Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 31
1.
Sci Rep ; 11(1): 24502, 2021 12 30.
Article En | MEDLINE | ID: mdl-34969961

In the era of COVID-19, essential workers are plagued with unforeseen and obfuscated challenges. Flight attendants are a unique subgroup of essential workers who face a multitude of health risks attributed to occupational exposures that are accentuated by the COVID-19 pandemic. Such risks can be ameliorated with strategies that target factors which enhance COVID-19 risk, including modifiable factors of diet and lifestyle. The aim of this cross-sectional study is to detect occupational dietary and lifestyle factors which could increase COVID-19 incidence amongst flight attendants. To identify potential risk factors, a questionnaire was administered to eighty-four flight attendants and examined the participants' diet and lifestyle, and COVID-19 incidence. Descriptive statistics and logistic regression indicated that the participants' perceived dietary quality at work (p = 0.003), sleep disruptions which impacted their consumption of a healthy diet (p = 0.013), job tenure (OR: 0.67, 95% CI: 0.46:0.98) and frequency of reported cold/flu (OR: 1.49, 95% CI: 1.014-2.189) were all factors associated with confirmed/suspected COVID-19 incidence. This study also revealed that a lack of infrastructure for food storage and time limitations are considerable occupational barriers for flight attendants to consume healthy foods. Additional investigation can further elucidate these relationships and related solutions to mitigate COVID-19 risk in the future.


COVID-19/epidemiology , Nutrition Surveys/statistics & numerical data , Occupational Exposure/statistics & numerical data , Pandemics , Space Flight/statistics & numerical data , Adult , Cross-Sectional Studies , Female , Humans , Life Style , Male , Risk Factors , Surveys and Questionnaires
2.
J Am Heart Assoc ; 9(24): e016479, 2020 12 15.
Article En | MEDLINE | ID: mdl-33283577

Background Hypergravity may promote human hemostasis thereby increasing thrombotic risk. Future touristic suborbital spaceflight will expose older individuals with chronic medical conditions, who are at much higher thromboembolic risk compared with professional astronauts, to hypergravity. Therefore, we tested the impact of hypergravity on hemostasis in healthy volunteers undergoing centrifugation. Methods and Results We studied 20 healthy seated men before and after 15 minutes under 3 Gz hypergravity on a long-arm centrifuge. We obtained blood samples for hemostasis testing before, immediately after, and 30 minutes after centrifugation. Tests included viscoelastic thromboelastometry, platelet impedance aggregometry, endothelial activation markers, blood rheology testing, microparticle analyses, and clotting factor analysis. Exposure to hypergravity reduced plasma volume by 12.5% (P=0.002) and increased the red blood cell aggregation index (P<0.05). With hypergravity, thrombelastographic clotting time of native blood shortened from 719±117 seconds to 628±89 seconds (P=0.038) and platetet reactivity increased (P=0.045). Hypergravity shortened partial thromboplastin time from 28 (26-29) seconds to 25 (24-28) seconds (P<0.001) and increased the activity of coagulation factors (eg, factor VIII 117 [93-134] versus 151 [133-175] %, P<0.001). Tissue factor concentration was 188±95 pg/mL before and 298±136 pg/mL after hypergravity exposure (P=0.023). Antithrombin (P=0.005), thrombin-antithrombin complex (P<0.001), plasmin-alpha2-antiplasmin complex (0.002), tissue-plasminogen activatior (P<0.001), and plasminogen activator inhibitor-1 (P=0.002) increased with centrifugation. Statistical adjustment for plasma volume attenuated changes in coagulation. Conclusions Hypergravity triggers low-level hemostasis activation through endothelial cell activation, increased viscoelasticity, and augmented platelet reactivity, albeit partly counteracted through endogenous coagulation inhibitors release. Hemoconcentration may contribute to the response.


