Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.973
1.
J Agric Food Chem ; 72(19): 11124-11139, 2024 May 15.
Article En | MEDLINE | ID: mdl-38698543

Terpenes and pentene dimers are less studied volatile organic compounds (VOCs) but are associated with specific features of extra virgin olive oils (EVOOs). This study aimed to analyze mono- and sesquiterpenes and pentene dimers of Italian monovarietal EVOOs over 3 years (14 cultivars, 225 samples). A head space-solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) method recently validated was used for terpene and pentene dimer quantitation. The quantitative data collected were used for both the characterization and clustering of the cultivars. Sesquiterpenes were the molecules that most characterized the different cultivars, ranging from 3.908 to 38.215 mg/kg; different groups of cultivars were characterized by different groups of sesquiterpenes. Pentene dimers (1.336 and 3.860 mg/kg) and monoterpenes (0.430 and 1.794 mg/kg) showed much lower contents and variability among cultivars. The application of Kruskal-Wallis test-PCA-LDA-HCA to the experimental data allowed defining 4 clusters of cultivars and building a predictive model to classify the samples (94.3% correct classification). The model was further tested on 33 EVOOs, correctly classifying 91% of them.


Gas Chromatography-Mass Spectrometry , Olea , Olive Oil , Quality Control , Solid Phase Microextraction , Terpenes , Volatile Organic Compounds , Solid Phase Microextraction/methods , Olive Oil/chemistry , Italy , Terpenes/chemistry , Terpenes/analysis , Olea/chemistry , Volatile Organic Compounds/chemistry , Chemometrics/methods , Dimerization
2.
Anal Chim Acta ; 1306: 342621, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38692790

BACKGROUND: In vivo solid-phase microextraction (SPME) is a minimally invasive, non-exhaustive sample-preparation technique that facilitates the direct isolation of low molecular weight compounds from biological matrices in living systems. This technique is especially useful for the analysis of phytocannabinoids (PCs) in plant material, both for forensic purposes and for monitoring the PC content in growing Cannabis spp. plants. In contrast to traditional extraction techniques, in vivo SPME enables continuous tracking of the changes in the level of PCs during plant growth without the need for plant material collection. In this study, in vivo SPME utilizing biocompatible C18 probes and liquid-chromatography coupled to quadrupole time-of flight mass spectrometry (LC-Q-TOF-MS) is proposed as a novel strategy for the extraction and analysis of the acidic forms of five PCs in growing medicinal cannabis plants. RESULTS: The SPME method was optimized by testing various parameters, including the extraction phase (coating), extraction and desorption times, and the extraction temperature. The proposed method was validated with satisfactory analytical performance regarding linearity (10-3000 ng/mL), limits of quantification, and precision (relative standard deviations below 5.5 %). The proposed method was then successfully applied for the isolation of five acidic forms of PCs, which are main components of growing medicinal cannabis plants. As a proof-of-concept, SPME probes were statically inserted into the inflorescences of two varieties of Cannabis spp. plants (i.e., CBD-dominant and Δ9-THC-dominant) cultivated under controlled conditions for 30 min extraction of tetrahydrocannabinolic acid (Δ9-THCA), cannabidiolic acid (CBDA), cannabigerolic acid (CBGA), cannabiviarinic acid (CBVA), and tetrahydrocannabivarinic acid (THCVA). SIGNIFICANCE AND NOVELTY: The results confirmed that the developed SPME-LC-Q-TOF-MS method is a precise and efficient tool that enables direct and rapid isolation and analysis of PCs under in vivo conditions. The proposed methodology is highly appealing option for monitoring the metabolic pathways and compositions of multiple PCs in medicinal cannabis at different stages of plant growth.


Cannabinoids , Cannabis , Liquid Chromatography-Mass Spectrometry , Solid Phase Microextraction , Cannabinoids/analysis , Cannabis/chemistry , Liquid Chromatography-Mass Spectrometry/methods , Solid Phase Microextraction/methods
3.
Food Res Int ; 187: 114359, 2024 Jul.
Article En | MEDLINE | ID: mdl-38763643

Chinese Xiaokeng green tea (XKGT) possesses elegant and fascinating aroma characteristics, but its key odorants are still unknown. In this study, 124 volatile compounds in the XKGT infusion were identified by headspace-solid phase microextraction (HS-SPME), stir bar sorptive extraction (SBSE), and solvent extraction-solid phase extraction (SE-SPE) combined with gas chromatography-mass spectrometry (GC-MS). Comparing these three pretreatments, we found HS-SPME was more efficient for headspace compounds while SE-SPE was more efficient for volatiles with higher boiling points. Furthermore, SBSE showed more sensitive to capture ketones then was effective to the application of pretreatment of aroma analysis in green tea. The aroma intensities (AIs) were further identified by gas chromatography-olfactometry (GC-O). According to the AI and relative odor activity value (rOAV), 27 compounds were identified as aroma-active compounds. Quantitative descriptive analysis (QDA) showed that the characteristic aroma attributes of XKGT were chestnut-like, corn-like, fresh, and so on. The results of network analysis showed that (E, Z)-2,6-nonadienal, nonanal, octanal and nerolidol were responsible for the fresh aroma. Similarly, dimethyl sulfide, (E, E)-2,4-heptadienal, (E)-2-octenal and ß-cyclocitral contributed to the corn-like aroma. Furthermore, indole was responsible for the chestnut-like and soybean-like aroma. This study contributes to a better understanding of the molecular mechanism of the aroma characteristics of XKGT.


