Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.154
1.
J Exp Clin Cancer Res ; 43(1): 143, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745179

BACKGROUND: Sorafenib is a standard first-line treatment for advanced hepatocellular carcinoma (HCC), yet its effectiveness is often constrained. Emerging studies reveal that sorafenib triggers ferroptosis, an iron-dependent regulated cell death (RCD) mechanism characterized by lipid peroxidation. Our findings isolate the principal target responsible for ferroptosis in HCC cells and outline an approach to potentially augment sorafenib's therapeutic impact on HCC. METHODS: We investigated the gene expression alterations following sgRNA-mediated knockdown induced by erastin and sorafenib in HCC cells using CRISPR screening-based bioinformatics analysis. Gene set enrichment analysis (GSEA) and the "GDCRNATools" package facilitated the correlation studies. We employed tissue microarrays and cDNA microarrays for validation. Ubiquitination assay, Chromatin immunoprecipitation (ChIP) assay, RNA immunoprecipitation (RIP) assay, and dual-luciferase reporter assay were utilized to delineate the specific mechanisms underlying ferroptosis in HCC cells. RESULTS: Our study has revealed that pleiomorphic adenoma gene 1 (PLAG1), a gene implicated in pleomorphic adenoma, confers resistance to ferroptosis in HCC cells treated with sorafenib. Sorafenib leads to the opposite trend of protein and mRNA levels of PLAG1, which is not caused by affecting the stability or ubiquitination of PLAG1 protein, but by the regulation of PLAG1 at the transcriptional level by its upstream competitive endogenous long non-coding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1). Data from 139 HCC patients showed a significant positive correlation between PLAG1 and GPX4 levels in tumor samples, and PLAG1 is instrumental in redox homeostasis by driving the expression of glutathione peroxidase 4 (GPX4), the enzyme that reduces lipid peroxides (LPOs), which further leads to ferroptosis inhibition. CONCLUSIONS: Ferroptosis is a promising target for cancer therapy, especially for patients resistant to standard chemotherapy or immunotherapy. Our findings indicate that PLAG1 holds therapeutic promise and may enhance the efficacy of sorafenib in treating HCC.


Carcinoma, Hepatocellular , DNA-Binding Proteins , Ferroptosis , Liver Neoplasms , Phospholipid Hydroperoxide Glutathione Peroxidase , Sorafenib , Humans , Sorafenib/pharmacology , Sorafenib/therapeutic use , Ferroptosis/drug effects , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Mice , Animals , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Male
2.
J Egypt Natl Canc Inst ; 36(1): 18, 2024 May 27.
Article En | MEDLINE | ID: mdl-38797810

BACKGROUND: This systematic review aims to compare the prognosis of treatment transarterial chemoembolization (TACE) combined with sorafenib and TACE-alone in patients with hepatocellular carcinoma (HCC) with Barcelona clinic liver cancer-stage C (BCLC-C). MATERIALS AND METHODS: A systematic search was conducted on five electronic databases: PubMed, ScienceDirect, Cochrane, Embase, and Scopus. Studies were included if they compared overall survival (OS) of TACE-Sorafenib to TACE-alone in patients with HCC BCLC-C within the 2019-2023 timeframe. We excluded studies consisting of conference abstracts, letters, editorials, guidelines, case reports, animal studies, trial registries, and unpublished work. The selected articles were evaluated from August 2023 to September 2023. The journal's quality was assessed with NOS for a non-randomized controlled trial. RESULTS: This systematic review included four studies following the Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA). All four studies compared the OS of 401 patients with TACE-sorafenib to TACE-alone. Two studies compared time-to-progression (TTP), one study compared progression-free survival (PFS), and two studies compared disease control rate (DCR). There were various population criteria, TACE techniques used, risk factors, follow-up time, and adverse events. The collected evidence generally suggested that the combination of TACE-sorafenib is superior compared to TACE-alone. Due to a lack of essential data for the included study, a meta-analysis couldn't be performed. CONCLUSION: The results of this systematic review suggested that TACE-sorafenib combination therapy in patients with HCC BCLC-C improves OS superior compared to TACE-alone, without a notable increase in adverse events.


Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Liver Neoplasms , Sorafenib , Humans , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/mortality , Liver Neoplasms/therapy , Liver Neoplasms/mortality , Liver Neoplasms/pathology , Chemoembolization, Therapeutic/methods , Sorafenib/therapeutic use , Sorafenib/administration & dosage , Prognosis , Neoplasm Staging , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Treatment Outcome , Combined Modality Therapy
3.
Cancer Biol Ther ; 25(1): 2349429, 2024 Dec 31.
Article En | MEDLINE | ID: mdl-38738555