Blood Coagulation Tests/methods , Blood Coagulation/physiology , Healthy Volunteers/statistics & numerical data , Hemostasis/physiology , Hypergravity/adverse effects , Adult , Astronauts/statistics & numerical data , Blood Coagulation Tests/statistics & numerical data , Endothelial Cells/physiology , Humans , Male , Rheology/methods , Risk Assessment , Space Flight/statistics & numerical data , Thrombelastography/methods , Thrombosis/blood , Thrombosis/etiology
3.
Ann ICRP ; 49(1_suppl): 200-212, 2020 Dec.
Article En | MEDLINE | ID: mdl-33054322

The concept of lifetime radiation risk of stochastic detrimental health outcomes is important in contemporary radiation protection, being used either to calculate detriment-weighted effective dose or to express risks following radiation accidents or medical uses of radiation. The conventionally applied time-integrated risks of radiation exposure are computed using average values of current population and health statistical data that need to be projected far into the future. By definition, the lifetime attributable risk (AR) is an approximation to more general lifetime risk quantities and is only valid for exposures under 1 Gy. The more general quantities, such as excess lifetime risk (ELR) and risk of exposure-induced cancer, are free of dose range constraints, but rely on assumptions concerning the unknown total radiation effect on demographic and health statistical data, and are more computationally complex than AR. Consideration of highly uncertain competing risks for other radiation-attributed outcomes are required in appropriate assessments of time-integrated risks of specific outcomes following high-dose (>1 Gy) exposures, causing non-linear dose responses in the resulting ELR estimate.Being based on the current population and health statistical data, the conventionally applied time-integrated risks of radiation exposure are: (i) not well suited for projections many years into the future because of the large uncertainties in future secular trends in the population-specific disease rates; and (ii) not optimal for application to atypical groups of exposed persons not well represented by the general population. Specifically, medical patients are atypical in this respect because their prospective risks depend strongly on the original diagnosis, the treatment modality, general cure rates, individual radiation sensitivity, and genetic predisposition. Another situation challenging the application of conventional risk quantities is a projection of occupational radiation risks associated with space flight, both due to higher radiation doses and astronauts' generally excellent health condition due to pre-selection, training, and intensive medical screening.An alternative quantity, named 'radiation-attributed decrease of survival' (RADS), known in past general statistical literature as 'cumulative risk', is recommended here for applications in space and medicine to represent the cumulative radiation risk conditional on survival until a certain age. RADS is only based on the radiation-attributed hazard rendering an insensitivity to competing risks or projections of current population statistics far into the future. Therefore, RADS is highly suitable for assessing semi-personalised radiation risks after radiation exposures from space missions or medical applications of radiation.


Aerospace Medicine/standards , Occupational Exposure/adverse effects , Radiation Exposure/adverse effects , Radiation Protection/standards , Space Flight/statistics & numerical data , Humans , Occupational Exposure/statistics & numerical data , Patients/statistics & numerical data , Radiation Exposure/statistics & numerical data , Risk Assessment/statistics & numerical data , Stochastic Processes
4.
Ann ICRP ; 49(1_suppl): 194-199, 2020 Dec.
Article En | MEDLINE | ID: mdl-32969256

Japanese astronauts started staying at the International Space Station (ISS) in 2009, with each stay lasting for approximately 6 months. In total, seven Japanese astronauts have stayed at the ISS eight times. As there is no law for protection against space radiation exposure of astronauts in Japan, the Japan Aerospace Exploration Agency (JAXA) created its own rules and has applied them successfully to radiation exposure management for Japanese ISS astronauts, collaborating with ISS international partners. Regarding dose management, JAXA has implemented several dose limits to protect against both the stochastic effects of radiation and dose-dependent tissue reactions. The scope of the rules includes limiting exposure during spaceflight, exposure during several types of training, and exposure from astronaut-specific medical examinations. We, therefore, are tasked with calculating the dose from all exposure types applied to the dose limits annually for each astronaut. Whenever a Japanese astronaut is at the ISS, we monitor readings of an instrument in real-time to confirm that the exposed dose is below the set limits, as the space radiation environment can fluctuate in relation to solar activity.


Astronauts , Radiation Dosage , Radiation Protection/standards , Space Flight , Japan , Space Flight/statistics & numerical data
5.
Ann ICRP ; 49(1_suppl): 182-184, 2020 Dec.
Article En | MEDLINE | ID: mdl-32734760