Gas Chromatography-Mass Spectrometry , Odorants , Olfactometry , Solid Phase Microextraction , Tea , Volatile Organic Compounds , Odorants/analysis , Tea/chemistry , Volatile Organic Compounds/analysis , Solid Phase Microextraction/methods , Humans , Camellia sinensis/chemistry , Solid Phase Extraction/methods
4.
Food Res Int ; 187: 114398, 2024 Jul.
Article En | MEDLINE | ID: mdl-38763656

Nowadays, it is important to monitor the freshness of meat during storage to protect consumers' health. Volatile organic compounds (VOCs) are responsible for odour and taste of food, and they give an indication about meat quality and freshness. This study had the aim to seek and select potential new markers of meat spoilage through a semi-quantitative analysis in five types of meat (beef, raw and baked ham, pork sausage and chicken) and then to develop a new quantitative analytical method to detect and quantify potential markers on five types of meat simultaneously. Firstly, a new headspace-solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) method was developed to evaluate the volatile profile of five types of meat, preserved at 4 °C for 5 days. Among the 40 compounds identified, 15 were chosen and selected as potential shelf-life markers on the basis of their presence in most of meat samples or/and for their constant increasing/decreasing trend within the sample. Afterwards, a quantitative HS-SPME-GC-MS analytical method was developed to confirm which VOCs can be considered markers of shelf-life for these meat products, stored at 4 °C for 12 days. Some of the compounds analyzed attracted attention as they can be considered markers of shelf-life for at least 4 types of meat: 1-butanol, 3-methylbutanol, 1-hexanol, 2-nonanone, nonanal, 1-octen-3-ol and linalool. In conclusion, in this study a new quantitative HS-SPME-GC-MS analytical method to quantity 15 VOCs in five types of meat was developed and it was demonstrated that some of the compounds quantified can be considered markers of shelf-life for some of the meat products analyzed.


Food Storage , Gas Chromatography-Mass Spectrometry , Meat Products , Solid Phase Microextraction , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Gas Chromatography-Mass Spectrometry/methods , Solid Phase Microextraction/methods , Meat Products/analysis , Animals , Swine , Odorants/analysis , Cattle , Aldehydes/analysis , Chickens , Ketones/analysis , Pentanols/analysis , Acyclic Monoterpenes/analysis , Octanols
5.
Anal Chim Acta ; 1309: 342676, 2024 Jun 22.
Article En | MEDLINE | ID: mdl-38772658

BACKGROUND: Methylparaben (MP), a commonly used antibacterial preservative, is widely used in personal care products, foods, and pharmaceuticals. MP and its metabolites are easy to enter the water environment, and their exposure and accumulation have negative effects on the ecological environment and human health, and have endocrine disrupting activity and potential physiological toxicity. It is still the primary issue of environmental analysis and ecological risk assessment to develop simple and reliable methods for simultaneous sensitive detection of these compounds in environmental water. RESULTS: In this paper, a flexible molecularly imprinted fiber array strategy is proposed for simultaneous enrichment and detection of trace MP and its four main metabolites. The experimental results showed that the three-fiber imprinted fiber array constructed by MP imprinted fiber had the best effect on the simultaneous enrichment of these five target analytes. The enrichment capacity of the imprinted fiber array was 214-456 times, 314-1201 times and 38-685 times that of commercial PA, PDMS and PDMS/DVB fiber arrays, respectively. The limit of detection (LOD) of this method was 0.033 µg L-1. The spiked recovery rate was 86.78-113.96 %, and RSD was less than 9.17 %. In addition, this molecularly imprinted SPME fiber array has good stability, long service life and can be used repeatedly at least 100 times. SIGNIFICANCE: This molecularly imprinted fiber array strategy can flexibly assemble different molecularly imprinted SPME fibers together, effectively improve the enrichment ability and detection sensitivity, and achieve simultaneous selective enrichment and detection of several analytes. This is an easy, efficient and reliable method for monitoring several trace analytes simultaneously in intricate environmental matrices.


