, however lactic acid bacteria capable of producing exopolysaccharide (EPS) have not yet been exploited. The present study focused on the production and protective effects against oxidative stress of an EPS produced by Lacticaseibacillus paracasei NC4 (NC4-EPS), in addition to deciphering its genomic features and EPS biosynthesis pathway. Among 54 isolates tested, strain NC4 showed the highest EPS yield and antioxidant activity. The maximum EPS production (2.04 ± 0.11 g/L) was achieved by culturing in MRS medium containing 60 g/L sucrose at 37 °C for 48 h. Under 2 mM H2O2 stress, the survival of a yeast model Saccharomyces cerevisiae treated with 0.4 mg/mL NC4-EPS was 2.4-fold better than non-treated cells, which was in agreement with the catalase and superoxide dismutase activities measured from cell lysates. The complete genome of NC4 composed of a circular chromosome of 2,888,896 bp and 3 circular plasmids. The NC4 genome comprises more genes with annotated function in nitrogen metabolism, phosphorus metabolism, cell division and cell cycle, and iron acquisition and metabolism as compared to other reported L. paracasei. Of note, the eps gene cluster is not conserved across L. paracasei. Pathways of sugar metabolism for EPS biosynthesis were proposed for the first time, in which gdp pathway only present in few plant-derived bacteria was identified. These findings shed new light on the cell-protective activity and biosynthesis of EPS produced by L. paracasei, paving the way for future efforts to enhance yield and tailor-made EPS production for food and pharmaceutical industries.


Asunto(s)
Fermentación , Lacticaseibacillus paracasei , Estrés Oxidativo , Polisacáridos Bacterianos , Solanum melongena , Polisacáridos Bacterianos/biosíntesis , Polisacáridos Bacterianos/metabolismo , Solanum melongena/microbiología , Solanum melongena/genética , Solanum melongena/metabolismo , Lacticaseibacillus paracasei/metabolismo , Lacticaseibacillus paracasei/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Antioxidantes/metabolismo , Peróxido de Hidrógeno/metabolismo , Genoma Bacteriano , Alimentos Fermentados/microbiología , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/genética
4.
Plant Physiol Biochem ; 211: 108678, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38714126

RESUMEN

The consistently increasing use of zinc oxide nanoparticles (ZnONPs) in crop optimization practices and their persistence in agro-environment necessitate expounding their influence on sustainable agro-environment. Attempts have been made to understand nanoparticle-plant beneficial bacteria (PBB)- plant interactions; the knowledge of toxic impact of nanomaterials on soil-PBB-vegetable systems and alleviating nanotoxicity using PBB is scarce and inconsistent. This study aims at bio-fabrication of ZnONPs from Rosa indica petal extracts and investigates the impact of PBB on growth and biochemical responses of biofertilized eggplants exposed to phyto-synthesized nano-ZnO. Microscopic and spectroscopic techniques revealed nanostructure, triangular shape, size 32.5 nm, and different functional groups of ZnONPs and petal extracts. Inoculation of Pseudomonas fluorescens and Azotobacter chroococcum improved germination efficiency by 22% and 18% and vegetative growth of eggplants by 14% and 15% under NPs stress. Bio-inoculation enhanced total chlorophyll content by 36% and 14 %, increasing further with higher ZnONP concentrations. Superoxide dismutase and catalase activity in nano-ZnO and P. fluorescens inoculated eggplant shoots reduced by 15-23% and 9-11%. Moreover, in situ experiment unveiled distortion and accumulation of NPs in roots revealed by scanning electron microscope and confocal laser microscope. The present study highlights the phytotoxicity of biosynthesized ZnONPs to eggplants and demonstrates that PBB improved agronomic traits of eggplants while declining phytochemicals and antioxidant levels. These findings suggest that P. fluorescens and A. chroococcum, with NPs ameliorative activity, can be cost-effective and environment-friendly strategy for alleviating NPs toxicity and promoting eggplant production under abiotic stress, fulfilling vegetable demands.