[Formula: see text]There is a growing desire amongst space-faring nations to venture beyond the Van Allen radiation belts to a variety of intriguing locations in our inner solar system. Mars is the ultimate destination. In two decades, we hope to vicariously share in the adventure of an intrepid crew of international astronauts on the first voyage to the red planet.This will be a daunting mission with an operational profile unlike anything astronauts have flown before. A flight to Mars will be a 50-million-kilometre journey. Interplanetary distances are so great that voice and data communications between mission control on Earth and a base on Mars will feature latencies up to 20 min. Consequently, the ground support team will not have real-time control of the systems aboard the transit spacecraft nor the surface habitat. As cargo resupply from Earth will be impossible, the onboard inventory of equipment and supplies must be planned strategically in advance. Furthermore, the size, amount, and function of onboard equipment will be constrained by limited volume, mass, and power allowances.With less oversight from the ground, all vehicle systems will need to be reliable and robust. They must function autonomously. Astronauts will rely on their own abilities and onboard resources to deal with urgent situations that will inevitably arise.The deep space environment is hazardous. Zero- and reduced-gravity effects will trigger deconditioning of the cardiovascular, musculoskeletal, and other physiological systems. While living for 2.5 years in extreme isolation, Mars crews will experience psychological stressors such as loss of privacy, reduced comforts of living, and distant relationships with family members and friends.Beyond Earth's protective magnetosphere, the fluence of ionising radiation will be higher. Longer exposure of astronauts to galactic cosmic radiation could result in the formation of cataracts, impaired wound healing, and degenerative tissue diseases. Genetic mutations and the onset of cancer later in life are also possible. Acute radiation sickness and even death could ensue from a large and unpredictable solar particle event.There are many technological barriers that prevent us from carrying out a mission to Mars today. Before launching the first crew, we will need to develop processes for in-situ resource utilisation. Rather than bringing along large quantities of oxygen, water, and propellant from Earth, future astronauts will need to produce some of these consumables from local space-based resources.Ion propulsion systems will be needed to reduce travel times to interplanetary destinations, and we will need systems to land larger payloads (up to 40 tonnes of equipment and supplies for a human mission) on planetary surfaces. These and other innovations will be needed before humans venture into deep space.However, it is the delivery of health care that is regarded as one of the most important obstacles to be overcome. Physicians, biomedical engineers, human factors specialists, and radiation experts are re-thinking operational concepts of health care, crew performance, and life support. Traditional oversight of astronaut health by ground-based medical teams will no longer be possible, particularly in urgent situations. Aborting a deep space mission to medically evacuate an ill or injured crew member to Earth will not be an option. Future crews must have all of the capability and responsibility to monitor and manage their own health. Onboard medical resources must include imaging, surgery, and emergency care, as well as laboratory analysis of blood, urine, and other biospecimens.At least one member of the crew should be a broadly trained physician with experience in remote medicine. She/he will be supported by an onboard health informatics network that is artificial intelligence enabled to assist with monitoring, diagnosis, and treatment. In other words, health care in deep space will become more autonomous, intelligent, and point of care.The International Commission on Radiological Protection (ICRP) has dedicated a day of its 5th International Symposium in Adelaide to the theme of Mars exploration. ICRP has brought global experts together today to consider the pressing issues of radiation protection. There are many issues to be addressed: Can the radiation countermeasures currently used in low Earth orbit be adapted for deep space?Can materials of low atomic weight be integrated into the structure of deep space vehicles to shield the crew?In the event of a major solar particle event, could a safe haven shelter the crew adequately from high doses of radiation?Could Martian regolith be used as shielding material for subterranean habitats?Will shielding alone be sufficient to minimise exposure, or will biological and pharmacological countermeasures also be needed?Beyond this symposium, I will value the continued involvement of ICRP in space exploration. ICRP has recently established Task Group 115 to examine radiation effects on the health of astronaut crew and to recommend exposure limits. This work will be vital. Biological effects of radiation could not only impact the health, well-being, and performance of future explorers, but also the length and quality of their lives.While humanity has dreamed of travel to the red planet for decades, an actual mission is finally starting to feel like a possibility. How exciting! I thank ICRP for its ongoing work to protect radiation workers on Earth. In the future, we will depend on counsel from ICRP to protect extraterrestrial workers and to enable the exploration of deep space.