Limit of Detection , Molecular Imprinting , Parabens , Solid Phase Microextraction , Parabens/analysis , Solid Phase Microextraction/methods , Water Pollutants, Chemical/analysis
6.
J Chromatogr A ; 1726: 464961, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38723491

The improvement of the stability and adsorption properties of materials on targets in sample pre-treatment has long been an objective. Extensive efforts have been made to achieve this goal. In this work, metal-organic framework Ni-MOF precursors were first synthesized by solvothermal method using polyvinylpyrrolidone (PVP) as an ideal templating agent, stabiliser and nanoparticle dispersant. After carbonization and acid washing, the nanoporous carbon microspheres material (Ni@C-acid) was obtained. Compared with the material without acid treatment (Ni@C), the specific surface area, pore volume, adsorption performance of Ni@C-acid were increased. Thanks to its excellent characteristics (high stability, abundant benzene rings), Ni@C-acid was used as fiber coatings in headspace solid-phase microextraction (HS-SPME) technology for extraction and preconcentration of polycyclic aromatic hydrocarbons (PAHs) prior to gas chromatography-flame ionization detector (GC-FID) analysis. The experimental parameters of extraction temperature, extraction time, agitation speed, desorption temperature, desorption time and sodium chloride (NaCl) concentration were studied. Under optimal experimental conditions, the wide linear range (0.01-30 ng mL-1), the good correlation coefficient (0.9916-0.9984), the low detection limit (0.003-0.011 ng mL-1), and the high enrichment factor (5273-13793) were obtained. The established method was successfully used for the detection of trace PAHs in actual tea infusions samples and satisfied recoveries ranging from 80.94-118.62 % were achieved. The present work provides a simple method for the preparation of highly stable and adsorbable porous carbon microsphere materials with potential applications in the extraction of environmental pollutants.


Carbon , Limit of Detection , Metal-Organic Frameworks , Microspheres , Polycyclic Aromatic Hydrocarbons , Solid Phase Microextraction , Tea , Solid Phase Microextraction/methods , Polycyclic Aromatic Hydrocarbons/isolation & purification , Polycyclic Aromatic Hydrocarbons/analysis , Tea/chemistry , Carbon/chemistry , Metal-Organic Frameworks/chemistry , Porosity , Adsorption , Nickel/chemistry , Nickel/isolation & purification , Chromatography, Gas/methods , Reproducibility of Results
7.
J Chromatogr A ; 1726: 464977, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38735117

A magnetic molecularly imprinted polymer (MMIP) adsorbent incorporating amino-functionalized magnetite nanoparticles, nitrogen-doped graphene quantum dots and mesoporous carbon (MIP@MPC@N-GQDs@Fe3O4NH2) was fabricated to extract triazine herbicides from fruit juice. The embedded magnetite nanoparticles simplified the isolation of the adsorbent from the sample solution. The N-GQDs and MPC enhanced adsorption by affinity binding with triazines. The MIP layer provided highly specific recognition sites for the selective adsorption of three target triazines. The extracted triazines were determined by high-performance liquid chromatography (HPLC) coupled with diode-array detection (DAD). The developed method exhibited linearity from 1.5 to 100.0 µg L-1 with a detection limit of 0.5 µg L-1. Recoveries from spiked fruit juice samples were in the range of 80.1- 108.4 %, with a relative standard deviation of less than 6.0 %. The developed MMIP adsorbent demonstrated good selectivity, high extraction efficiency, ease of fabrication and use, and good stability.


Carbon , Fruit and Vegetable Juices , Herbicides , Limit of Detection , Molecularly Imprinted Polymers , Quantum Dots , Triazines , Quantum Dots/chemistry , Triazines/chemistry , Triazines/analysis , Triazines/isolation & purification , Herbicides/analysis , Herbicides/isolation & purification , Herbicides/chemistry , Fruit and Vegetable Juices/analysis , Adsorption , Molecularly Imprinted Polymers/chemistry , Carbon/chemistry , Chromatography, High Pressure Liquid/methods , Magnetite Nanoparticles/chemistry , Solid Phase Microextraction/methods , Molecular Imprinting/methods , Porosity , Graphite/chemistry
8.
Anal Chim Acta ; 1306: 342609, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38692788