Cervical cancer (CC) is a prevalent malignancy among women worldwide. This study was designed to investigate the role of METTL14 in sorafenib-induced ferroptosis in CC. METTL14 expression and m6A methylation were determined in CC tissues, followed by analyzes correlating these factors with clinical features. Subsequently, METTL14 was knocked down in CC cell lines, and the effects on cell proliferation, mitochondrial morphology and ferroptosis were assessed using CCK-8, microscopy, and markers associated with ferroptosis, respectively. The regulatory relationship between METTL14 and FTH1 was verified using qRT-PCR and luciferase reporter assays. The functional significance of this interaction was further investigated both in vitro and in vivo by co-transfecting cells with overexpression vectors or shRNAs targeting METTL14 and FTH1 after sorafenib treatment. METTL14 expression and m6A methylation were significantly reduced in CC tissues, and lower METTL14 expression levels were associated with a poorer CC patients' prognosis. Notably, METTL14 expression increased during sorafenib-induced ferroptosis, and METTL14 knockdown attenuated the ferroptotic response induced by sorafenib in CC cells. FTH1 was identified as a direct target of METTL14, with METTL14 overexpression leading to increased m6A methylation of FTH1 mRNA, resulting in reduced stability and expression of FTH1 in CC. Furthermore, FTH1 overexpression or treatment with LY294002 partially counteracted the promotion of sorafenib-induced ferroptosis by METTL14. In vivo xenograft experiments demonstrated that inhibiting METTL14 reduced the anticancer effects of sorafenib, whereas suppression of FTH1 significantly enhanced sorafenib-induced ferroptosis and increased its anticancer efficacy. METTL14 reduces FTH1 mRNA stability through m6A methylation, thereby enhancing sorafenib-induced ferroptosis, which contributes to suppressing CC progression via the PI3K/Akt signaling pathway.


Ferroptosis , Methyltransferases , RNA Stability , Sorafenib , Uterine Cervical Neoplasms , Humans , Sorafenib/pharmacology , Sorafenib/therapeutic use , Female , Ferroptosis/drug effects , Ferroptosis/genetics , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/genetics , Mice , Animals , Methyltransferases/metabolism , Methyltransferases/genetics , RNA Stability/drug effects , Mice, Nude , Gene Expression Regulation, Neoplastic/drug effects , Methylation/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Xenograft Model Antitumor Assays , RNA, Messenger/genetics , RNA, Messenger/metabolism , Prognosis , Ferritins , Oxidoreductases
4.
Med Sci (Basel) ; 12(2)2024 Apr 07.
Article En | MEDLINE | ID: mdl-38651414

Lung cancer remains the leading cause of cancer-related deaths, with a poor prognosis. Of the two types, non-small cell lung cancer (NSCLC) is the major and most prevalent type and associated with low response rates to the current treatment options. Sorafenib, a multitargeted tyrosine kinase inhibitor used for various malignancies, gained attention for its potential efficacy in NSCLC. This review paper focuses on the findings of recent in vitro, in vivo, and clinical studies regarding the efficacy of sorafenib. Overall, sorafenib has shown definitive therapeutic potential in NSCLC cell lines, xenografts, and human subjects. Novel approaches to sorafenib delivery may improve its efficacy and should be the focus of further studies.


Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Protein Kinase Inhibitors , Sorafenib , Carcinoma, Non-Small-Cell Lung/drug therapy , Humans , Sorafenib/therapeutic use , Lung Neoplasms/drug therapy , Antineoplastic Agents/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Animals , Phenylurea Compounds/therapeutic use
5.
Front Immunol ; 15: 1373321, 2024.
Article En | MEDLINE | ID: mdl-38596684

Introduction: Sorafenib is currently the first-line treatment for patients with advanced hepatocellular carcinoma (HCC). Nevertheless, sorafenib resistance remains a huge challenge in the clinic. Therefore, it is urgent to elucidate the mechanisms underlying sorafenib resistance for developing novel treatment strategies for advanced HCC. In this study, we aimed to investigate the role and mechanisms of interleukin-22 (IL-22) in sorafenib resistance in HCC. Methods: The in vitro experiments using HCC cell lines and in vivo studies with a nude mouse model were used. Calcium staining, chromatin immunoprecipitation, lactate dehydrogenase release and luciferase reporter assays were employed to explore the expression and roles of IL-22, STAT3 and CD155 in sorafenib resistance. Results: Our clinical results demonstrated a significant correlation between elevated IL-22 expression and poor prognosis in HCC. Analysis of transcriptomic data from the phase-3 STORM-trial (BIOSTORM) suggested that STAT3 signaling activation and natural killer (NK) cell infiltration may associate sorafenib responses. STAT3 signaling could be activated by IL-22 administration in HCC cells, and then enhanced sorafenib resistance in HCC cells by promoting cell proliferation and reducing apoptosis in vitro and in vivo. Further, we found IL-22/STAT3 axis can transcriptionally upregulate CD155 expression in HCC cells, which could significantly reduce NK cell-mediated HCC cell lysis in a co-culture system. Conclusions: Collectively, IL-22 could contribute to sorafenib resistance in HCC by activating STAT3/CD155 signaling axis to decrease the sensitivities of tumor cells to sorafenib-mediated direct cytotoxicity and NK cell-mediated lysis. These findings deepen the understanding of how sorafenib resistance develops in HCC in terms of IL-22/STAT3 signaling pathway, and provide potential targets to overcome sorafenib resistance in patients with advanced HCC.


Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Sorafenib/pharmacology , Sorafenib/therapeutic use , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Interleukin-22 , Drug Resistance, Neoplasm , Cell Line, Tumor , Signal Transduction , STAT3 Transcription Factor/metabolism
6.
World J Gastroenterol ; 30(11): 1533-1544, 2024 Mar 21.
Article En | MEDLINE | ID: mdl-38617449

BACKGROUND: Patients with liver cancer complicated by portal hypertension present complex challenges in treatment. AIM: To evaluate the efficacy of radiofrequency ablation in combination with sorafenib for improving liver function and its impact on the prognosis of patients with this condition. METHODS: Data from 100 patients with liver cancer complicated with portal hypertension from May 2014 to March 2019 were analyzed and divided into a study group (n = 50) and a control group (n = 50) according to the treatment regimen. The research group received radiofrequency ablation (RFA) in combination with sorafenib, and the control group only received RFA. The short-term efficacy of both the research and control groups was observed. Liver function and portal hypertension were compared before and after treatment. Alpha-fetoprotein (AFP), glypican-3 (GPC-3), and AFP-L3 levels were compared between the two groups prior to and after treatment. The occurrence of adverse reactions in both groups was observed. The 3-year survival rate was compared between the two groups. Basic data were compared between the survival and non-surviving groups. To identify the independent risk factors for poor prognosis in patients with liver cancer complicated by portal hypertension, multivariate logistic regression analysis was employed. RESULTS: When comparing the two groups, the research group's total effective rate (82.00%) was significantly greater than that of the control group (56.00%; P < 0.05). Following treatment, alanine aminotransferase and aspartate aminotransferase levels increased, and portal vein pressure decreased in both groups. The degree of improvement for every index was substantially greater in the research group than in the control group (P < 0.05). Following treatment, the AFP, GPC-3, and AFP-L3 levels in both groups decreased, with the research group having significantly lower levels than the control group (P < 0.05). The incidence of diarrhea, rash, nausea and vomiting, and fatigue in the research group was significantly greater than that in the control group (P < 0.05). The 1-, 2-, and 3-year survival rates of the research group (94.00%, 84.00%, and 72.00%, respectively) were significantly greater than those of the control group (80.00%, 64.00%, and 40.00%, respectively; P < 0.05). Significant differences were observed between the survival group and the non-surviving group in terms of Child-Pugh grade, history of hepatitis, number of tumors, tumor size, use of sorafenib, stage of liver cancer, histological differentiation, history of splenectomy and other basic data (P < 0.05). Logistic regression analysis demonstrated that high Child-Pugh grade, tumor size (6-10 cm), history of hepatitis, no use of sorafenib, liver cancer stage IIIC, and previous splenectomy were independent risk factors for poor prognosis in patients with liver cancer complicated with portal hypertension (P < 0.05). CONCLUSION: Patients suffering from liver cancer complicated by portal hypertension benefit from the combination of RFA and sorafenib therapy because it effectively restores liver function and increases survival rates. The prognosis of patients suffering from liver cancer complicated by portal hypertension is strongly associated with factors such as high Child-Pugh grade, tumor size (6-10 cm), history of hepatitis, lack of sorafenib use, liver cancer at stage IIIC, and prior splenectomy.


Hepatitis A , Hypertension, Portal , Liver Neoplasms , Humans , Prognosis , Sorafenib/therapeutic use , alpha-Fetoproteins , Liver Neoplasms/complications , Liver Neoplasms/surgery , Hypertension, Portal/complications
7.
World J Surg Oncol ; 22(1): 93, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38605359

OBJECTIVE: The clinical efficacy and safety of sorafenib in patients with advanced liver cancer (ALC) were evaluated based on transarterial chemoembolization (TACE). METHODS: 92 patients with ALC admitted to our hospital from May 2020 to August 2022 were randomly rolled into a control (Ctrl) group and an observation (Obs) group, with 46 patients in each. Patients in the Ctrl group received TACE treatment, while those in the Obs group received sorafenib molecular targeted therapy (SMTT) on the basis of the treatment strategy in the Ctrl group (400 mg/dose, twice daily, followed by a 4-week follow-up observation). Clinical efficacy, disease control rate (DCR), survival time (ST), immune indicators (CD3+, CD4+, CD4+/CD8+), and adverse reactions (ARs) (including mild fatigue, liver pain, hand-foot syndrome (HFS), diarrhea, and fever) were compared for patients in different groups after different treatments. RESULTS: the DCR in the Obs group (90%) was greatly higher to that in the Ctrl group (78%), showing an obvious difference (P < 0.05). The median ST in the Obs group was obviously longer and the median disease progression time (DPT) was shorter, exhibiting great differences with those in the Ctrl group (P < 0.05). Moreover, no great difference was observed in laboratory indicators between patients in various groups (P > 0.05). After treatment, the Obs group exhibited better levels in all indicators. Furthermore, the incidence of ARs in the Obs group was lower and exhibited a sharp difference with that in the Ctrl group (P < 0.05). CONCLUSION: SMTT had demonstrated good efficacy in patients with ALC, improving the DCR, enhancing the immune response of the body, and reducing the incidence of ARs, thereby promoting the disease outcome. Therefore, it was a treatment method worthy of promotion and application.