Mars , Radiation Exposure/adverse effects , Space Flight/statistics & numerical data , Astronauts/psychology , Cosmic Radiation/adverse effects , Delivery of Health Care/organization & administration , Extraterrestrial Environment , Humans , Radiation Dosage , Radiation Injuries/etiology , Radiation Protection/statistics & numerical data
6.
Life Sci Space Res (Amst) ; 26: 149-162, 2020 Aug.
Article En | MEDLINE | ID: mdl-32718681

Prolonged exposure to the galactic cosmic ray (GCR) environment is a potentially limiting factor for manned missions in deep space. Evaluating the risk associated with the expected GCR environment is an essential step in planning a deep space mission. This requires an understanding of how the local interstellar spectrum is modulated by the heliospheric magnetic field (HMF) and how observed solar activity is manifested in the HMF over time. While current GCR models agree reasonably well with measured observations of GCR flux on the first matter, they must rely on imperfect or loose correlations to describe the latter. It is more accurate to use dose rates directly measured by instruments in deep space to quantify the GCR condition for a given period of time. In this work, dose rates observed by the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument are used to obtain the local GCR intensity and composition as a function of time. A response function is constructed that relates observed dose rates to solar modulation potential using a series of Monte Carlo radiation transport calculations. The record of observed solar modulation potential vs. time is then used to calculate a recent historical record of permissible mission duration (PMD) according to NASA's permissible exposure limits (PEL). Tables are provided for extreme values of PMD. Additional tables include risk of exposure-induced death (at upper 95% confidence interval) accrual rates and NASA effective dose rates as a function of solar modulation potential, astronaut age, sex, and shielding thickness. The significance of the PMD values reported in relation to likely transit duration requirements for future exploration missions is discussed. There is general agreement between CRaTER observations and the prescription of solar modulation vs. time given by the Badhwar-O'Neill 2014 GCR model. However, CRaTER observations do capture the effects of significant heliospheric transients, among other features, that are missing from the prescription of solar modulation potential vs. time.


Astronauts/statistics & numerical data , Cosmic Radiation , Radiation Dosage , Radiation Protection , Solar Activity , Space Flight/statistics & numerical data , Cosmic Radiation/adverse effects , Telescopes
7.
Life Sci Space Res (Amst) ; 23: 50-59, 2019 Nov.
Article En | MEDLINE | ID: mdl-31791605

The Joint Workshop on Induced Special Regions convened scientists and planetary protection experts to assess the potential of inducing special regions through lander or rover activity. An Induced Special Region is defined as a place where the presence of the spacecraft could induce water activity and temperature to be sufficiently high and persist for long enough to plausibly harbor life. The questions the workshop participants addressed were: (1) What is a safe stand-off distance, or formula to derive a safe distance, to a purported special region? (2) Questions about RTGs (Radioisotope Thermoelectric Generator), other heat sources, and their ability to induce special regions. (3) Is it possible to have an infected area on Mars that does not contaminate the rest of Mars? The workshop participants reached a general consensus addressing the posed questions, in summary: (1) While a spacecraft on the surface of Mars may not be able to explore a special region during the prime mission, the safe stand-off distance would decrease with time because the sterilizing environment, that is the martian surface would progressively clean the exposed surfaces. However, the analysis supporting such an exploration should ensure that the risk to exposing interior portions of the spacecraft (i.e., essentially unsterilized) to the martian surface is minimized. (2) An RTG at the surface of Mars would not create a Special Region but the short-term result depends on kinetics of melting, freezing, deliquescence, and desiccation. While a buried RTG could induce a Special Region, it would not pose a long-term contamination threat to Mars, with the possible exception of a migrating RTG in an icy deposit. (3) Induced Special Regions can allow microbial replication to occur (by definition), but such replication at the surface is unlikely to globally contaminate Mars. An induced subsurface Special Region would be isolated and microbial transport away from subsurface site is highly improbable.


Extraterrestrial Environment , Planets , Space Flight/statistics & numerical data , Spacecraft/instrumentation , Life , Temperature
8.
Life Sci Space Res (Amst) ; 23: 60-68, 2019 Nov.
Article En | MEDLINE | ID: mdl-31791606

Planetary bodies like Mars, Europa, and Enceladus pose the question, "How to study them without contaminating them and destroying future prospects to detect life, if it is there?" The natural trade-off, of course, is that the cleaner your spacecraft, the more you can explore such a body without risk of contaminating it. As chartered by NASA Headquarters, the Planetary Protection Technology Definition Team (PPTDT) was asked to provide a report covering six different areas related to the engineering and technology challenges of implementing planetary protection requirements on solar system exploration missions.