BACKGROUND: Accurate quantitative analysis of small molecule metabolites in biological samples is of great significance. Hydroxypolycyclic aromatic hydrocarbons (OH-PAHs) are metabolic derivatives of emerging pollutants, reflecting exposure to polycyclic aromatic hydrocarbons (PAHs). Macromolecules such as proteins and enzymes in biological samples will interfere with the accurate quantification of OH-PAHs, making direct analysis impossible, requiring a series of complex treatments such as enzymatic hydrolysis. Therefore, the development of matrix-compatible fiber coatings that can exclude macromolecules is of great significance to improve the ability of solid-phase microextraction (SPME) technology to selectively quantify small molecules in complex matrices and achieve rapid and direct analysis. RESULTS: We have developed an innovative coating with a stable macromolecular barrier using electrospinning and flexible filament winding (FW) technologies. This coating, referred to as the hollow fibrous covalent organic framework@polyionic liquid (F-COF@polyILs), demonstrates outstanding conductivity and stability. It accelerates the adsorption equilibrium time (25 min) for polar OH-PAHs through electrically enhanced solid-phase microextraction (EE-SPME) technology. Compared to the powder form, F-COF@polyILs coating displays effective non-selective large-size molecular sieving. Combining gas chromatography-tandem triple quadrupole mass spectrometry (GC-MS/MS), we have established a simple, efficient quantitative analysis method for OH-PAHs with a low detection limit (0.008-0.05 ng L-1), wide linear range (0.02-1000 ng L-1), and good repeatability (1.0%-7.3 %). Experimental results show that the coated fiber exhibits good resistance to matrix interference (2.5%-16.7 %) in complex biological matrices, and has been successfully used for OH-PAHs analysis in human urine and plasma. SIGNIFICANCE: FW technology realizes the transformation of the traditional powder form of COF in SPME coating to a uniform non-powder coating, giving its ability to exclude large molecules in complex biological matrices. A method for quantitatively detecting OH-PAHs in real biological samples was also developed. Therefore, the filament winding preparation method for F-COF@polyILs coated fibers, along with fibrous COFs' morphology control, has substantial implications for efficiently extracting target compounds from complex matrices.


Solid Phase Microextraction , Solid Phase Microextraction/methods , Metal-Organic Frameworks/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/isolation & purification , Macromolecular Substances/chemistry , Limit of Detection , Adsorption , Electrochemical Techniques/methods
9.
Anal Chim Acta ; 1308: 342658, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38740458

BACKGROUND: The environmental impact of sample preparation should be minimized through simplification of the procedures and the use of natural, renewable and/or reusable materials. In such scenario, thin-film microextraction fulfils the former criteria, as it enables few steps and miniaturization, thus small amount of extraction phase. At the same time, the use of sorbents such as biochars obtained from biomass waste is even more promoted due to their availability at low cost and increased life-cycle in a circular economy vision. However, it is not always easy to combine these criteria in sample preparation. RESULTS: A thin film microextraction was developed for the determination of steroids in aqueous samples, entailing a membrane made of cellulose triacetate and a wood-derived biochar (Nuchar®) as carbon precursor. Different characterization techniques showed the successful preparation, whereas the sorption kinetics experiments demonstrated that biochar is responsible for the extraction with the polymer acting as a smart support. After a study about membranes' composition in terms of biochar amounts (4 %, 10 %, 16 % wt) and type of synthesis set up, the ceramic 3D-mold was selected, achieving reproducible and ready-to-use membranes with composition fixed as 10 %. Different elution conditions, viz. type and time of agitation, type, composition and volume of eluent, were evaluated. The final microextraction followed by HPLC-MS/MS quantification was successfully validated in river and wastewater treatment plant effluent samples in terms of accuracy (R% 64-123 %, RSD<19 % in river; R% 61-118 %, RSD <18 % in effluent, n = 4), sensitivity (MQLs 0.2-8.5 ng L-1) and robustness. SIGNIFICANCE: This novel biochar-based polymeric film proved to be a valid and sustainable sorbent, in terms of extraction capability, ease of preparation and greenness. By comparison with literature and the greenness evaluation with the most recent metric tools, this method expands the potential applicability of the thin-film microextraction and opens up innovative scenarios for sustainable procedures entailing the use of biochars entrapped in bio-polymers.


Charcoal , Polymers , Wastewater , Water Pollutants, Chemical , Charcoal/chemistry , Wastewater/analysis , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/isolation & purification , Polymers/chemistry , Adsorption , Steroids/analysis , Steroids/chemistry , Steroids/isolation & purification , Solid Phase Microextraction/methods
10.
J Chromatogr A ; 1725: 464931, 2024 Jun 21.
Article En | MEDLINE | ID: mdl-38703457

Atractylodis rhizoma is a common bulk medicinal material with multiple species. Although different varieties of atractylodis rhizoma exhibit variations in their chemical constituents and pharmacological activities, they have not been adequately distinguished due to their similar morphological features. Hence, the purpose of this research is to analyze and characterize the volatile organic compounds (VOCs) in samples of atractylodis rhizoma using multiple techniques and to identify the key differential VOCs among different varieties of atractylodis rhizoma for effective discrimination. The identification of VOCs was carried out using headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) and headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS), resulting in the identification of 60 and 53 VOCs, respectively. The orthogonal partial least squares discriminant analysis (OPLS-DA) model was employed to screen potential biomarkers and based on the variable importance in projection (VIP ≥ 1.2), 24 VOCs were identified as critical differential compounds. Random forest (RF), K-nearest neighbor (KNN) and back propagation neural network based on genetic algorithm (GA-BPNN) models based on potential volatile markers realized the greater than 90 % discriminant accuracies, which indicates that the obtained key differential VOCs are reliable. At the same time, the aroma characteristics of atractylodis rhizoma were also analyzed by ultra-fast gas chromatography electronic nose (Ultra-fast GC E-nose). This study indicated that the integration of HS-SPME-GC-MS, HS-GC-IMS and ultra-fast GC E-nose with chemometrics can comprehensively reflect the differences of VOCs in atractylodis rhizoma samples from different varieties, which will be a prospective tool for variety discrimination of atractylodis rhizoma.


