Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 759
Filtrar
1.
BMC Plant Biol ; 24(1): 754, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39107692

RESUMEN

BACKGROUND: This study aimed to evaluate the suitability of using drain water as a source of irrigation and its effects along with salicylic acid on morphological, anatomical, physico-chemical as well as yield attributes of potato. For this study, potato tubers were grown in pots and irrigated with different concentrations of drain water. Salicylic acid treatments vis. 0, 0.5 and 1.0 mM were applied foliarly. Pre- and post-harvest analysis was carried out to determine different attributes of soil, water and plants after 60 days. RESULTS: The growth of potato plant was increased as the concentration of SA increased through increasing shoot length, fresh/dry weight and tuber number/plant. In this research work, plant respond to overcome metal stresses by up regulating antioxidant defense system such as, peroxidase, catalase and superoxide dismutase) by application of highest treatment of SA when irrigated with 6% drain water. Plants accumulated the highest concentrations of Cd, Cr, and Pb in the leaves when treated with 1 mM of SA, compared to other plant parts. It was observed that photosynthetic pigment enhanced in 6% drain water treated plants when applied with 1mM SA as compared to control. An increase in epidermis and cortical cell thickness, as well as stomatal closure, was observed, helping to maintain water loss under stress conditions. CONCLUSIONS: According to these results, it can be suggested that SA is potent signaling molecule can play an essential role in maintaining potato growth when irrigated with drain water containing heavy metals through stimulating metal up take and up regulation of antioxidant enzymes.


Asunto(s)
Riego Agrícola , Hojas de la Planta , Ácido Salicílico , Solanum tuberosum , Aguas Residuales , Solanum tuberosum/efectos de los fármacos , Solanum tuberosum/crecimiento & desarrollo , Ácido Salicílico/farmacología , Hojas de la Planta/efectos de los fármacos , Riego Agrícola/métodos , Tubérculos de la Planta/efectos de los fármacos , Tubérculos de la Planta/crecimiento & desarrollo , Tubérculos de la Planta/anatomía & histología , Antioxidantes/metabolismo
2.
Huan Jing Ke Xue ; 45(7): 4218-4227, 2024 Jul 08.
Artículo en Chino | MEDLINE | ID: mdl-39022968

RESUMEN

The potato planting area of Guizhou Province ranks second in China. However, due to factors such as climatic conditions and unbalanced fertilization, soil organic matter in potato fields is consumed rapidly and has a large deficit, which affects soil biological function and soil fertility. Biochar and organic fertilizer are effective ways to supplement foreign aid organic matter to improve soil quality. However, the differences in soil fertility and microbial community structure and their relationships under the conditions of organic fertilizer or biochar combined with chemical fertilizer are not clear. In this study, three treatments of conventional fertilization (NPK), increased application of biochar (NPKB), and increased application of organic fertilizer (NPKO) were set up to investigate the characteristics of potato rhizosphere soil, bacterial community composition, and diversity; to analyze the effects of these factors on the soil integrated fertility index; and to explore the direct and indirect effects of IFI on soil fertility and bacterial community structure differences between treatments and their driving factors. The results showed that soil pH, available phosphorus (AP), available potassium (AK), total nitrogen (TN), organic carbon (SOC), and C/N ratio were significantly higher in the NPKB and NPKO treatments than in the NPK treatment (P<0.05). Soil IFI was greatest for NPKO, followed by NPKB and least for the NPK treatment. A total of 8 214 ASVs were obtained from all the soil samples, belonging to 26 phyla, 75 classes, 165 orders, 176 families, and 251 genera (excluding unidentified fungi). Proteobacteria, Actinobacteria, and Chloroflexi were the dominant phyla, accounting for 54.85% of all ASVs. Compared to that in the NPK and NPKB treatments, the NPKO treatment had the highest bacterial diversity and number of significantly different taxa, and soil AN, AP, AK, SOC, TN, and IFI were significant correlates of bacterial diversity index (P<0.05). Additionally, pH, TN, and SOC were significant influencers of bacterial taxa differences (P<0.05), with importance ranked as TN (70.59%) > SOC (49.42%) > pH (27.08%). Structural equations suggested that pH-related soil properties and bacterial community diversity were the direct pathways influencing IFI, and soil pH-related soil characteristics could also indirectly affect IFI by affecting bacterial Shannon diversity. These results indicate that soil fertility and bacterial community structure were significantly different and correlated between the biochar and organic fertilizer addition treatments and that pH and bacterial community diversity were the key factors influencing IFI, with the NPKO treatment in particular having the best effect on improving IFI. Considering the effect of soil fertilization and the functional group of bacteria, NPKO is the recommended combination for the best synergistic effect of soil fertilization, that is, N 150 kg·hm-2+P2O5 135 kg·hm-2+K2O 135 kg·hm-2+organic fertilizer 6.6 t·hm-2.