Antineoplastic Agents , Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Liver Neoplasms , Humans , Sorafenib/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Antineoplastic Agents/adverse effects , Chemoembolization, Therapeutic/methods , Niacinamide/adverse effects , Phenylurea Compounds/adverse effects , Treatment Outcome , Combined Modality Therapy
8.
J Nanobiotechnology ; 22(1): 204, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38658948

As a famous drug delivery system (DDS), mesoporous organosilica nanoparticles (MON) are degraded slowly in vivo and the degraded components are not useful for cell nutrition or cancer theranostics, and superparamagnetic iron oxide nanoparticles (SPION) are not mesoporous with low drug loading content (DLC). To overcome the problems of MON and SPION, we developed mesoporous SPIONs (MSPIONs) with an average diameter of 70 nm and pore size of 3.9 nm. Sorafenib (SFN) and/or brequinar (BQR) were loaded into the mesopores of MSPION, generating SFN@MSPION, BQR@MSPION and SFN/BQR@MSPION with high DLC of 11.5% (SFN), 10.1% (BQR) and 10.0% (SNF + BQR), demonstrating that our MSPION is a generic DDS. SFN/BQR@MSPION can be used for high performance ferroptosis therapy of tumors because: (1) the released Fe2+/3+ in tumor microenvironment (TME) can produce •OH via Fenton reaction; (2) the released SFN in TME can inhibit the cystine/glutamate reverse transporter, decrease the intracellular glutathione (GSH) and GSH peroxidase 4 levels, and thus enhance reactive oxygen species and lipid peroxide levels; (3) the released BQR in TME can further enhance the intracellular oxidative stress via dihydroorotate dehydrogenase inhibition. The ferroptosis therapeutic mechanism, efficacy and biosafety of MSPION-based DDS were verified on tumor cells and tumor-bearing mice.


Drug Delivery Systems , Ferroptosis , Magnetic Iron Oxide Nanoparticles , Sorafenib , Ferroptosis/drug effects , Animals , Magnetic Iron Oxide Nanoparticles/chemistry , Mice , Humans , Drug Delivery Systems/methods , Sorafenib/pharmacology , Sorafenib/chemistry , Sorafenib/therapeutic use , Cell Line, Tumor , Tumor Microenvironment/drug effects , Neoplasms/drug therapy , Porosity , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Mice, Inbred BALB C
9.
J Gastroenterol ; 59(6): 515-525, 2024 Jun.
Article En | MEDLINE | ID: mdl-38583112

BACKGROUND: During systemic therapy, the management of portal hypertension (PH)-related complications is vital. This study aimed to clarify factors associated with the incidence and exacerbation of PH-related complications, including the usefulness of contrast-enhanced computed tomography (CECT) in the management of PH-related complications during systemic therapy. METHODS: A total of 669 patients who received systemic therapy as first-line treatment (443 patients for sorafenib, 131 for lenvatinib, and 90 for atezolizumab/bevacizumab [ATZ/BEV]) were enrolled in this retrospective study. Additionally, the lower esophageal intramural vessel diameters (EIV) on CECT and endoscopic findings in 358 patients were compared. RESULTS: The cutoff values of the EIV diameter on CECT were 3.1 mm for small, 5.1 mm for medium, and 7.6 mm for large varices, demonstrating high concordance with the endoscopic findings. esophageal varices (EV) bleeding predictors include EIV ≥ 3.1 mm and portal vein tumor thrombosis (PVTT). In patients without EV before systemic therapy, factors associated with EV exacerbation after 3 months were EIV ≥ 1.9 mm and ATZ/BEV use. Predictors of hepatic encephalopathy (HE) include the ammonia level or portosystemic shunt diameter ≥ 6.8 mm. The incidence of HE within 2 weeks was significantly higher (18%) in patients with an ammonia level ≥ 73 µmol/L and a portosystemic shunt ≥ 6.8 mm. The exacerbating factors for ascites after 3 months were PVTT and low albumin levels. CONCLUSIONS: Careful management is warranted for patients with risk factors for exacerbation of PH-related complications; moreover, the effective use of CECT is clinically important.