Atractylodes , Electronic Nose , Gas Chromatography-Mass Spectrometry , Solid Phase Microextraction , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Gas Chromatography-Mass Spectrometry/methods , Solid Phase Microextraction/methods , Atractylodes/chemistry , Ion Mobility Spectrometry/methods , Rhizome/chemistry , Discriminant Analysis
11.
Metabolomics ; 20(3): 59, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773019

INTRODUCTION: Thyroid cancer incidence rate has increased substantially worldwide in recent years. Fine needle aspiration biopsy (FNAB) is currently the golden standard of thyroid cancer diagnosis, which however, is invasive and costly. In contrast, breath analysis is a non-invasive, safe and simple sampling method combined with a promising metabolomics approach, which is suitable for early cancer diagnosis in high volume population. OBJECTIVES: This study aims to achieve a more comprehensive and definitive exhaled breath metabolism profile in papillary thyroid cancer patients (PTCs). METHODS: We studied both end-tidal and mixed expiratory breath, solid-phase microextraction gas chromatography coupled with high resolution mass spectrometry (SPME-GC-HRMS) was used to analyze the breath samples. Multivariate combined univariate analysis was applied to identify potential breath biomarkers. RESULTS: The biomarkers identified in end-tidal and mixed expiratory breath mainly included alkanes, olefins, enols, enones, esters, aromatic compounds, and fluorine and chlorine containing organic compounds. The area under the curve (AUC) values of combined biomarkers were 0.974 (sensitivity: 96.1%, specificity: 90.2%) and 0.909 (sensitivity: 98.0%, specificity: 74.5%), respectively, for the end-tidal and mixed expiratory breath, indicating of reliability of the sampling and analysis method CONCLUSION: This work not only successfully established a standard metabolomic approach for early diagnosis of PTC, but also revealed the necessity of using both the two breath types for comprehensive analysis of the biomarkers.


Biomarkers, Tumor , Breath Tests , Gas Chromatography-Mass Spectrometry , Metabolomics , Solid Phase Microextraction , Thyroid Cancer, Papillary , Thyroid Neoplasms , Humans , Metabolomics/methods , Thyroid Cancer, Papillary/diagnosis , Thyroid Cancer, Papillary/metabolism , Breath Tests/methods , Gas Chromatography-Mass Spectrometry/methods , Solid Phase Microextraction/methods , Female , Male , Middle Aged , Biomarkers, Tumor/analysis , Biomarkers, Tumor/metabolism , Adult , Thyroid Neoplasms/diagnosis , Thyroid Neoplasms/metabolism , Early Detection of Cancer/methods , Aged
12.
Anal Chim Acta ; 1304: 342555, 2024 May 22.
Article En | MEDLINE | ID: mdl-38637039

BACKGROUND: Omics is used as an analytical tool to investigate wine authenticity issues. Aging authentication ensures that the wine has undergone the necessary maturation and developed its desired organoleptic characteristics. Considering that aged wines constitute valuable commodities, the development of advanced omics techniques that guarantee aging authenticity and prevent fraud is essential. RESULTS: Α solid phase microextraction Arrow method combined with comprehensive two-dimensional gas chromatography-mass spectrometry was developed to identify volatiles in red wines and investigate how aging affects their volatile fingerprint. The method was optimized by examining the critical parameters that affect the solid phase microextraction Arrow extraction (stirring rate, extraction time) process. Under optimized conditions, extraction took place within 45 min under stirring at 1000 rpm. In all, 24 monovarietal red wine samples belonging to the Xinomavro variety from Naoussa (Imathia regional unit of Macedonia, Greece) produced during four different vintage years (1998, 2005, 2008 and 2015) were analyzed. Overall, 237 volatile compounds were tentatively identified and were treated with chemometric tools. Four major groups, one for each vintage year were revealed using the Hierarchical Clustering Analysis. The first two Principal Components of Principal Component Analysis explained 86.1% of the total variance, showing appropriate grouping of the wine samples produced in the same crop year. A two-way orthogonal partial least square - discriminant analysis model was developed and successfully classified all the samples to the proper class according to the vintage age, establishing 17 volatile markers as the most important features responsible for the classification, with an explained total variance of 88.5%. The developed prediction model was validated and the analyzed samples were classified with 100% accuracy according to the vintage age, based on their volatile fingerprint. SIGNIFICANCE: The developed methodology in combination with chemometric techniques allows to trace back and confirm the vintage year, and is proposed as a novel authenticity tool which opens completely new and hitherto unexplored possibilities for wine authenticity testing and confirmation.