Asunto(s)
Carbono , Carbón Orgánico , Fertilizantes , Microbiología del Suelo , Suelo , Carbón Orgánico/química , Suelo/química , Solanum tuberosum/crecimiento & desarrollo , Bacterias/clasificación , Bacterias/crecimiento & desarrollo , China , Nitrógeno , Rizosfera , Compuestos Orgánicos , Microbiota/efectos de los fármacos , Fósforo
3.
J Environ Manage ; 366: 121796, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39008925

RESUMEN

Common wastewater treatment strategies in the food industry do not include efficient remediation strategies for nitrogen, phosphorous and organic carbon. Incorporating microalgae in water treatment plants is rising in popularity because of their high nutrient and trace element uptake driven by light. In this study, four different side streams from an Austrian potato processing company have been screened for their applicability of microalgal cultivation. The side streams were assessed for Chlorella vulgaris growth and their requirement of any additional pretreatment or media supplementation. One side stream specifically, called blanching water II, a stream generated by boiling the potatoes for ease of peeling, turned out very useful to cultivate Chlorella vulgaris and concomitantly remedy the wastewater. Compared to a state-of-the-art cultivation in BG11, cultivating Chlorella vulgaris in blanching water II led to a 45 % increase in specific growth rate of 1.29 day-1 and a 48% increase in biomass productivity to 294.6 mg/L/day, while all nitrogen and phosphate present in the side stream were metabolized. Overall, the results demonstrate that the water remediation process for blanching water II shows vast potential in regard to water purification and waste to value approaches.


Asunto(s)
Chlorella vulgaris , Solanum tuberosum , Chlorella vulgaris/metabolismo , Chlorella vulgaris/crecimiento & desarrollo , Solanum tuberosum/crecimiento & desarrollo , Nitrógeno/metabolismo , Purificación del Agua/métodos , Microalgas/metabolismo , Microalgas/crecimiento & desarrollo , Aguas Residuales , Biomasa , Fósforo/metabolismo
4.
PLoS One ; 19(7): e0306625, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39083550

RESUMEN

Integrated nutrient management and crop rotation are important farming practices, which enhance the nutrient use efficiency of crops and reduce the incidence of diseases and insect pests. The study was carried out to address the gap in using integrated nutrient management in crop rotation systems for soil qualities and crop yield improvement. That was done by adjusting the balance ratio of dry bio-slurry and nitrogen fertilizers. The experiment was containing ten levels; Control (0,0), recommended nitrogen, 50% dry-bio slurry, 100% dry-bio slurry, 75% dry-bio slurry, 75% dry-bio slurry+25% recommended nitrogen, 50% dry-bio slurry+50% recommended nitrogen, 25% dry-bio slurry+75% recommended nitrogen, 100% dry-bio slurry + 25% recommended nitrogen and 100% dry-bio slurry + 50% recommended nitrogen that was laid out in randomized complete block design with three replications for three years. The data on soil properties and yield components of potatoes and wheat were collected and analyzed using statistical analysis system software 9.4. An application of dry bio-slurry with nitrogen fertilizer was significantly affected both crop yield and soil properties in the rotation system. The application of 25% dry bio-slurry with 75% recommended nitrogen gave the highest tuber yield of potato (27.6 tha-1) as compared to control. Similarly, using 100% and 75% sole dry bio-slurry resulted in the highest grain yield (3.85 tha-1) and above-ground biomass (9.59 tha-1) of wheat. The combination of 25% dry bio-slurry with 75% recommended nitrogen scored the highest net benefit (2889.2 US$) with an acceptable marginal return (4463.3%) via by improving crops yield in the system. So, an application of 25% dry bio-slurry with 75% recommended nitrogen could be promoted for yield-soil improvement in the study area and similar agroecology.