Bevacizumab , Carcinoma, Hepatocellular , Esophageal and Gastric Varices , Hypertension, Portal , Liver Neoplasms , Phenylurea Compounds , Sorafenib , Humans , Hypertension, Portal/etiology , Male , Female , Retrospective Studies , Middle Aged , Aged , Risk Factors , Esophageal and Gastric Varices/etiology , Esophageal and Gastric Varices/epidemiology , Phenylurea Compounds/adverse effects , Phenylurea Compounds/administration & dosage , Phenylurea Compounds/therapeutic use , Sorafenib/adverse effects , Sorafenib/therapeutic use , Sorafenib/administration & dosage , Bevacizumab/administration & dosage , Bevacizumab/adverse effects , Bevacizumab/therapeutic use , Tomography, X-Ray Computed , Quinolines/therapeutic use , Quinolines/adverse effects , Quinolines/administration & dosage , Hepatic Encephalopathy/etiology , Hepatic Encephalopathy/epidemiology , Antineoplastic Agents/adverse effects , Antineoplastic Agents/administration & dosage , Adult , Aged, 80 and over , Gastrointestinal Hemorrhage/etiology , Gastrointestinal Hemorrhage/epidemiology , Incidence
10.
J Cell Mol Med ; 28(8): e18335, 2024 Apr.
Article En | MEDLINE | ID: mdl-38652216

Management of hepatocellular carcinoma (HCC) remains challenging due to population growth, frequent recurrence and drug resistance. Targeting of genes involved with the ferroptosis is a promising alternative treatment strategy for HCC. The present study aimed to investigate the effect of dihydroartemisinin (DHA) against HCC and explore the underlying mechanisms. The effects of DHA on induction of ferroptosis were investigated with the measurement of malondialdehyde concentrations, oxidised C11 BODIPY 581/591 staining, as well as subcutaneous xenograft experiments. Activated transcription factor 4 (ATF4) and solute carrier family 7 member 11 (SLC7A11 or xCT) were overexpressed with lentiviruses to verify the target of DHA. Here, we confirmed the anticancer effect of DHA in inducing ferroptosis is related to ATF4. High expression of ATF4 is related to worse clinicopathological prognosis of HCC. Mechanistically, DHA inhibited the expression of ATF4, thereby promoting lipid peroxidation and ferroptosis of HCC cells. Overexpression of ATF4 rescued DHA-induced ferroptosis. Moreover, ATF4 could directly bound to the SLC7A11 promoter and increase its transcription. In addition, DHA enhances the chemosensitivity of sorafenib on HCC in vivo and in vitro. These findings confirm that DHA induces ferroptosis of HCC via inhibiting ATF4-xCT pathway, thereby providing new drug options for the treatment of HCC.


Activating Transcription Factor 4 , Amino Acid Transport System y+ , Artemisinins , Carcinoma, Hepatocellular , Ferroptosis , Liver Neoplasms , Ferroptosis/drug effects , Artemisinins/pharmacology , Artemisinins/therapeutic use , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 4/genetics , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Humans , Animals , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Mice , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Signal Transduction/drug effects , Xenograft Model Antitumor Assays , Male , Mice, Nude , Sorafenib/pharmacology , Sorafenib/therapeutic use , Female , Mice, Inbred BALB C
11.
Life Sci ; 347: 122627, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38614301

A high mortality rate makes hepatocellular carcinoma (HCC) a difficult cancer to treat. When surgery is not possible, liver cancer patients are treated with chemotherapy. However, HCC management and treatment are difficult. Sorafenib, which is a first-line treatment for hepatocellular carcinoma, initially slows disease progression. However, sorafenib resistance limits patient survival. Recent studies have linked HCC to programmed cell death, which has increased researcher interest in therapies targeting cell death. Pyroptosis, which is an inflammatory mode of programmed cell death, may be targeted to treat HCC. Pyroptosis pathways, executors, and effects are examined in this paper. This review summarizes how pyroptosis affects the tumor microenvironment (TME) in HCC, including the role of cytokines such as IL-1ß and IL-18 in regulating immune responses. The use of chemotherapies and their ability to induce cancer cell pyroptosis as alternative treatments and combining them with other drugs to reduce side effects is also discussed. In conclusion, we highlight the potential of inducing pyroptosis to treat HCC and suggest ways to improve patient outcomes. Studies on cancer cell pyroptosis may lead to new HCC treatments.


Carcinoma, Hepatocellular , Liver Neoplasms , Pyroptosis , Tumor Microenvironment , Humans , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Sorafenib/therapeutic use , Sorafenib/pharmacology
12.
Mol Cancer ; 23(1): 74, 2024 Apr 06.
Article En | MEDLINE | ID: mdl-38582885