Volatile Organic Compounds , Wine , Wine/analysis , Gas Chromatography-Mass Spectrometry/methods , Solid Phase Microextraction/methods , Chemometrics , Cluster Analysis , Volatile Organic Compounds/analysis
13.
Sci Total Environ ; 927: 172227, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38582104

The sensory quality of drinking water, and particularly its taste and odor (T&O) is a key determinant of consumer acceptability, as consumers evaluate water by their senses. Some of the conventional treatment processes to control compounds which impart unpleasant T&O have limitations because of their low efficiency and/or high costs. Therefore, there is a great need to develop an effective process for removing T&O compounds without secondary concerns. The primary objective of this study was to assess for the first time the effectiveness of spirulina-based carbon materials in removing geosmin (GSM) and 2-methylisoborneol (2-MIB) from water, two commonly occurring natural T&O compounds. The efficiency of the materials to remove environmentally relevant concentrations of GSM and 2-MIB (ng L-1) from ultrapure and raw water was investigated using a sensitive headspace solid-phase microextraction coupled with gas chromatography mass spectrometry (HS-SPME-GC/MS) method. Moreover, the genotoxic and cytotoxic effects of the spirulina-based materials were assessed for the first time to evaluate their safety and their potential in the treatment of water for human consumption. Based on the results, spirulina-based materials were found to be promising for drinking water treatment applications, as they did not exert geno-cytotoxic effects on human cells, while presenting high efficiency in removing GSM and 2-MIB from water.


Drinking Water , Odorants , Spirulina , Taste , Water Pollutants, Chemical , Water Purification , Drinking Water/chemistry , Odorants/analysis , Water Pollutants, Chemical/analysis , Water Purification/methods , Naphthols , Humans , Camphanes , Adsorption , Solid Phase Microextraction/methods , Carbon , Gas Chromatography-Mass Spectrometry
14.
J Environ Sci Health B ; 59(6): 285-299, 2024.
Article En | MEDLINE | ID: mdl-38686491

In this paper, dispersive micro-solid phase extraction technique was developed for the purpose of extracting and preconcentrating organochlorine pesticide residues in juice samples before their separation and quantitative analysis by gas chromatography-mass spectrometry. A sorbent composed of a silica-supported Fe2O3-modified khat leftover biochar nanocomposite (SiO2-Fe2O3-KLBNC) was implemented in the process. To improve the dispersion of the sorbent in the solution, vortex mixer was employed. Experimental parameters influencing the performance of the method were optimized, and the optimal conditions were established. With these conditions, linear dynamic ranges ranged from 0.003 to 100.0 ng/mL were achieved, with a correlation coefficient (r2) ≥ 0.9981. The limits of detection and quantification, determined by signal-to-noise ratios of 3 and 10, respectively, were found to be in the ranges of 0.001-0.006 ng/mL and 0.003-0.020 ng/mL. Intra- and inter-day precision, values ranging from 0.3-4.8% and 1.7-5.2% were obtained, respectively. The matrix-matched extraction recoveries demonstrated favorable outcomes, falling within the range of 83.4-108.3%. The utilization of khat leftover as an adsorbent in contemporary sample preparation methodologies offers a cost-effective alternative to the currently available, yet expensive, adsorbents. This renders it economically viable, particularly in resource-constrained regions, and is anticipated to witness widespread adoption in the coming future.


Charcoal , Gas Chromatography-Mass Spectrometry , Hydrocarbons, Chlorinated , Nanocomposites , Silicon Dioxide , Charcoal/chemistry , Nanocomposites/chemistry , Silicon Dioxide/chemistry , Hydrocarbons, Chlorinated/analysis , Hydrocarbons, Chlorinated/chemistry , Ferric Compounds/chemistry , Catha/chemistry , Solid Phase Microextraction/methods , Pesticide Residues/analysis , Pesticide Residues/chemistry , Fruit and Vegetable Juices/analysis , Food Contamination/analysis
15.
J Chromatogr A ; 1725: 464875, 2024 Jun 21.
Article En | MEDLINE | ID: mdl-38678692