Asunto(s)
Producción de Cultivos , Productos Agrícolas , Fertilizantes , Nitrógeno , Suelo , Solanum tuberosum , Triticum , Fertilizantes/análisis , Triticum/crecimiento & desarrollo , Triticum/metabolismo , Nitrógeno/metabolismo , Nitrógeno/análisis , Suelo/química , Solanum tuberosum/crecimiento & desarrollo , Solanum tuberosum/metabolismo , Producción de Cultivos/métodos , Productos Agrícolas/crecimiento & desarrollo , Agricultura/métodos
5.
Theor Appl Genet ; 137(8): 180, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980417

RESUMEN

KEY MESSAGE: De novo genotyping in potato using methylation-sensitive GBS discovers SNPs largely confined to genic or gene-associated regions and displays enhanced effectiveness in estimating LD decay rates, population structure and detecting GWAS associations over 'fixed' SNP genotyping platform. Study also reports the genetic architectures including robust sequence-tagged marker-trait associations for sixteen important potato traits potentially carrying higher transferability across a wider range of germplasm. This study deploys recent advancements in polyploid analytical approaches to perform complex trait analyses in cultivated tetraploid potato. The study employs a 'fixed' SNP Infinium array platform and a 'flexible and open' genome complexity reduction-based sequencing method (GBS, genotyping-by-sequencing) to perform genome-wide association studies (GWAS) for several key potato traits including the assessment of population structure and linkage disequilibrium (LD) in the studied population. GBS SNPs discovered here were largely confined (~ 90%) to genic or gene-associated regions of the genome demonstrating the utility of using a methylation-sensitive restriction enzyme (PstI) for library construction. As compared to Infinium array SNPs, GBS SNPs displayed enhanced effectiveness in estimating LD decay rates and discriminating population subgroups. GWAS using a combined set of 30,363 SNPs identified 189 unique QTL marker-trait associations (QTL-MTAs) covering all studied traits. The majority of the QTL-MTAs were from GBS SNPs potentially illustrating the effectiveness of marker-dense de novo genotyping platforms in overcoming ascertainment bias and providing a more accurate correction for different levels of relatedness in GWAS models. GWAS also detected QTL 'hotspots' for several traits at previously known as well as newly identified genomic locations. Due to the current study exploiting genome-wide genotyping and de novo SNP discovery simultaneously on a large tetraploid panel representing a greater diversity of the cultivated potato gene pool, the reported sequence-tagged MTAs are likely to have higher transferability across a wider range of potato germplasm and increased utility for expediting genomics-assisted breeding for the several complex traits studied.


Asunto(s)
Genotipo , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple , Solanum tuberosum , Tetraploidía , Solanum tuberosum/genética , Solanum tuberosum/crecimiento & desarrollo , Técnicas de Genotipaje/métodos , Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Fenotipo , Genoma de Planta , Estudios de Asociación Genética
6.
Molecules ; 29(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39064940

RESUMEN

This study evaluated the residue behavior and dissipation dynamics of a new imidacloprid FS 600 seed treatment in potato cultivation systems in Shandong and Jilin, China. Sensitive and accurate UPLC-MS/MS methods were established to quantify imidacloprid residues in potatoes, potato plants, and soil. Results showed that imidacloprid dissipation followed a first-order kinetic model, with half-lives ranging from 6.9 to 26.7 days in plants and 19.8 to 28.9 days in soil. At harvest, the highest average residues in potatoes and soil were 0.778 mg/kg and 0.149 mg/kg, respectively. The dietary risk assessment indicated a chronic risk quotient (CRQ) of 39.73% for adults, indicating minimal risk to human consumers, while the ecological risk quotient (ERQ) and ecotoxicity exposure ratio (TER) revealed low to moderate toxicity to earthworms, warranting caution in the use of this formulation. This research provides valuable data for assessing the safety of imidacloprid FS seed treatment in potato cultivation.