Asunto(s)
Nanopartículas del Metal , Solanum melongena , Óxido de Zinc , Óxido de Zinc/farmacología , Solanum melongena/efectos de los fármacos , Solanum melongena/metabolismo , Solanum melongena/crecimiento & desarrollo , Solanum melongena/microbiología , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Pseudomonas fluorescens/efectos de los fármacos , Pseudomonas fluorescens/metabolismo , Azotobacter/efectos de los fármacos , Azotobacter/metabolismo , Estrés Fisiológico/efectos de los fármacos , Clorofila/metabolismo , Nanopartículas/química
5.
Artículo en Inglés | MEDLINE | ID: mdl-38683662

RESUMEN

A Gram-stain negative, aerobic, rod-shaped, motile and flagellated novel bacterial strain, designated MAHUQ-54T, was isolated from the rhizospheric soil of eggplant. The colonies were observed to be light pink coloured, smooth, spherical and 0.2-0.6 mm in diameter when grown on R2A agar medium for 2 days. MAHUQ-54T was able to grow at 15-40 °C, at pH 5.5-9.0 and in the presence of 0-0.5 % NaCl (w/v). The strain gave positive results for both catalase and oxidase tests. The strain was positive for hydrolysis of l-tyrosine, urea, Tween 20 and Tween 80. On the basis of the results of 16S rRNA gene sequence comparisons, the isolate was identified as a member of the genus Aquincola and is closely related to Aquincola tertiaricarbonis L10T (98.8 % sequence similarity) and Leptothrix mobilis Feox-1T (98.2 %). MAHUQ-54T has a draft genome size of 5 994 516 bp (60 contigs), annotated with 5348 protein-coding genes, 45 tRNA and 5 rRNA genes. The average nucleotide identity (ANI) and digital DNA-DNA hybridisation (dDDH) values between MAHUQ-54T and its closest phylogenetic neighbours were 75.8-83.3 and 20.8-25.3 %, respectively. In silico genome mining revealed that MAHUQ-54T has a significant potential for the production of novel natural products in the future. The genomic DNA G+C content was determined to be 70.4 %. The predominant isoprenoid quinone was ubiquinone-8. The major fatty acids were identified as C16  :  0, summed feature 3 (comprising C16  :  1ω7c and/or C16  :  1ω6c) and summed feature 8 (comprising C18  :  1ω7c and/or C18  :  1ω6c). On the basis of dDDH, ANI value, genotypic analysis, chemotaxonomic and physiological data, strain MAHUQ-54T represents a novel species within the genus Aquincola, for which the name Aquincola agrisoli sp. nov. is proposed, with MAHUQ-54T (=KACC 22001T = CGMCC 1.18515T) as the type strain.


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Genoma Bacteriano , Filogenia , ARN Ribosómico 16S , Rizosfera , Análisis de Secuencia de ADN , Microbiología del Suelo , Solanum melongena , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Solanum melongena/microbiología , Hibridación de Ácido Nucleico , Familia de Multigenes
6.
Sci Rep ; 12(1): 20392, 2022 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-36437280

RESUMEN

Chili (Capsicum annuum L.) and brinjal (Solanum melongena L.) are the most widely grown solanaceous crops in the world. However, their production has reduced over several years due to the attack of various fungal and bacterial pathogens and various abiotic factors. Still, the major constrain in their production are pathogens with fungal etiology, especially the fungal wilt of solanaceous crops. Fusarium oxysporum and Fusarium solani have been previously identified as the pathogens causing wilt disease in chili and brinjal. Recently, a new fungal pathogen F. equiseti has been reported as the causal agent of wilt disease infecting chili. The current study focused on identifying fungal pathogens associated with the wilted plants of chili and brinjal, collected from different parts of the Himalayan region of Kashmir valley, through morpho-cultural and molecular characterization. DNA extraction, PCR amplification, and sequencing were performed on various isolates. DNA barcoding using the internal transcribed spacer region (ITS) was used to identify the pathogen followed by the pathogenicity test. Further confirmation of the pathogen was done by sequencing of transcription elongation factor (TEF) and Calmodulin (CAL2). In current study Fusarium chlamydosporum has been reported as the wilt causing pathogen of chili and brinjal for the first time in Kashmir Himalayas.