Ultrasonic-assisted dispersive micro solid phase extraction (UA-DMSPE) is proposed as a fast and easy technique for the extraction and preconcentration of methadone and tramadol from serum samples. Different sorbents including carbon nanotubes, oxidized carbon nanotubes, and TiO2 nanoparticles were compared to extract methadone and tramadol. The best performance was obtained using oxidized carbon nanotubes due to the strong affinity between the drugs and carbon nanotube adsorbents. Final analysis of drugs performed by using gas chromatography-mass spectrometric detection. Different parameters affecting the extraction efficiency, such as the sample volume, amount of adsorbent, desorption solvent type and volume, centrifugation time, and speed were investigated and optimized. The striking features of this technique are correlated to its speed and the small volumes of sample (about 1 mL), desorption solvent (about 50 µL), and adsorbent (about 0.001 g) for analysis of drugs, and finally, milder centrifugation conditions relative to the previously reported adsorbent. The optimal parameters were achieved as follows: pH value was set at 9, the sample volume was adjusted to 1200 µL, the amount of adsorbent used was 1 mg, the extraction time was set at 5 min, and the volume of the desorption solvent was adjusted to 50 µL. The limits of detections (0.5 and 0.8 ng mL-1) and quantifications (1.5 and 2.5 ng mL-1) were obtained for methadone and tramadol, respectively. The developed method also showed good repeatability, relative standard deviation (RSD) of 9.49 % and 7.47 % (n = 5), for the spiked aqueous solution at the concentration level of 10, 50, and 100 ng mL-1 for analytes, and linearity, R ≥ 0.9809. The results showed that UA-DMSPE is a quick, relatively inexpensive, and environmentally friendly alternative technique for the extraction of opiate drugs from serum samples.


Gas Chromatography-Mass Spectrometry , Limit of Detection , Methadone , Solid Phase Microextraction , Tramadol , Tramadol/blood , Methadone/blood , Gas Chromatography-Mass Spectrometry/methods , Humans , Solid Phase Microextraction/methods , Nanotubes, Carbon/chemistry , Reproducibility of Results , Adsorption , Titanium
16.
Sci Total Environ ; 930: 172802, 2024 Jun 20.
Article En | MEDLINE | ID: mdl-38679093

In situ measurement of the bioavailability of organic pollutants in soil is crucial for understanding their environmental behavior and assessing health risks. Due to the high heterogeneity of soil, microscale determination is crucial for achieving high accuracy, but few methods are available. In this study, microsized probes coated with polydimethylsiloxane (PDMS) were used to measure the bioavailability of polycyclic aromatic hydrocarbons (PAHs) in soil in situ. The concentrations of PAHs enriched by the PDMS-coated probes correlated well with the results of bioassays using earthworms (R2 = 0.92-0.99) and ryegrass roots (R2 = 0.92-0.99). Compared with other chemical extraction methods, such as n-butanol extraction, the proposed method has advantages such as in situ operation, microvolume analysis, and negligible interference to the soil environment. In the soil rhizosphere zone, PAHs bioavailability decreased in the following order: rhizosphere > near-rhizosphere > far-rhizosphere. The bioavailability of PAHs in soil amended with biochar was also successfully characterized by the proposed method. Thus, this study developed an in situ and microscale method to predict the bioavailability of organic pollutants in contaminated soils and provides new insight into migration and transformation processes in rhizosphere soil.


Polycyclic Aromatic Hydrocarbons , Rhizosphere , Soil Pollutants , Soil , Solid Phase Microextraction , Polycyclic Aromatic Hydrocarbons/analysis , Soil Pollutants/analysis , Solid Phase Microextraction/methods , Soil/chemistry , Environmental Monitoring/methods , Biological Availability , Animals , Lolium , Oligochaeta
17.
Waste Manag ; 182: 91-101, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38643526

The recycling of polyethylene terephthalate (PET) stands as an effective strategy for mitigating plastic pollution and reducing resource waste. The study aimed to investigate the characterization and elimination efficiency of volatile organic compounds (VOCs) present in rPET at various recycling stages using comprehensive two-dimensional gas chromatography-quadrupole-time-of-flight-mass spectrometry coupled with chemometrics. The results revealed that 52, 135, 95, 44, and 33 VOCs, mostly classified into three chemical groups, were tentatively identified in virgin - PET (v-PET), cold water washed - rPET (C-rPET), decontaminated - rPET (D-rPET), melt-extruded - rPET (M-rPET), and solid-state polycondensation - rPET (S-rPET), respectively. Regarding the VOCs with high and median detection frequencies, fatty acyls showed the highest elimination efficiency (100 % and 92 %), followed by organooxygen compounds (81 % and 99 %), others (97 % and 95 %), and benzene and substituted derivatives (82 % and 95 %) in term of HS-SPME. Following the recycling process, there was a general decrease in the concentration of almost all VOCs, as evidenced by the substantial reduction of o-Xylene, hexanoic acid, octanal, and D-limonene from 18.11, 22.43, 30.74, and 7.41 mg/kg to 0, 0, 3.97, and 0 mg/kg, respectively. However, it was noteworthy that the VOCs identified in the samples were not completely extracted, owing to the limitations of HS-SPME. Furthermore, chemometrics analysis indicated significant discrimination among VOCs from vPET, C-rPET, D-rPET, and M-rPET, while indistinct differences were observed between M-rPET and S-rPET. This study contributes to the enhancement of the recycling process and emphasizes the importance of safeguarding consumer health in terms of elimination of VOCs.