Asunto(s)
Neonicotinoides , Nitrocompuestos , Semillas , Solanum tuberosum , Solanum tuberosum/crecimiento & desarrollo , Solanum tuberosum/química , Solanum tuberosum/efectos de los fármacos , Neonicotinoides/análisis , China , Semillas/química , Residuos de Plaguicidas/análisis , Espectrometría de Masas en Tándem , Insecticidas , Suelo/química , Medición de Riesgo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
7.
FEMS Microbiol Ecol ; 100(8)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38839598

RESUMEN

Rhizosphere microbial communities play a substantial role in plant productivity. We studied the rhizosphere bacteria and fungi of 51 distinct potato cultivars grown under similar greenhouse conditions using a metabarcoding approach. As expected, individual cultivars were the most important determining factor of the rhizosphere microbial composition; however, differences were also obtained when grouping cultivars according to their growth characteristics. We showed that plant growth characteristics were related to deterministic and stochastic assembly processes of bacterial and fungal communities, respectively. The bacterial genera Arthrobacter and Massilia (known to produce indole acetic acid and siderophores) exhibited greater relative abundance in high- and medium-performing cultivars. Bacterial co-occurrence networks were larger in the rhizosphere of these cultivars and were characterized by a distinctive combination of plant beneficial Proteobacteria and Actinobacteria along with a module of diazotrophs namely Azospira, Azoarcus, and Azohydromonas. Conversely, the network within low-performing cultivars revealed the lowest nodes, hub taxa, edges density, robustness, and the highest average path length resulting in reduced microbial associations, which may potentially limit their effectiveness in promoting plant growth. Our findings established a clear pattern between plant productivity and the rhizosphere microbiome composition and structure for the investigated potato cultivars, offering insights for future management practices.


Asunto(s)
Bacterias , Microbiota , Rizosfera , Microbiología del Suelo , Solanum tuberosum , Solanum tuberosum/microbiología , Solanum tuberosum/crecimiento & desarrollo , Bacterias/clasificación , Bacterias/crecimiento & desarrollo , Bacterias/genética , Bacterias/aislamiento & purificación , Hongos/crecimiento & desarrollo , Hongos/clasificación , Hongos/genética , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo
8.
Sci Total Environ ; 946: 174276, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38936715

RESUMEN

Soil legacy effects from previous crops can significantly influence plant-soil interactions in crop rotations. However, the microbial mechanism underlying this effect in subsequent root-associated compartments remains unclear. We investigated the effects of planting patterns (four-year continuous maize [MM], three-year winter wheat and one-year maize rotation [WM], and three-year potato and one-year maize rotation [PM]) on the microbial composition and structure of root-associated compartments, the effect of distinct crops on subsequent microbial co-occurrence patterns, and the assembly mechanism by which the root-associated compartments (bulk soil, rhizosphere, and roots) in subsequent crops regulate the microbiome habitat. Compared with MM, the relative abundance of Acidobacteria in WM was 29.7 % lower, whereas that of Bacteroidota in PM was 37.9 % higher in all three compartments. The co-occurrence patterns of the microbial communities exhibited varied responses to different planting patterns. Indicator taxon analysis revealed less shared and specific species in the root bacterial and fungal networks. The planting pattern elicited specific responses from modules within bacterial and fungal co-occurrence networks in all three compartments. Moreover, the planting patterns and root-associated compartments collectively drove the assembly process of root-associated microorganisms. The neutral model showed that, compared with MM, the stochasticity of bacterial assembly decreased under WM and PM but increased for fungal assembly. WM and PM increased the relative effects of the homogenized dispersal of fungal assemblies in roots. We conclude that previous crops exhibit marked legacy effects in the root-associated microbiome. Therefore, soil heritage should not be ignored when discussing microbiome recruitment strategies and co-occurrence patterns in subsequent crops.


Asunto(s)
Agricultura , Productos Agrícolas , Raíces de Plantas , Microbiología del Suelo , Raíces de Plantas/microbiología , Productos Agrícolas/crecimiento & desarrollo , Solanum tuberosum/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo , Agricultura/métodos , Acidobacteria , Rizosfera
9.
Physiol Plant ; 176(3): e14322, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38818614

RESUMEN

Understanding the potato tuber development and effects of drought at key stages of sensitivity on yield is crucial, particularly when considering the increasing incidence of drought due to climate change. So far, few studies addressed the time course of tuber growth in soil, mainly due to difficulties in accessing underground plant organs in a non-destructive manner. This study aims to understand the tuber growth and quality and the complex long-term effects of realistic water stress on potato tuber yield. MRI was used to monitor the growth kinetics and spatialization of individual tubers in situ and the evolution of internal defects throughout the development period. The intermittent drought applied to plants reduced tuber yield by reducing tuber growth and increasing the number of aborted tubers. The reduction in the size of tubers depended on the vertical position of the tubers in the soil, indicating water exchanges between tubers and the mother plant during leaf dehydration events. The final size of tubers was linked with the growth rate at specific developmental periods. For plants experiencing stress, this corresponded to the days following rewatering, suggesting tuber growth plasticity. All internal defects occurred in large tubers and within a short time span immediately following a period of rapid growth of perimedullary tissues, probably due to high nutrient requirements. To conclude, the non-destructive 3D imaging by MRI allowed us to quantify and better understand the kinetics and spatialization of tuber growth and the appearance of internal defects under different soil water conditions.