BACKGROUND AND AIMS: Sorafenib is a major nonsurgical option for patients with advanced hepatocellular carcinoma (HCC); however, its clinical efficacy is largely undermined by the acquisition of resistance. The aim of this study was to identify the key lncRNA involved in the regulation of the sorafenib response in HCC. MATERIALS AND METHODS: A clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) single-guide RNA (sgRNA) synergistic activation mediator (SAM)-pooled lncRNA library was applied to screen for the key lncRNA regulated by sorafenib treatment. The role of the identified lncRNA in mediating the sorafenib response in HCC was examined in vitro and in vivo. The underlying mechanism was delineated by proteomic analysis. The clinical significance of the expression of the identified lncRNA was evaluated by multiplex immunostaining on a human HCC microtissue array. RESULTS: CRISPR/Cas9 lncRNA library screening revealed that Linc01056 was among the most downregulated lncRNAs in sorafenib-resistant HCC cells. Knockdown of Linc01056 reduced the sensitivity of HCC cells to sorafenib, suppressing apoptosis in vitro and promoting tumour growth in mice in vivo. Proteomic analysis revealed that Linc01056 knockdown in sorafenib-treated HCC cells induced genes related to fatty acid oxidation (FAO) while repressing glycolysis-associated genes, leading to a metabolic switch favouring higher intracellular energy production. FAO inhibition in HCC cells with Linc01056 knockdown significantly restored sensitivity to sorafenib. Mechanistically, we determined that PPARα is the critical molecule governing the metabolic switch upon Linc01056 knockdown in HCC cells and indeed, PPARα inhibition restored the sorafenib response in HCC cells in vitro and HCC tumours in vivo. Clinically, Linc01056 expression predicted optimal overall and progression-free survival outcomes in HCC patients and predicted a better sorafenib response. Linc01056 expression indicated a low FAO level in HCC. CONCLUSION: Our study identified Linc01056 as a critical epigenetic regulator and potential therapeutic target in the regulation of the sorafenib response in HCC.


Carcinoma, Hepatocellular , Liver Neoplasms , RNA, Long Noncoding , Humans , Mice , Animals , Sorafenib/pharmacology , Sorafenib/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , RNA, Long Noncoding/genetics , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , RNA, Guide, CRISPR-Cas Systems , PPAR alpha/genetics , PPAR alpha/metabolism , PPAR alpha/therapeutic use , Proteomics , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic
13.
Front Public Health ; 12: 1356244, 2024.
Article En | MEDLINE | ID: mdl-38562257

Objective: The goal of this study is to compare the cost-effectiveness of tislelizumab and sorafenib as first-line treatment for advanced hepatocellular carcinoma in China. Methods: A comprehensive cost-effectiveness analysis was undertaken within the framework of a partitioned survival model to accurately gage the incremental cost-effectiveness ratio (ICER) of tislelizumab compared to sorafenib. The model incorporated relevant clinical data and all survival rates were from RATIONALE-301 trials. The stability of the partitioned survival model was assessed by performing one-way and two-way sensitivity analyses. Results: The total cost incurred for the tislelizumab treatment was $16181.24, whereas the sorafenib was $14306.87. The tislelizumab regimen resulted in a significant increase of 0.18 quality-adjusted life years (QALYs) and an extra cost of $1874.37 as compared to chemotherapy. The ICER was $10413.17 per QALY, which was found to be below the willingness-to-pay (WTP) threshold of $37304.34/QALY. The results of the sensitivity analysis found that no fluctuations in any of the factors affected our results, even when these parameters fluctuated. Conclusion: Tislelizumab appears to be a cost-effective first-line treatment for advanced hepatocellular carcinoma when compared to sorafenib in China. These findings can inform decision-making processes regarding the selection of the most cost-effective treatment option for advanced hepatocellular carcinoma.


Antibodies, Monoclonal, Humanized , Antineoplastic Agents , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Sorafenib/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Antineoplastic Agents/therapeutic use , Cost-Effectiveness Analysis , Liver Neoplasms/drug therapy , Cost-Benefit Analysis
16.
PLoS One ; 19(3): e0300051, 2024.
Article En | MEDLINE | ID: mdl-38527038

The cytotoxicity of the ethyl acetate fraction of the Calotropis gigantea (L.) Dryand. (C. gigantea) stem bark extract (CGEtOAc) has been demonstrated in many types of cancers. This study examined the improved cancer therapeutic activity of sorafenib when combined with CGEtOAc in HepG2 cells. The cell viability and cell migration assays were applied in HepG2 cells treated with varying concentrations of CGEtOAc, sorafenib, and their combination. Flow cytometry was used to determine apoptosis, which corresponded with a decline in mitochondrial membrane potential and activation of DNA fragmentation. Reactive oxygen species (ROS) levels were assessed in combination with the expression of the phosphatidylinositol-3-kinase (PI3K)/ protein kinase B (Akt)/ mammalian target of rapamycin (mTOR) pathway, which was suggested for association with ROS-induced apoptosis. Combining CGEtOAc at 400 µg/mL with sorafenib at 4 µM, which were their respective half-IC50 concentrations, significantly inhibited HepG2 viability upon 24 h of exposure in comparison with the vehicle and each single treatment. Consequently, CGEtOAc when combined with sorafenib significantly diminished HepG2 migration and induced apoptosis through a mitochondrial-correlation mechanism. ROS production was speculated to be the primary mechanism of stimulating apoptosis in HepG2 cells after exposure to a combination of CGEtOAc and sorafenib, in association with PI3K/Akt/mTOR pathway suppression. Our results present valuable knowledge to support the development of anticancer regimens derived from the CGEtOAc with the chemotherapeutic agent sorafenib, both of which were administered at half-IC50, which may minimize the toxic implications of cancer treatments while improving the therapeutic effectiveness toward future medical applications.