Asunto(s)
Capsicum , Solanum melongena , Solanum melongena/microbiología , Verduras , Productos Agrícolas
7.
Biometals ; 35(3): 601-616, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35359198

RESUMEN

In this study, a novel, non-toxic, eco-friendly zinc oxide nanoparticles (ZnO-NPs) was used instead of the synthetic fungicides widely used to control the destructive phytopathogenic fungus Fusarium oxysporum, the causative agent of wilt disease in Solanum melongena L. Herein, the biosynthesized ZnO-NPs was carried out by Penicillium expansum ATCC 7861. In vitro, mycosynthesized ZnO-NPs exhibited antifungal activity against Fusarium oxysporum. In vivo, ZnO-NPs suppressed Fusarium wilt disease in cultivated Solanum melongena L. by decreasing the disease severity with 75% of plant protection. Moreover, ZnO-NPs stimulated the recovery of eggplant as an indicated by improving of morphological and metabolic indicators including plant height(152.5%), root length(106.6%), plant fresh biomass (146%), chlorophyll a (102.8%), chlorophyll b (67.86%), total soluble carbohydrates (48.5%), total soluble protein (81.8%), phenol (10.5%), antioxidant activity and isozymes compared with infected control. Therefore, this study suggests using mycosynthesized ZnO-NPs as an alternative to synthetic fungicides not only to eradicate the Fusarium wilt disease in cultivated eggplant (Solanum melongena) but also to promote the growth parameters and metabolic aspects.


Asunto(s)
Fungicidas Industriales , Fusarium , Nanopartículas , Solanum melongena , Óxido de Zinc , Clorofila A , Fungicidas Industriales/farmacología , Solanum melongena/microbiología , Óxido de Zinc/farmacología
8.
Curr Microbiol ; 79(5): 146, 2022 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-35344085

RESUMEN

Streptomyces strains were isolated from rhizosphere soil and evaluated for in vitro plant growth and antagonistic potential against Ralstonia solanacearum. Based on their in vitro screening, seven Streptomyces were evaluated for plant growth promotion (PGP) and biocontrol efficacy by in-planta and pot culture study. In the in-planta study, Streptomyces-treated eggplant seeds showed better germination percentage, plant growth, and disease occurrence against R. solanacearum than the control treatment. Hence, all seven Streptomyces cultures were developed as a bioformulation by farmyard manure and used for pot culture study. The highest plant growth, weight, and total chlorophyll content were observed in UP1A-1-treated eggplant followed by UP1A-4, UT4A-49, and UT6A-57. Similarly, the maximum biocontrol efficacy was observed in UP1A-1-treated eggplants against bacterial wilt. The biocontrol potential of Streptomyces is also confirmed through metabolic responses by assessing the activities of the defense-related enzymes peroxidase (POX), polyphenol oxidase (PPO), and phenylalanine ammonia-lyase (PAL) and as well as the levels of total phenol. Treatment with UP1A-1/ UT4A-49 and challenge with R. solanacearum led to maximum changes in the activities of POX, PPO, and PAL and the levels of total phenol in the eggplants at different time intervals. Alterations in enzymes of UP1A-1 treatment were related to early defense responses in eggplant. Therefore, the treatment with UP1A-1 significantly delayed the establishment of bacterial wilt in eggplant. Altogether, the present study suggested that the treatment of Streptomyces maritimus UP1A-1 fortified farmyard manure has improved the plant growth and stronger disease control against R. solanacearum on eggplant.


Asunto(s)
Ralstonia solanacearum , Solanum melongena , Streptomyces , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Rizosfera , Solanum melongena/microbiología
9.
Int J Mol Sci ; 22(24)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34948076

RESUMEN

Solanum melongena L. (eggplant) bacterial wilt is a severe soil borne disease. Here, this study aimed to explore the regulation mechanism of eggplant bacterial wilt-resistance by transcriptomics with weighted gene co-expression analysis network (WGCNA). The different expression genes (DEGs) of roots and stems were divided into 21 modules. The module of interest (root: indianred4, stem: coral3) with the highest correlation with the target traits was selected to elucidate resistance genes and pathways. The selected module of roots and stems co-enriched the pathways of MAPK signalling pathway, plant pathogen interaction, and glutathione metabolism. Each top 30 hub genes of the roots and stems co-enriched a large number of receptor kinase genes. A total of 14 interesting resistance-related genes were selected and verified with quantitative polymerase chain reaction (qPCR). The qPCR results were consistent with those of WGCNA. The hub gene of EGP00814 (namely SmRPP13L4) was further functionally verified; SmRPP13L4 positively regulated the resistance of eggplant to bacterial wilt by qPCR and virus-induced gene silencing (VIGS). Our study provides a reference for the interaction between eggplants and bacterial wilt and the breeding of broad-spectrum and specific eggplant varieties that are bacterial wilt-resistant.


Asunto(s)
Resistencia a la Enfermedad/genética , RNA-Seq , Ralstonia solanacearum , Solanum melongena/fisiología , Regulación de la Expresión Génica de las Plantas , Glutatión/metabolismo , Interacciones Huésped-Patógeno , Sistema de Señalización de MAP Quinasas , Enfermedades de las Plantas , Solanum melongena/genética , Solanum melongena/metabolismo , Solanum melongena/microbiología
10.
Plant Physiol Biochem ; 158: 486-496, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33298367

RESUMEN

The continuous deterioration of arable lands by metal pollution compels finding suitable strategies to increase plant tolerance under contaminated regimes. Current study was designed to examine the synergistic role of Bacillus subtilis FBL-10 and silicon (Si) with respect to mitigation of lead (Pb) induced phytotoxicity in Solanum melongena L. Lead stress (75 mg kg-1) reduced chlorophyll (Chl) content, photosynthetic rate and gas exchange characteristics of S. melongena plants. The Si and B. subtilis FBL-10 individually upgraded all the above-mentioned growth attributes. However, co-application of Si (50 mg kg-1) and B. subtilis FBL-10 significantly improved biochemical and growth attributes of Pb challenged plants. The abridged levels of oxidative markers including hydrogen peroxide (H2O2), and malondialdehyde (MDA) besides reduced Pb accumulation in foliage tissues, were recorded in Si and microbe assisted plants. Furthermore, plants inoculated with B. subtilis FBL-10 alone or in combination with Si showed increment in total soluble proteins, photosynthetic rate and gas exchange attributes. The inoculated plants treated with Si exhibited higher level of auxins and improved activity of antioxidant enzymes under Pb stress. Present research elucidates interactive role of B. subtilis FBL-10 and Si in reduction of Pb toxicity in S. melongena plants. Alone application of Si or B. subtilis FBL-10 was less effective for attenuation of Pb stress; however, synergism between both phyto-protectants demonstrated fabulous ability for Pb stress assuagement. Consequently, executions of field studies become indispensable to comprehend the efficacy of Si applied alone or in combination with plant growth promoting bacteria (PGPB) like B. subtilis FBL-10. From current research, it is concluded that the interaction of Si and PGPB seems an auspicious technique and eco-friendly approach to enhance metal tolerance in crop plants.


Asunto(s)
Bacillus subtilis/fisiología , Plomo/toxicidad , Silicio , Solanum melongena/fisiología , Antioxidantes/metabolismo , Clorofila/metabolismo , Peróxido de Hidrógeno , Estrés Oxidativo , Silicio/farmacología , Solanum melongena/efectos de los fármacos , Solanum melongena/microbiología
11.
Plant Cell Rep ; 39(9): 1235-1248, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32666195

RESUMEN

KEY MESSAGE: Clarification of the genome composition of the potato + eggplant somatic hybrids cooperated with transcriptome analysis efficiently identified the eggplant gene SmPGH1 that contributes to bacterial wilt resistance. The cultivated potato is susceptible and lacks resistance to bacterial wilt (BW), a soil-borne disease caused by Ralstonia solanacearum. It also has interspecies incompatibility within Solanaceae plants. Previously, we have successfully conducted the protoplast fusion of potato and eggplant and regenerated somatic hybrids that showing resistance to eggplant BW. For efficient use of these novel germplasm and improve BW resistance of cultivated potato, it is essential to dissect the genetic basis of the resistance to BW obtained from eggplant. The strategy of combining genome composition and transcriptome analysis was established to explore the gene that confers BW resistance to the hybrids. Genome composition of the 90 somatic hybrids was studied using genomic in situ hybridization coupled with 44 selected eggplant-specific SSRs (smSSRs). The analysis revealed a diverse set of genome combinations among the hybrids and showed a possibility of integration of alien genes along with the detection of 7 smSSRs linked to BW resistance (BW-linked SSRs) in the hybrids. Transcriptome comparison between the resistant and susceptible gene pools identified a BW resistance associated gene, smPGH1, which was significantly induced by R. solanacearum in the resistant pool. Remarkably, smPGH1 was co-localized with the BW-linked SSR emh01E15 on eggplant chromosome 9, which was further confirmed that smPGH1 was activated by R. solanacearum only in the resistant hybrids. Taken together, the identified gene smPGH1 and BW-linked SSRs have provided novel genetic resources that will aid in potato breeding for BW resistance.