Asunto(s)
Imagen por Resonancia Magnética , Tubérculos de la Planta , Solanum tuberosum , Agua , Solanum tuberosum/crecimiento & desarrollo , Solanum tuberosum/fisiología , Tubérculos de la Planta/crecimiento & desarrollo , Tubérculos de la Planta/fisiología , Imagen por Resonancia Magnética/métodos , Agua/metabolismo , Deshidratación , Sequías , Cinética , Estrés Fisiológico , Hojas de la Planta/fisiología , Hojas de la Planta/crecimiento & desarrollo
10.
Curr Opin Plant Biol ; 80: 102544, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38759482

RESUMEN

Underground storage organs occur in phylogenetically diverse plant taxa and arise from multiple tissue types including roots and stems. Thickening growth allows underground storage organs to accommodate carbohydrates and other nutrients and requires proliferation at various lateral meristems followed by cell expansion. The WOX-CLE module regulates thickening growth via the vascular cambium in several eudicot systems, but the molecular mechanisms of proliferation at other lateral meristems are not well understood. In potato, onion, and other systems, members of the phosphatidylethanolamine-binding protein (PEBP) gene family induce underground storage organ development in response to photoperiod cues. While molecular mechanisms of tuber development in potato are well understood, we lack detailed mechanistic knowledge for the extensive morphological and taxonomic diversity of underground storage organs in plants.


Asunto(s)
Tubérculos de la Planta , Tubérculos de la Planta/crecimiento & desarrollo , Tubérculos de la Planta/metabolismo , Tubérculos de la Planta/genética , Tubérculos de la Planta/anatomía & histología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Meristema/crecimiento & desarrollo , Meristema/genética , Meristema/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/anatomía & histología , Solanum tuberosum/crecimiento & desarrollo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Solanum tuberosum/anatomía & histología
11.
BMC Plant Biol ; 24(1): 386, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724922

RESUMEN

BACKGROUND: Potato serves as a major non-cereal food crop and income source for small-scale growers in Punjab, Pakistan. Unfortunately, improper fertilization practices have led to low crop yields, worsened by challenging environmental conditions and poor groundwater quality in the Cholistan region. To address this, we conducted an experiment to assess the impact of two fertilizer application approaches on potato cv. Barna using plant growth-promoting bacteria (PGPB) coated biofertilizers. The first approach, termed conventional fertilizer application (CFA), involved four split applications of PGPB-coated fertilizers at a rate of 100:75 kg acre-1 (N and P). The second, modified fertilizer application (MFA), employed nine split applications at a rate of 80:40 kg acre-1. RESULTS: The MFA approach significantly improved various plant attributes compared to the CFA. This included increased plant height (28%), stem number (45%), leaf count (46%), leaf area index (36%), leaf thickness (three-folds), chlorophyll content (53%), quantum yield of photosystem II (45%), photosynthetically active radiations (56%), electrochromic shift (5.6%), proton flux (24.6%), proton conductivity (71%), linear electron flow (72%), photosynthetic rate (35%), water use efficiency (76%), and substomatal CO2 (two-folds), and lowered non-photochemical quenching (56%), non-regulatory energy dissipation (33%), transpiration rate (59%), and stomatal conductance (70%). Additionally, the MFA approach resulted in higher tuber production per plant (21%), average tuber weight (21.9%), tuber diameter (24.5%), total tuber yield (29.1%), marketable yield (22.7%), seed-grade yield (9%), specific gravity (9.6%), and soluble solids (7.1%). It also reduced undesirable factors like goli and downgrade yields by 57.6% and 98.8%, respectively. Furthermore, plants under the MFA approach exhibited enhanced nitrogen (27.8%) and phosphorus uptake (40.6%), with improved N (26.1%) and P uptake efficiency (43.7%) compared to the CFA approach. CONCLUSION: The use of PGPB-coated N and P fertilizers with a higher number of splits at a lower rate significantly boosts potato production in the alkaline sandy soils of Cholistan.