Polyethylene Terephthalates , Recycling , Volatile Organic Compounds , Polyethylene Terephthalates/chemistry , Volatile Organic Compounds/analysis , Recycling/methods , Gas Chromatography-Mass Spectrometry , Solid Phase Microextraction/methods
18.
Mikrochim Acta ; 191(5): 276, 2024 04 22.
Article En | MEDLINE | ID: mdl-38644435

Solid-phase microextraction (SPME) coupled with electrospray ionization mass spectrometry (ESI-MS) was developed for rapid and sensitive determination of endogenous androgens. The SPME probe is coated with covalent organic frameworks (COFs) synthesized by reacting 1,3,5-tri(4-aminophenyl)benzene (TPB) with 2,5-dioctyloxybenzaldehyde (C8PDA). This COFs-SPME probe offers several advantages, including enhanced extraction efficiency and stability. The analytical method exhibited wide linearity (0.1-100.0 µg L-1), low limits of detection (0.03-0.07 µg L-1), high enrichment factors (37-154), and satisfactory relative standard deviations (RSDs) for both within one probe (4.0-14.8%) and between different probes (3.4-12.7%). These remarkable performance characteristics highlight the reliability and precision of the COFs-SPME-ESI-MS method. The developed method was successfully applied to detect five kinds of endogenous androgens in female serum samples, indicating that the developed analytical method has great potential for application in preliminary clinical diagnosis.


Androgens , Limit of Detection , Solid Phase Microextraction , Spectrometry, Mass, Electrospray Ionization , Solid Phase Microextraction/methods , Spectrometry, Mass, Electrospray Ionization/methods , Humans , Androgens/blood , Androgens/analysis , Androgens/chemistry , Female , Metal-Organic Frameworks/chemistry , Reproducibility of Results
19.
J Agric Food Chem ; 72(19): 11164-11173, 2024 May 15.
Article En | MEDLINE | ID: mdl-38564679

This study developed a novel nanocomposite colorimetric sensor array (CSA) to distinguish between fresh and moldy maize. First, the headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC/MS) method was used to analyze volatile organic compounds (VOCs) in fresh and moldy maize samples. Then, principal component analysis and orthogonal partial least-squares discriminant analysis (OPLS-DA) were used to identify 2-methylbutyric acid and undecane as key VOCs associated with moldy maize. Furthermore, colorimetric sensitive dyes modified with different nanoparticles were employed to enhance the dye properties used in the nanocomposite CSA analysis of key VOCs. This study focused on synthesizing four types of nanoparticles: polystyrene acrylic (PSA), porous silica nanospheres (PSNs), zeolitic imidazolate framework-8 (ZIF-8), and ZIF-8 after etching. Additionally, three types of substrates, qualitative filter paper, polyvinylidene fluoride film, and thin-layer chromatography silica gel, were comparatively used to fabricate nanocomposite CSA combining with linear discriminant analysis (LDA) and K-nearest neighbor (KNN) models for real sample detection. All moldy maize samples were correctly identified and prepared to characterize the properties of the CSA. Through initial testing and nanoenhancement of the chosen dyes, four nanocomposite colorimetric sensitive dyes were confirmed. The accuracy rates for LDA and KNN models in this study reached 100%. This work shows great potential for grain quality control using CSA methods.


Colorimetry , Gas Chromatography-Mass Spectrometry , Nanocomposites , Solid Phase Microextraction , Volatile Organic Compounds , Zea mays , Zea mays/chemistry , Zea mays/microbiology , Nanocomposites/chemistry , Colorimetry/methods , Colorimetry/instrumentation , Volatile Organic Compounds/chemistry , Solid Phase Microextraction/methods , Solid Phase Microextraction/instrumentation , Fungi , Food Contamination/analysis
20.
Methods Mol Biol ; 2788: 39-48, 2024.
Article En | MEDLINE | ID: mdl-38656507

Plant volatile organic compounds (VOCs) are organic chemicals that plants release as part of their natural biological processes. Various plant tissues produce VOCs, including leaves, stems, flowers, and roots. VOCs are essential in plant communication, defense against pests and pathogens, aroma and flavor, and attracting pollinators. The study of plant volatiles has become an increasingly important area of research in recent years, as scientists have recognized these compounds' important roles in plant physiology. As a result, there has been a growing interest in developing methods for collecting and analyzing plant VOCs. HS-SPME-GC-MS (headspace solid-phase microextraction-gas chromatography-mass spectrometry) is commonly used for plant volatile analysis due to its high sensitivity and selectivity. This chapter describes an efficient method for extracting and identifying volatile compounds by HS-SPME coupled with GC-MS in tomato fruits.


Fruit , Gas Chromatography-Mass Spectrometry , Solanum lycopersicum , Solid Phase Microextraction , Volatile Organic Compounds , Solanum lycopersicum/chemistry , Gas Chromatography-Mass Spectrometry/methods , Volatile Organic Compounds/analysis , Volatile Organic Compounds/isolation & purification , Solid Phase Microextraction/methods , Fruit/chemistry
...