Acetates , Calotropis , Liver Neoplasms , Humans , Sorafenib/pharmacology , Sorafenib/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Hep G2 Cells , Calotropis/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Reactive Oxygen Species/metabolism , Plant Bark/metabolism , TOR Serine-Threonine Kinases/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Apoptosis , Cell Line, Tumor , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism
17.
PLoS One ; 19(3): e0295090, 2024.
Article En | MEDLINE | ID: mdl-38437209

BACKGROUND: To evaluate the cost-effectiveness of Tislelizumab vs Sorafenib as the first-line treatment of unresectable hepatocellular carcinoma (HCC) from the perspective of the Chinese health service system. METHODS: A lifetime partitioned survival model (PSM) was developed to cost-effectively analyze Tislelizumab vs Sorafenib as the first-line treatment of unresectable HCC. The clinical and safety data were derived from a recently randomized clinical trial (RATIONALE-301). Utilities were collected from the published literature. Costs were obtained from an open-access database (http://www.yaozh.com) and previous studies. The model cycle was 21 days, according to the RATIONALE-301 study, and the simulation period was patients' lifetime. Long-term direct medical costs and quality-adjusted life-years (QALYs) were determined. The incremental cost-effectiveness ratio (ICER) was used as the evaluation index. one-way sensitivity analysis (OSWA) and probabilistic sensitivity analysis (PSA) were used to analyze the uncertainty of parameters and to adjust and verify the stability of the baseline results. RESULTS: The Tislelizumab group generated a cost of $39,746.34 and brought health benefits to 2.146 QALYs, while the cost and utility of the Sorafenib group were $26750.95 and 1.578 QALYs, respectively. The Tislelizumab group increased QALYs by 0.568, the incremental cost was $12995.39, and the ICER was $22869.64/QALY, lower than the willingness to pay threshold (WTP). OSWA results showed that the utility of progressed disease (PD), cost of Camrelizumab, and cost of Tislelizumab were the main factors affecting the ICER. PSA results showed that, within 1000 times the Monte Carlo simulation, the cost of the Tislelizumab group was lower than three times the per capita gross domestic product (GDP) of China ($37653/QALY). The cost-effectiveness acceptability curves (CEAC) revealed that when WTP was no less than $12251.00, the Tislelizumab group was the dominant scheme, and the economic advantage grew with an increasing WTP. When WTP ≥ $19000.00, the Tislelizumab group became the absolute economic advantage. CONCLUSION: Under the current economic conditions in China, the Tislelizumab therapeutic scheme is more cost-effective than the Sorafenib therapeutic scheme for treating patients with unresectable HCC.


Antibodies, Monoclonal, Humanized , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Sorafenib/therapeutic use , Cost-Effectiveness Analysis , Liver Neoplasms/drug therapy
18.
Apoptosis ; 29(5-6): 768-784, 2024 Jun.
Article En | MEDLINE | ID: mdl-38493408

Hepatocellular carcinoma (HCC) is a common cause of cancer-associated death worldwide. The mitochondrial unfolded protein response (UPRmt) not only maintains mitochondrial integrity but also regulates cancer progression and drug resistance. However, no study has used the UPRmt to construct a prognostic signature for HCC. This work aimed to establish a novel signature for predicting patient prognosis, immune cell infiltration, immunotherapy, and chemotherapy response based on UPRmt-related genes (MRGs). Transcriptional profiles and clinical information were obtained from the TCGA and ICGC databases. Cox regression and LASSO regression analyses were applied to select prognostic genes and develop a risk model. The TIMER algorithm was used to investigate immunocytic infiltration in the high- and low-risk subgroups. Here, two distinct clusters were identified with different prognoses, immune cell infiltration statuses, drug sensitivities, and response to immunotherapy. A risk score consisting of seven MRGs (HSPD1, LONP1, SSBP1, MRPS5, YME1L1, HDAC1 and HDAC2) was developed to accurately and independently predict the prognosis of HCC patients. Additionally, the expression of core MRGs was confirmed by immunohistochemistry (IHC) staining, single-cell RNA sequencing, and spatial transcriptome analyses. Notably, the expression of prognostic MRGs was significantly correlated with sorafenib sensitivity in HCC and markedly downregulated in sorafenib-treated HepG2 and Huh7 cells. Furthermore, the knockdown of LONP1 decreased the proliferation, invasion, and migration of HepG2 cells, suggesting that upregulated LONP1 expression contributed to the malignant behaviors of HCC cells. To our knowledge, this is the first study to investigate the consensus clustering algorithm, prognostic potential, immune microenvironment infiltration and drug sensitivity based on the expression of MRGs in HCC. In summary, the UPRmt-related classification and prognostic signature could assist in determining the prognosis and personalized therapy of HCC patients from the perspectives of predictive, preventative and personalized medicine.


Carcinoma, Hepatocellular , Immunotherapy , Liver Neoplasms , Mitochondria , Sorafenib , Unfolded Protein Response , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/diagnosis , Liver Neoplasms/genetics , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/immunology , Liver Neoplasms/diagnosis , Unfolded Protein Response/drug effects , Prognosis , Sorafenib/pharmacology , Sorafenib/therapeutic use , Mitochondria/metabolism , Mitochondria/drug effects , Mitochondria/genetics , Gene Expression Regulation, Neoplastic/drug effects , Drug Resistance, Neoplasm/genetics , Male , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Female , Cell Line, Tumor
19.
Eur Radiol Exp ; 8(1): 43, 2024 Mar 12.
Article En | MEDLINE | ID: mdl-38467904

BACKGROUND: Multi-b-value diffusion-weighted imaging (DWI) with different postprocessing models allows for evaluating hepatocellular carcinoma (HCC) proliferation, spatial heterogeneity, and feasibility of treatment strategies. We assessed synergistic effects of bufalin+sorafenib in orthotopic HCC-LM3 xenograft nude mice by using intravoxel incoherent motion (IVIM), diffusion kurtosis imaging (DKI), a stretched exponential model (SEM), and a fractional-order calculus (FROC) model. METHODS: Twenty-four orthotopic HCC-LM3 xenograft mice were divided into bufalin+sorafenib, bufalin, sorafenib treatment groups, and a control group. Multi-b-value DWI was performed using a 3-T scanner after 3 weeks' treatment to obtain true diffusion coefficient Dt, pseudo-diffusion coefficient Dp, perfusion fraction f, mean diffusivity (MD), mean kurtosis (MK), distributed diffusion coefficient (DDC), heterogeneity index α, diffusion coefficient D, fractional order parameter ß, and microstructural quantity µ. Necrotic fraction (NF), standard deviation (SD) of hematoxylin-eosin staining, and microvessel density (MVD) of anti-CD31 staining were evaluated. Correlations of DWI parameters with histopathological results were analyzed, and measurements were compared among four groups. RESULTS: In the final 22 mice, f positively correlated with MVD (r = 0.679, p = 0.001). Significantly good correlations of MK (r = 0.677), α (r = -0.696), and ß (r= -0.639) with SD were observed (all p < 0.010). f, MK, MVD, and SD were much lower, while MD, α, ß, and NF were higher in bufalin plus sorafenib group than control group (all p < 0.050). CONCLUSION: Evaluated by IVIM, DKI, SEM, and FROC, bufalin+sorafenib was found to inhibit tumor proliferation and angiogenesis and reduce spatial heterogeneity in HCC-LM3 models. RELEVANCE STATEMENT: Multi-b-value DWI provides potential metrics for evaluating the efficacy of treatment in HCC. KEY POINTS: • Bufalin plus sorafenib combination may increase the effectiveness of HCC therapy. • Multi-b-value DWI depicted HCC proliferation, angiogenesis, and spatial heterogeneity. • Multi-b-value DWI may be a noninvasive method to assess HCC therapeutic efficacy.


Bufanolides , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Animals , Mice , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/drug therapy , Sorafenib/pharmacology , Sorafenib/therapeutic use , Mice, Nude , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/drug therapy
20.
Biotechnol J ; 19(3): e2300449, 2024 Mar.
Article En | MEDLINE | ID: mdl-38472095

Sorafenib, a multikinase inhibitor is used to treat hepatocellular and renal carcinoma. However, a low solubility impedes its bioavailability and thus, effectiveness. This study aims to enhance its effectiveness by using novel camel milk casein nanoparticles as a delivery system. This study evaluates the cytotoxicity of sorafenib encapsulated in camel milk casein nanoparticles against human hepatocarcinoma cells (HepG2 cells) in vitro. Optimal drug loaded nanoparticles were stable for 1 month, had encapsulation efficiency of 96%, exhibited a particle size of 230 nm, zeta potential of -14.4 and poly disparity index of 0.261. Treatment with it led to cell morphology and DNA fragmentation as a characteristic of apoptosis. Flow cytometry showed G1 phase arrest of cell cycle and 26% increased apoptotic cells population upon treatment as compared to control. Sorafenib-loaded casein nanoparticles showed 6-fold increased ROS production in HepG2 cells as compared to 4-fold increase shown by the free drug. Gene and protein expression studies done by qPCR and western blotting depicted upregulation of tumor suppressor gene p53, pro-apoptotic Bax, and caspase-3 along with downregulated anti-apoptotic Bcl-2 gene and protein expression which further emphasized death by apoptosis. It is concluded regarding the feasibility of these casein nanoparticles as a delivery system with enhanced therapeutic outcomes against hepatocellular carcinoma cells.


Antineoplastic Agents , Carcinoma, Hepatocellular , Liver Neoplasms , Nanoparticles , Animals , Humans , Sorafenib/pharmacology , Sorafenib/therapeutic use , Camelus , Caseins/pharmacology , Caseins/therapeutic use , Liver Neoplasms/metabolism , Milk , Hep G2 Cells , Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/drug therapy , Cell Line, Tumor , Apoptosis
...