Asunto(s)
Fertilizantes , Nitrógeno , Fósforo , Solanum tuberosum , Fertilizantes/análisis , Fósforo/metabolismo , Solanum tuberosum/crecimiento & desarrollo , Nitrógeno/metabolismo , Pakistán , Suelo/química , Bacterias/metabolismo , Bacterias/crecimiento & desarrollo
12.
Int J Mol Sci ; 25(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38791120

RESUMEN

The post-harvest phase of potato tuber dormancy and sprouting are essential in determining the economic value. The intricate transition from dormancy to active growth is influenced by multiple factors, including environmental factors, carbohydrate metabolism, and hormonal regulation. Well-established environmental factors such as temperature, humidity, and light play pivotal roles in these processes. However, recent research has expanded our understanding to encompass other novel influences such as magnetic fields, cold plasma treatment, and UV-C irradiation. Hormones like abscisic acid (ABA), gibberellic acid (GA), cytokinins (CK), auxin, and ethylene (ETH) act as crucial messengers, while brassinosteroids (BRs) have emerged as key modulators of potato tuber sprouting. In addition, jasmonates (JAs), strigolactones (SLs), and salicylic acid (SA) also regulate potato dormancy and sprouting. This review article delves into the intricate study of potato dormancy and sprouting, emphasizing the impact of environmental conditions, carbohydrate metabolism, and hormonal regulation. It explores how various environmental factors affect dormancy and sprouting processes. Additionally, it highlights the role of carbohydrates in potato tuber sprouting and the intricate hormonal interplay, particularly the role of BRs. This review underscores the complexity of these interactions and their importance in optimizing potato dormancy and sprouting for agricultural practices.


Asunto(s)
Latencia en las Plantas , Reguladores del Crecimiento de las Plantas , Tubérculos de la Planta , Solanum tuberosum , Solanum tuberosum/crecimiento & desarrollo , Solanum tuberosum/metabolismo , Solanum tuberosum/fisiología , Solanum tuberosum/genética , Tubérculos de la Planta/crecimiento & desarrollo , Tubérculos de la Planta/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Metabolismo de los Hidratos de Carbono
13.
J Environ Manage ; 361: 121270, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38820796

RESUMEN

Reliable nitrogen (N) fertilizer management indicators are essential for improving crop yields and minimizing environmental impacts for sustainable production. The objectives of this study were to assess the importance of major N management indicators (NMIs) for higher yield with low risks of environmental pollution in an intensive potato system under drip irrigation. Six drip-irrigated field experiments with no N application (Control), farmer practice (FP), and optimized N management (OM) based on N-balance, soil mineral N (Nmin), and target yield were conducted from 2018 to 2020 in Inner Mongolia, China. The response of NMIs to potato yield and yield-based environment impact indices (EIY) was evaluated by the random forest algorithm. The N input, N losses from N leaching, ammonia (NH3) volatilization, nitrous oxide (N2O) emission, N use efficiency (NUE), N surplus, and soil residual N after harvest were obtained to identify the best NMIs for high yield and minimal ecological impact. The N management practices in field experimental sites affected the importance of the order of NMIs on potato yield and EIY. The NUE and N leaching were identified as the highest importance scores and the most essential controlling variables to potato yield and EIY, respectively. The integrated NUE and N leaching indicator played a vital role in improving potato yield and reducing ecological impact. The OM treatment achieved 46.0%, 63.6%, and 64.6% lower in N application rate, N surplus, and reactive N loss, and 62.4% higher in NUE than the FP treatment while achieving equal potato yields, respectively. Those key NMIs can guide farmers in understanding their practice short comes to achieve both high productivity and environmental sustainability in intensive potato production systems under drip irrigation.


Asunto(s)
Riego Agrícola , Producción de Cultivos , Fertilizantes , Nitrógeno , Suelo , Solanum tuberosum , Solanum tuberosum/crecimiento & desarrollo , Riego Agrícola/métodos , Producción de Cultivos/métodos , Suelo/química , China , Agricultura/métodos , Productos Agrícolas/crecimiento & desarrollo
14.
Food Chem ; 450: 139392, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38640546