Solar System , Space Flight/statistics & numerical data , Spacecraft/statistics & numerical data , Technology/statistics & numerical data , United States , United States National Aeronautics and Space Administration
9.
Sleep ; 42(1)2019 01 01.
Article En | MEDLINE | ID: mdl-30403819

Study Objectives: Manned spaceflights from Earth to Mars will likely become reality within the next decades. Humans will be exposed to prolonged isolation, confinement, and altered photoperiods under artificial atmospheric conditions, with potential adverse effects on sleep and performance. On Earth, polar environments serve as space analogs to study human adaptation; yet, few studies include polysomnography due to operational constraints. Methods: Polysomnography, self-reported sleepiness and fatigue, and psychomotor performance were measured every 6 weeks in 13 males ("Hivernauts") during a 13 month winter-over campaign at Concordia (Antarctica). Stability and robustness of interindividual differences were examined by means of intraclass correlations. Results: Hivernauts present with high-altitude periodic breathing, increased sleep onset latencies, and reduced psychomotor speed. Except for obstructive apneas, all sleep, sleepiness, and psychomotor performance variables remain stable over time. Individual differences in respiratory variables show the highest degree of stability and robustness, followed by fatigue and situational sleepiness, sleep fragmentation, and psychomotor speed, suggesting moderate to substantial trait-like characteristics for these variables. Phase delays are suspected in Hivernauts, both in individuals with imposed and self-selected bedtimes. A significant decline in psychomotor speed over time is observed in the latter group. Conclusions: Space analog conditions such as isolated confinement, extreme photoperiods, and altered atmospheric conditions affect human sleep and performance. However, individual responses to these extreme environmental challenges show large differences and remain relatively stable under prolonged exposure. Ad hoc polysomnographic, including respiratory function monitoring is therefore recommended for selecting eligible candidates for extraterrestrial sojourns.


Psychomotor Performance/physiology , Sleep Deprivation/physiopathology , Sleep/physiology , Space Flight/statistics & numerical data , Wakefulness/physiology , Adult , Antarctic Regions , Fatigue/pathology , Humans , Male , Middle Aged , Photoperiod , Polysomnography , Sleep Apnea, Obstructive/physiopathology , Social Isolation , Time , Young Adult
10.
Health Phys ; 112(4): 392-397, 2017 04.
Article En | MEDLINE | ID: mdl-28234699

A critically important gap in knowledge surrounds the health consequences of exposure to radiation received gradually over time. Much is known about the health effects of brief high-dose exposures, such as from the atomic bombings in Japan, but the concerns today focus on the frequent low-dose exposures received by members of the public, workers, and, as addressed in this paper, astronauts. Additional guidance is needed by the National Aeronautics and Space Administration (NASA) for planning long-term missions where the rate of radiation exposure is gradual over years and the cumulative amounts high. The direct study of low doses and low-dose rates is of immeasurable value in understanding the possible range of health effects from gradual exposures and in providing guidance for radiation protection, not only of workers and the public but also astronauts. The ongoing Million Person Study (MPS) is 10 times larger than the study of the Japanese atomic bomb survivors of 86,000 survivors with estimated doses. The number of workers with >100 mSv career dose is substantially greater. The large study size, broad range of doses, and long follow-up indicate substantial statistical ability to quantify the risk of exposures that are received gradually over time. The study consists of 360,000 U.S. Department of Energy workers from the Manhattan Project; 150,000 nuclear utility workers from the inception of the nuclear age; 115,000 atomic veterans who participated in above-ground atmospheric tests at the Nevada Test Site and the Bikini and Enewetak Atolls and Johnston Island in the Pacific Proving Grounds (PPG); 250,000 radiologists and medical workers; and 130,000 industrial radiographers. NASA uses an individual risk-based system for radiation protection in contrast to the system of dose limits for occupational exposures used by terrestrial-based organizations. The permissible career exposure limit set by NASA for each astronaut is a 3% risk of exposure-induced death (REID) from cancer at a 95% confidence level to account for uncertainties in risk projections. The large size of the MPS will reduce the uncertainty in the risk estimates, narrowing the 95% confidence interval, and thus allow more time in space for astronauts. Further differences between men and women in their response to radiation can be more fully examined, and non-cancer outcomes, such as neurological disorders and cardiovascular disease, can be evaluated in a way not hitherto possible.