Asunto(s)
Resistencia a la Enfermedad/genética , Genoma de Planta , Proteínas de Plantas/genética , Solanum melongena/genética , Solanum tuberosum/genética , Cromosomas de las Plantas , Regulación de la Expresión Génica de las Plantas , Células Híbridas , Repeticiones de Microsatélite , Enfermedades de las Plantas/microbiología , Ralstonia solanacearum/patogenicidad , Solanum melongena/microbiología , Solanum tuberosum/microbiología
12.
Genes (Basel) ; 11(7)2020 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-32635424

RESUMEN

Eggplant is the second most important solanaceous berry-producing crop after tomato. Despite mapping studies based on bi-parental progenies and GWAS approaches having been performed, an eggplant intraspecific high-resolution map is still lacking. We developed a RIL population from the intraspecific cross '305E40', (androgenetic introgressed line carrying the locus Rfo-Sa1 conferring Fusarium resistance) x '67/3' (breeding line whose genome sequence was recently released). One hundred and sixty-three RILs were genotyped by a genotype-by-sequencing (GBS) approach, which allowed us to identify 10,361 polymorphic sites. Overall, 267 Gb of sequencing data were generated and ~773 M Illumina paired end (PE) reads were mapped against the reference sequence. A new linkage map was developed, including 7249 SNPs assigned to the 12 chromosomes and spanning 2169.23 cM, with iaci@liberoan average distance of 0.4 cM between adjacent markers. This was used to elucidate the genetic bases of seven traits related to anthocyanin content in different organs recorded in three locations as well as seed vigor. Overall, from 7 to 17 QTLs (at least one major QTL) were identified for each trait. These results demonstrate that our newly developed map supplies valuable information for QTL fine mapping, candidate gene identification, and the development of molecular markers for marker assisted selection (MAS) of favorable alleles.


Asunto(s)
Antocianinas/biosíntesis , Cromosomas de las Plantas/genética , Ligamiento Genético , Sitios de Carácter Cuantitativo , Semillas/genética , Solanum melongena/genética , Antocianinas/genética , Resistencia a la Enfermedad , Fusarium/patogenicidad , Pigmentación , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Solanum melongena/microbiología , Solanum melongena/fisiología
13.
Plant J ; 102(2): 340-352, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31793077

RESUMEN

The non-specific lipid transfer proteins (nsLTPs) are multifunctional seed proteins engaged in several different physiological processes. The nsLTPs are stabilized by four disulfide bonds and exhibit a characteristic hydrophobic cavity, which is the primary lipid binding site. While these proteins are known to transfer lipids between membranes, the mechanism of lipid transfer has remained elusive. Four crystal structures of nsLTP from Solanum melongena, one in the apo-state and three myristic acid bound states were determined. Among the three lipid bound states, two lipid molecules were bound on the nsLTP surface at different positions and one was inside the cavity. The lipid-dependent conformational changes leading to opening of the cavity were revealed based on structural and spectroscopic data. The surface-bound lipid represented a transient intermediate state and the lipid ultimately moved inside the cavity through the cavity gate as revealed by molecular dynamics simulations. Two critical residues in the loop regions played possible 'gating' role in the opening and closing of the cavity. Antifungal activity and membrane permeabilization effect of nsLTP against Fusarium oxysporum suggested that it could possibly involve in bleaching out the lipids. Collectively, these studies support a model of lipid transfer mechanism by nsLTP via intermediate states.