RESUMEN

The combinational effects of kojic acid and lauroyl arginine ethyl ester hydrochloride (ELAH) on fresh-cut potatoes were investigated. Kojic acid of 0.6% (w/w) effectively inhibited the browning of fresh-cut potatoes and displayed antimicrobial capacity. The color difference value of samples was decreased from 175 to 26 by kojic acid. In contrast, ELAH could not effectively bind with the active sites of tyrosinase and catechol oxidase at molecular level. Although 0.5% (w/w) of ELAH prominently inhibited the microbial growth, it promoted the browning of samples. However, combining kojic acid and ELAH effectively inhibited the browning of samples and microbial growth during the storage and the color difference value of samples was decreased to 52. This amount of kojic acid inhibited enzyme activities toward phenolic compounds. The results indicated that combination of kojic acid and ELAH could provide a potential strategy to extend the shelf life of fresh-cut products.


Asunto(s)
Arginina , Monofenol Monooxigenasa , Pironas , Solanum tuberosum , Pironas/farmacología , Pironas/química , Arginina/química , Arginina/análogos & derivados , Arginina/farmacología , Solanum tuberosum/química , Solanum tuberosum/crecimiento & desarrollo , Monofenol Monooxigenasa/metabolismo , Conservación de Alimentos/métodos , Catecol Oxidasa/metabolismo , Conservantes de Alimentos/farmacología , Conservantes de Alimentos/química , Bacterias/efectos de los fármacos , Bacterias/genética
15.
Plant Physiol ; 195(2): 1347-1364, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38488068

RESUMEN

Potato (Solanum tuberosum L.) is cultivated worldwide for its underground tubers, which provide an important part of human nutrition and serve as a model system for belowground storage organ formation. Similar to flowering, stolon-expressed FLOWERING LOCUS T-like (FT-like) protein SELF-PRUNING 6A (StSP6A) plays an instrumental role in tuberization by binding to the bZIP transcription factors StABI5-like 1 (StABL1) and StFD-like 1 (StFDL1), causing transcriptional reprogramming at the stolon subapical apices. However, the molecular mechanism regulating the widely conserved FT-bZIP interactions remains largely unexplored. Here, we identified a TCP transcription factor StAST1 (StABL1 and StSP6A-associated TCP protein 1) binding to both StSP6A and StABL1. StAST1 is specifically expressed in the vascular tissue of leaves and developing stolons. Silencing of StAST1 leads to accelerated tuberization and a shortened life cycle. Molecular dissection reveals that the interaction of StAST1 with StSP6A and StABL1 attenuates the formation of the alternative tuberigen activation complex (aTAC). We also observed StAST1 directly activates the expression of potato GA 20-oxidase gene (StGA20ox1) to regulate GA responses. These results demonstrate StAST1 functions as a tuberization repressor by regulating plant hormone levels; our findings also suggest a mechanism by which the widely conserved FT-FD genetic module is fine-tuned.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Tubérculos de la Planta , Solanum tuberosum , Factores de Transcripción , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Solanum tuberosum/fisiología , Solanum tuberosum/crecimiento & desarrollo , Tubérculos de la Planta/genética , Tubérculos de la Planta/crecimiento & desarrollo , Tubérculos de la Planta/metabolismo , Tubérculos de la Planta/fisiología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
17.
New Phytol ; 242(6): 2541-2554, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38197194

RESUMEN

In potato, maturity is assessed by leaf senescence, which, in turn, affects yield and tuber quality traits. Previously, we showed that the CYCLING DOF FACTOR1 (StCDF1) locus controls leaf maturity in addition to the timing of tuberization. Here, we provide evidence that StCDF1 controls senescence onset separately from senescence progression and the total life cycle duration. We used molecular-biological approaches (DNA-Affinity Purification Sequencing) to identify a direct downstream target of StCDF1, named ORESARA1 (StORE1S02), which is a NAC transcription factor acting as a positive senescence regulator. By overexpressing StORE1S02 in the long life cycle genotype, early onset of senescence was shown, but the total life cycle remained long. At the same time, StORE1S02 knockdown lines have a delayed senescence onset. Furthermore, we show that StORE1 proteins play an indirect role in sugar transport from source to sink by regulating expression of SWEET sugar efflux transporters during leaf senescence. This study clarifies the important link between tuber formation and senescence and provides insight into the molecular regulatory network of potato leaf senescence onset. We propose a complex role of StCDF1 in the regulation of potato plant senescence.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Senescencia de la Planta , Solanum tuberosum , Factores de Transcripción , Transporte Biológico , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Senescencia de la Planta/genética , Tubérculos de la Planta/genética , Tubérculos de la Planta/crecimiento & desarrollo , Tubérculos de la Planta/fisiología , Plantas Modificadas Genéticamente , Solanum tuberosum/genética , Solanum tuberosum/crecimiento & desarrollo , Azúcares/metabolismo , Factores de Tiempo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
18.
Molecules ; 27(4)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35208975