Biomedical Research/trends , Mars , Neoplasms, Radiation-Induced/epidemiology , Occupational Exposure/statistics & numerical data , Radiation Exposure/statistics & numerical data , Space Flight/statistics & numerical data , Background Radiation , Dose-Response Relationship, Radiation , Humans , Incidence , Radiation Dosage , Risk Assessment
11.
Gig Sanit ; 94(7): 117-22, 2015.
Article Ru | MEDLINE | ID: mdl-26856158

Since the late 1990s, the ongoing debate about the consequences of the rocket-space activities for the health of people residing near areas offall ofseparatingfrom parts of rockets. Some scientists (Kolyado IB et al., 2001, 2013; Shoikhet YN et al., 2005, 2008; Skrebtsova NV 2005, 2006, Sidorov PI et al., 2007) argue that the main cause of morbidity is the effect of unsymmetrical dimethyl hydrazine (UDMH). However, environmentalists find it only in areas offalling fragments of separated parts of carrier rockets. Presented in the article data were obtained as a result of perennial epidemiological and hygienic research. There was performed a hygienic assessment of the content of chemical substances in water soil andfood, nutritional status and health risk near areas of the district of falling 310 and 326. There were studied conditions of work and the health of military personnel at the sites of storage of propellant components. The relationship between revealed diseases and UDMH was not established, but there was their causality due to the influence of environmental factors characteristic of territories and living conditions. In the settlements near the area of falling district 310 the share of extremely anxious persons was shown to be 1.8 times higher than in controls, which is caused by cases of falling fragments stages of carrier rockets in the territory of settlements.


Dimethylhydrazines/analysis , Environmental Health , Environmental Pollution , Occupational Exposure , Space Flight , Carcinogens/analysis , Environmental Health/methods , Environmental Health/statistics & numerical data , Environmental Monitoring/methods , Environmental Monitoring/statistics & numerical data , Environmental Pollution/analysis , Environmental Pollution/statistics & numerical data , Health Status , Humans , Military Personnel/statistics & numerical data , Occupational Exposure/analysis , Occupational Exposure/statistics & numerical data , Population Surveillance , Risk Assessment , Risk Factors , Russia/epidemiology , Space Flight/instrumentation , Space Flight/statistics & numerical data
15.
ISA Trans ; 49(1): 57-69, 2010 Jan.
Article En | MEDLINE | ID: mdl-19747677

In this paper, a robust adaptive fault-tolerant control approach to attitude tracking of flexible spacecraft is proposed for use in situations when there are reaction wheel/actuator failures, persistent bounded disturbances and unknown inertia parameter uncertainties. The controller is designed based on an adaptive backstepping sliding mode control scheme, and a sufficient condition under which this control law can render the system semi-globally input-to-state stable is also provided such that the closed-loop system is robust with respect to any disturbance within a quantifiable restriction on the amplitude, as well as the set of initial conditions, if the control gains are designed appropriately. Moreover, in the design, the control law does not need a fault detection and isolation mechanism even if the failure time instants, patterns and values on actuator failures are also unknown for the designers, as motivated from a practical spacecraft control application. In addition to detailed derivations of the new controller design and a rigorous sketch of all the associated stability and attitude error convergence proofs, illustrative simulation results of an application to flexible spacecraft show that high precise attitude control and vibration suppression are successfully achieved using various scenarios of controlling effective failures.


Equipment Design/statistics & numerical data , Spacecraft/instrumentation , Algorithms , Biomechanical Phenomena , Computer Simulation , Equipment Failure , Equipment Failure Analysis/methods , Models, Statistical , Reproducibility of Results , Software , Space Flight/statistics & numerical data , Vibration
17.
J Leukoc Biol ; 86(5): 1027-38, 2009 Nov.
Article En | MEDLINE | ID: mdl-19690292

This year, we celebrate the 40th birthday of the first landing of humans on the moon. By 2020, astronauts should return to the lunar surface and establish an outpost there that will provide a technical basis for future manned missions to Mars. This paper summarizes major constraints associated with a trip to Mars, presents immunological hazards associated with this type of mission, and shows that our current understanding of the immunosuppressive effects of spaceflight is limited. Weakening of the immune system associated with spaceflight is therefore an area that should be considered more thoroughly before we undertake prolonged space voyages.


Immune System Diseases/etiology , Immune System/immunology , Leukocyte Count , Space Flight/statistics & numerical data , Animals , Bacterial Infections/epidemiology , Bacterial Infections/immunology , Humans , Immune System Diseases/epidemiology , Immunity, Innate , Infections/epidemiology , Infections/immunology , Mars , Mice , Models, Animal , Moon , Virulence
18.
Aviat Space Environ Med ; 80(2): 117-24, 2009 Feb.
Article En | MEDLINE | ID: mdl-19198198

INTRODUCTION: Astronauts have sustained musculoskeletal injuries and minor trauma in space, but our knowledge of these injuries is based mainly on anecdotal reports. The purpose of our study was to catalog and analyze all in-flight musculoskeletal injuries occurring throughout the U.S. space program to date. METHODS: A database on in-flight musculoskeletal injuries among U.S. astronauts was generated from records at the Johnson Space Center. RESULTS: A total of 219 in-flight musculoskeletal injuries were identified, 198 occurring in men and 21 in women. Incidence over the course of the space program was 0.021 per flight day for men and 0.015 for women. Hand injuries represented the most common location of injuries, with abrasions and small lacerations representing common manifestations of these injuries. Crew activity in the spacecraft cabin such as translating between modules, aerobic and resistive exercise, and injuries caused by the extravehicular activity (EVA) suit components were the leading causes of musculoskeletal injuries. Exercise-related injuries accounted for an incidence of 0.003 per day and exercise is the most frequent source of injuries in astronauts living aboard the International Space Station (ISS). Interaction with EVA suit components accounted for an incidence of 0.26 injuries per EVA. DISCUSSION: Hand injuries were among the most common events occurring in U.S. astronauts during spaceflight. Identifying the incidence and mechanism of in-flight injuries will allow flight surgeons to quantify the amount of medical supplies needed in the design of next-generation spacecraft. Engineers can use in-flight injury data to further refine the EVA suit and vehicle components.


Astronauts/statistics & numerical data , Musculoskeletal System/injuries , Space Flight/statistics & numerical data , Adult , Back Injuries/epidemiology , Exercise , Female , Foot Injuries/epidemiology , Humans , Incidence , Male , United States
19.
Ann Emerg Med ; 46(2): 177-84, 2005 Aug.
Article En | MEDLINE | ID: mdl-16046951

Manned spaceflight is inherently risky and results in unique problems from a trauma and medical perspective. Emergency care under these special physiologic and environmental conditions calls for novel techniques for diagnosis and therapy.


Emergencies , Space Flight , Aerospace Medicine/methods , Emergencies/epidemiology , Emergency Medicine/methods , Humans , Space Flight/statistics & numerical data
20.
J Gravit Physiol ; 11(1): 1-10, 2004 Mar.
Article En | MEDLINE | ID: mdl-16145793

Experiments are sent to space laboratories in order to take advantage of the low-gravity environment. However, it is crucial to appreciate the distinction between the real microgravity environment and "weightlessness" or "simulated microgravity". The microgravity in space laboratories may be of much smaller magnitude than the gravitational acceleration on earth. However, it is not zero, nor even one microg (defined as 1e-6 earth gravity). Moreover, the orientation is not uniaxial, as on earth. The net acceleration that acts on a space experiment arises from, e.g., orbital mechanics, atmospheric drag, and thruster firings, and it can act on the experiments in gravity-like ways. In essence, a well-defined, stable 1 g acceleration on the earth's surface is substituted for a complex array of dynamically changing accelerations with ever-changing frequency content, magnitude and direction. This paper will show measured accelerations on the Shuttle from launch to orbit, as well as the latest measurements on the International Space Station (ISS). The ISS data presented here represent over 34,790 hours of data obtained from June 2002 to April 2003 during Increments 5 and 6 of the ISS construction cycle. The quasisteady acceleration level on the ISS has been measured to be on the order of a few microg during time allotted to microgravity mode. The vibratory acceleration environment spans a rich spectrum from 0.01-300 Hz.


Acceleration , Space Flight/instrumentation , Space Flight/statistics & numerical data , Spacecraft/instrumentation , Vibration , Weightlessness , Data Collection/methods , Environment, Controlled , Gravity, Altered , Laboratories
...