Asunto(s)
Proteínas Portadoras/química , Fusarium/fisiología , Metabolismo de los Lípidos , Enfermedades de las Plantas/inmunología , Solanum melongena/inmunología , Cristalización , Simulación de Dinámica Molecular , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/química , Conformación Proteica , Solanum melongena/microbiología
14.
J Exp Bot ; 70(19): 5343-5354, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31587071

RESUMEN

Bacterial wilt (BW) caused by Ralstonia solanacearum is a serious disease affecting the production of Solanaceae species, including eggplant (Solanum melongena). However, few resistance genes have been identified in eggplant, and therefore the underlying mechanism of BW resistance remains unclear. Hence, we investigated a spermidine synthase (SPDS) gene from eggplant and created knock-down lines with virus-induced gene silencing. After eggplant was infected with R. solanacearum, the SmSPDS gene was induced, concurrent with increased spermidine (Spd) content, especially in the resistant line. We speculated that Spd plays a significant role in the defense response of eggplant to BW. Moreover, using the yeast one-hybrid approach and dual luciferase-based transactivation assay, an R2R3-MYB transcription factor, SmMYB44, was identified as directly binding to the SmSPDS promoter, activating its expression. Overexpression of SmMYB44 in eggplant induced the expression of SmSPDS and Spd content, increasing the resistance to BW. In contrast, the SmMYB44-RNAi transgenic plants showed more susceptibility to BW compared with the control plants. Our results provide insight into the SmMYB44-SmSPDS-Spd module involved in the regulation of resistance to R. solanacearum. This research also provides candidates to enhance resistance to BW in eggplant.


Asunto(s)
Regulación de la Expresión Génica , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Ralstonia solanacearum/fisiología , Solanum melongena/genética , Espermidina Sintasa/genética , Factores de Transcripción/genética , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/microbiología , Solanum melongena/enzimología , Solanum melongena/microbiología , Espermidina Sintasa/metabolismo , Factores de Transcripción/metabolismo
15.
Ying Yong Sheng Tai Xue Bao ; 30(9): 3195-3202, 2019 Sep.
Artículo en Chino | MEDLINE | ID: mdl-31529895

RESUMEN

Arbuscular mycorrhizal fungi (AMF) or plant symbiotic actinomycetes (PSA) play an important role in stimulating plant growth, antagonizing pathogens, tolerating stress, and controlling plant disease. However, whether there is a synergistic effect between AMF and PSA in promoting plant growth and controlling disease is worth exploring. The aim of this study was to evaluate the effects of AMF and PSA on growth-promotion and controlling disease on Solanaceae vegetables and to obtain effective AMF+PSA combinations. Under greenhouse pot conditions, chili (Capsicum annu-um, cultivar: Yangjiaojiao) and eggplant (Solanum melongena, cultivar: Heiguanchangqie) were inoculated with or without AMF Funneliformis mosseae (Fm), Glomus versiforme (Gv), PSA Streptomyces globosus H6-1, Streptomyces rochei S2-2, Streptomyces coralus D11-4 or/and pathogenic fungi Botrytis cinerea. There were a total of 48 treatments. The growth, disease and root symbiont development of plants were determined. The results showed that Fm and PSA could promote each other's colonization, while Gv and PSA inhibited each other. Compared with the control, AMF, PSA and AMF+PSA improved the photosynthetic performance, root activity, and growth of chili and eggplant. Under the condition of inoculation with pathogenic fungi, AMF and/or PSA treatment significantly increased growth and reduced the disease index of plants, with the effects of PSA being greater than that of AMF. Fm+H6-1 combination had the best effect on the growth-promotion and controlling disease of chili plants, with the controlling effect on gray mold reaching 69.1%. Fm+ D11-4 had the best effect on the growth promotion and controlling disease of eggplant, the controlling effect of which on gray mold reached 75.5%. Fm+H6-1 andFm+D11-4 were efficient combinations of chili and eggplant for promoting growth and controlling disease under the conditions of this experiment. Further tests in field are needed.


Asunto(s)
Actinobacteria , Capsicum/microbiología , Micorrizas , Solanum melongena/microbiología , Actinomyces , Hongos , Raíces de Plantas , Simbiosis
16.
Lett Appl Microbiol ; 69(5): 358-365, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31508838

RESUMEN

Leaf blight and fruit rot disease caused by Phomopsis vexans is a devastating disease of brinjal. The detection of P. vexans in plant parts and seeds of brinjal can be complicated, mainly when the inoculum is present at low levels and/or overgrown by fast-growing saprophytic fungi or other seed-borne fungi. A PCR-based diagnostic method was developed with specific primers designed based on sequence data of a region consisting of the 5·8S RNA gene and internal transcribed spacers, ITS 1 and ITS 2 of nuclear ribosomal RNA gene (rDNA) repeats of P. vexans. The efficiency and specificity of primer pairs PvexF/PvexR designed were established by PCR analysis of DNA from P. vexans strains isolated from India and fungal isolates of other genera. A single amplification product of 323-bp was detected from DNA of P. vexans isolates. No cross-reaction was observed with any of the other isolates tested. The specific primers designed and employed in PCR detected P. vexans up to 10 pg from DNA isolated from pure culture. This is the first report on the development of species-specific PCR assay for identification and detection of P. vexans. Thus, PCR-based assay developed is very specific, rapid, confirmatory and sensitive tool for the detection of pathogen P. vexans at early stages. SIGNIFICANCE AND IMPACT OF THE STUDY: Phomopsis vexans is an important seed-borne pathogenic fungus responsible for leaf blight and fruit rot in brinjal. Current detection methods, based on culture and morphological identification is time consuming, laborious and are not always reliable. A PCR-based diagnostic method was developed with species-specific primers designed based on sequence data of a region consisting of the 5·8S RNA gene and internal transcribed spacers, ITS 1 and ITS 2 of nuclear ribosomal RNA gene (rDNA) repeats of P. vexans.


Asunto(s)
Ascomicetos/aislamiento & purificación , Enfermedades de las Plantas/microbiología , Reacción en Cadena de la Polimerasa/métodos , Solanum melongena/microbiología , Ascomicetos/clasificación , Ascomicetos/genética , Cartilla de ADN/genética , ADN de Hongos/genética , ADN Ribosómico/genética , Frutas/microbiología , India , Hojas de la Planta/microbiología , Semillas/microbiología
17.
FEMS Microbiol Ecol ; 95(3)2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30863859

RESUMEN

Understanding the ecology of phosphate solubilizing bacteria (PSBs) is critical for developing better strategies to increase crop productivity. In this study, the diversity of PSBs and of the total bacteria in the rhizosphere of eggplant (Solanum melongena L.) cultivated in organic, integrated and conventional farming systems was compared at four developmental stages of its lifecycle. Both selective culture and high-throughput sequencing analysis of 16S rRNA amplicons indicated that Enterobacter with strong or very strong in vivo phosphate solubilization activities was enriched in the rhizosphere during the fruiting stage. The high-throughput sequencing analysis results demonstrated that farming systems explained 23% of total bacterial community variation. Plant development and farming systems synergistically shaped the rhizospheric bacterial community, in which the degree of variation influenced by farming systems decreased over the plant development phase from 56% to 26.3% to 16.3%, and finally to no significant effect as the plant reached at fruiting stage. Pangenome analysis indicated that two-component and transporter systems varied between the rhizosphere and soil PSBs. This study elucidated the complex interactions among farming systems, plant development and rhizosphere microbiomes.


Asunto(s)
Agricultura/métodos , Bacterias/metabolismo , Fosfatos/metabolismo , Solanum melongena/crecimiento & desarrollo , Solanum melongena/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Enterobacter/crecimiento & desarrollo , Enterobacter/metabolismo , Microbiota/genética , ARN Ribosómico 16S/genética , Rizosfera , Microbiología del Suelo
18.
PLoS One ; 13(11): e0205713, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30462653

RESUMEN

Eggplant or brinjal (Solanum melongena) is a popular vegetable grown throughout Asia where it is attacked by brinjal fruit and shoot borer (BFSB) (Leucinodes orbonalis). Yield losses in Bangladesh have been reported up to 86% and farmers rely primarily on frequent insecticide applications to reduce injury. Bangladesh has developed and released four brinjal varieties producing Cry1Ac (Bt brinjal) and is the first country to do so. We report on the first replicated field trials comparing four Bt brinjal varieties to their non-Bt isolines, with and without standard insecticide spray regimes. Results of the two-year study (2016-17) indicated Bt varieties had increased fruit production and minimal BFSB fruit infestation compared with their respective non-Bt isolines. Fruit infestation for Bt varieties varied from 0-2.27% in 2016, 0% in 2017, and was not significantly affected by the spray regime in either year. In contrast, fruit infestation in non-Bt lines reached 36.70% in 2016 and 45.51% in 2017, even with weekly spraying. An economic analysis revealed that all Bt lines had higher gross returns than their non-Bt isolines. The non-sprayed non-Bt isolines resulted in negative returns in most cases. Maximum fruit yield was obtained from sprayed plots compared to non-sprayed plots, indicating that other insects such as whiteflies, thrips and mites can reduce plant vigor and subsequent fruit weight. Statistically similar densities of non-target arthropods, including beneficial arthropods, were generally observed in both Bt and non-Bt varieties. An additional trial that focused on a single Bt variety and its isoline provided similar results on infestation levels, with and without sprays, and similarly demonstrated higher gross returns and no significant effects on non-target arthropods. Together, these studies indicate that the four Bt brinjal lines are extremely effective at controlling BFSB in Bangladesh without affecting other arthropods, and provide greater economic returns than their non-Bt isolines.


Asunto(s)
Bacillus thuringiensis/fisiología , Frutas/economía , Frutas/crecimiento & desarrollo , Mariposas Nocturnas/fisiología , Control Biológico de Vectores , Solanum melongena/microbiología , Solanum melongena/parasitología , Animales , Bacillus thuringiensis/efectos de los fármacos , Bangladesh , Frutas/efectos de los fármacos , Insecticidas/toxicidad , Mariposas Nocturnas/efectos de los fármacos , Plantas Modificadas Genéticamente , Solanum melongena/efectos de los fármacos , Solanum melongena/genética
19.
Arch Virol ; 163(12): 3409-3414, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30244289

RESUMEN

A lytic Ralstonia solanacearum-infecting phage designated Ralstonia phage RsoP1IDN was isolated from soil in Indonesia. The phage has a linear double-stranded DNA genome of 41,135 bp with 413-bp terminal repeats, and contains 41 annotated open reading frames. The phage is most closely related to Ralstonia phage RSB1, but different from RSB1 mainly in containing a putative HNH homing endonuclease and having a narrower host range. Our phylogenetic and genomic analyses revealed that both phages RsoP1IDN and RSB1 belong to the genus Pradovirus or a new genus, and not Phikmvvirus as previously reported for phage RSB1. RsoP1IDN is the first sequenced and characterized R. solanacearum-infecting phage isolated from Indonesia in the proposed species Ralstonia virus RsoP1IDN.


Asunto(s)
Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Especificidad del Huésped , Podoviridae/genética , Ralstonia solanacearum/virología , Bacteriófagos/clasificación , Bacteriófagos/fisiología , Genoma Viral , Indonesia , Sistemas de Lectura Abierta , Filogenia , Enfermedades de las Plantas/microbiología , Podoviridae/clasificación , Podoviridae/aislamiento & purificación , Podoviridae/fisiología , Ralstonia solanacearum/fisiología , Solanum melongena/microbiología
20.
FEMS Microbiol Ecol ; 94(12)2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30219893

RESUMEN

In the last few decades, many studies have revealed the potential role of arthropod bacterial endosymbionts in shaping the host range of generalist herbivores and their performance on different host plants, which, in turn, might affect endosymbiont distribution in herbivore populations. We tested this by measuring the prevalence of endosymbionts in natural populations of the generalist spider mite Tetranychus urticae on different host plants. Focusing on Wolbachia, we then analysed how symbionts affected mite life-history traits on the same host plants in the laboratory. Overall, the prevalences of Cardinium and Rickettsia were low, whereas that of Wolbachia was high, with the highest values on bean and eggplant and the lowest on morning glory, tomato and zuchini. Although most mite life-history traits were affected by the plant species only, Wolbachia infection was detrimental for the egg-hatching rate on morning glory and zucchini, and led to a more female-biased sex ratio on morning glory and eggplant. These results suggest that endosymbionts may affect the host range of polyphagous herbivores, both by aiding and hampering their performance, depending on the host plant and on the life-history trait that affects performance the most. Conversely, endosymbiont spread may be facilitated or hindered by the plants on which infected herbivores occur.


Asunto(s)
Ipomoea nil/microbiología , Ipomoea nil/parasitología , Solanum lycopersicum/microbiología , Solanum lycopersicum/parasitología , Solanum melongena/microbiología , Solanum melongena/parasitología , Tetranychidae/microbiología , Wolbachia/metabolismo , Animales , Bacteroidetes/metabolismo , Fabaceae/microbiología , Fabaceae/parasitología , Femenino , Especificidad del Huésped , Rickettsia/metabolismo , Simbiosis/fisiología , Tetranychidae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...