RESUMEN

1H NMR and LC-MS, commonly used metabolomics analytical platforms, were used to annotate the metabolites found in potato (Solanum tuberosum L.) irrigated with four different treatments based on FA to AMD ratios, namely: control (0% AMD; tap water), 1:1 (50% AMD), 3:1 (75% AMD is 75% FA: AMD), and 100% AMD (untreated). The effects of stress on plants were illustrated by the primary metabolite shifts in the region from δH 0.0 to δH 4.0 and secondary metabolites peaks were prominent in the region ranging from δH 4.5 to δH 8.0. The 1:3 irrigation treatment enabled, in two potato cultivars, the production of significantly high concentrations of secondary metabolites due to the 75% FA: AMD content in the irrigation mixture, which induced stress. The findings suggested that 1:1 irrigation treatment induced production of lower amounts of secondary metabolites in all crops compared to crops irrigated with untreated acid mine drainage treatment and with other FA-treated AMD solutions.


Asunto(s)
Riego Agrícola , Ceniza del Carbón/farmacología , Minas de Carbón , Metabolómica , Solanum tuberosum/metabolismo , Solanum tuberosum/crecimiento & desarrollo
19.
PLoS One ; 17(2): e0263633, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35202433

RESUMEN

Fundamental issues in sustainable development of competitive potato production in Indonesia are production and distribution inefficiencies. This study aims to examine the potato production competitiveness through competitive and comparative analyses as well as evaluating the impacts of government policy on potato production. This study employs Policy Analysis Matrix (PAM) to analyse the cross-section data collected from six regencies in Indonesia. Potato production in Indonesia was profitable privately and socially. The highest value of competitive advantage was indicated by PCR value in the dry season in Wonosobo Regency, Central Java Province. The lowest values were found in Bandung Regency. Highest comparative advantage was revealed in Tanah Karo Regency, North Sumatra Province, during the rainy season. Highest comparative advantage was found in Bandung Regency, West Java Province, in the dry season. However, the social profit was lower than the private profit indicating the potato farmers dealt with disincentives due to imperfect market. It implies that increasing domestic potato production will be more profitable rather than import. The policy makers need to evaluate the recent policies on input and output markets as well as the supply chain of potato to cope with imperfect markets in order to increase farmers' income.


Asunto(s)
Agricultura/economía , Productos Agrícolas/crecimiento & desarrollo , Solanum tuberosum/crecimiento & desarrollo , Productos Agrícolas/economía , Agricultores , Humanos , Indonesia , Lluvia , Estaciones del Año , Solanum tuberosum/economía
20.
Molecules ; 27(3)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35164131

RESUMEN

Starch is a natural polysaccharide for which the technological quality depends on the genetic basis of the plant and the environmental conditions of the cultivation. Growing plants under cover without soil has many advantages for controlling the above-mentioned conditions. The present research focuses on determining the effect of under cover hydroponic potato cultivation on the physicochemical properties of accumulated potato starch (PS). The plants were grown in the hydroponic system, with (greenhouse, GH) and without recirculation nutrient solution (foil tunnel, FT). The reference sample was PS isolated from plants grown in a tunnel in containers filled with mineral soil (SO). The influence of the cultivation method on the elemental composition of the starch molecules was noted. The cultivation method also influenced the protein and amylose content of the PS. Considering the chromatic parameters, PS-GH and PS-FT were brighter and whiter, with a tinge of blue, than PS-SO. PS-SO was also characterized by the largest average diameters of granules, while PS-GH had the lowest crystallinity. PS-SO showed a better resistance to the combined action of elevated temperature and shear force. There was a slight variation in the gelatinization temperature values. Additionally, significant differences for enthalpy and the retrogradation ratio were observed. The cultivation method did not influence the glass transition and melting.


Asunto(s)
Amilosa , Hidroponía , Tubérculos de la Planta/crecimiento & desarrollo , Solanum tuberosum/crecimiento & desarrollo , Amilosa/química , Amilosa/aislamiento & purificación , Amilosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA