Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Chemosphere ; 361: 142487, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38821129

RESUMEN

This study unveils the detoxification potential of insecticide-tolerant plant beneficial bacteria (PBB), i.e., Ciceribacter azotifigens SF1 and Serratia marcescens SRB1, in spinach treated with fipronil (FIP), profenofos (PF) and chlorantraniliprole (CLP) insecticides. Increasing insecticide doses (25-400 µg kg-1 soil) significantly curtailed germination attributes and growth of spinach cultivated at both bench-scale and in greenhouse experiments. Profenofos at 400 µg kg-1 exhibited maximum inhibitory effects and reduced germination by 55%; root and shoot length by 78% and 81%, respectively; dry matter accumulation in roots and shoots by 79% and 62%, respectively; leaf number by 87% and leaf area by 56%. Insecticide application caused morphological distortion in root tips/surfaces, increased levels of oxidative stress, and cell death in spinach. Application of insecticide-tolerant SF1 and SRB1 strains relieved insecticide pressure resulting in overall improvement in growth and physiology of spinach grown under insecticide stress. Ciceribacter azotifigens improved germination rate (10%); root biomass (53%); shoot biomass (25%); leaf area (10%); Chl-a (45%), Chl-b (36%) and carotenoid (48%) contents of spinach at 25 µg CLP kg-1 soil. PBB inoculation reinvigorated the stressed spinach and modulated the synthesis of phytochemicals, proline, malondialdehyde (MDA), superoxide anions (O2•-), and hydrogen peroxide (H2O2). Scanning electron microscopy (SEM) revealed recovery in root tip morphology and stomatal openings on abaxial leaf surfaces of PBB-inoculated spinach grown with insecticides. Ciceribacter azotifigens inoculation significantly increased intrinsic water use efficiency, transpiration rate, vapor pressure deficit, intracellular CO2 concentration, photosynthetic rate, and stomatal conductance in spinach exposed to 25 µg FIP kg-1. Also, C. azotifigens and S. marcescens modulated the antioxidant defense systems of insecticide-treated spinach. Bacterial strains were strongly colonized to root surfaces of insecticide-stressed spinach seedlings as revealed under SEM. The identification of insecticide-tolerant PBBs such as C. azotifigens and S. marcescens hold the potential for alleviating abiotic stress to spinach, thereby fostering enhanced and safe production within polluted agroecosystems.


Asunto(s)
Antioxidantes , Insecticidas , Hojas de la Planta , Raíces de Plantas , Serratia marcescens , Contaminantes del Suelo , Spinacia oleracea , Spinacia oleracea/efectos de los fármacos , Spinacia oleracea/fisiología , Spinacia oleracea/metabolismo , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/microbiología , Hojas de la Planta/efectos de los fármacos , Serratia marcescens/fisiología , Serratia marcescens/efectos de los fármacos , Serratia marcescens/metabolismo , Antioxidantes/metabolismo , Insecticidas/toxicidad , Plaguicidas/metabolismo , Plaguicidas/toxicidad , Biodegradación Ambiental , Estrés Oxidativo/efectos de los fármacos , Bacillaceae/metabolismo , Bacillaceae/fisiología , Fotosíntesis/efectos de los fármacos , Microbiología del Suelo , Suelo/química , Germinación/efectos de los fármacos
2.
Plant J ; 118(6): 1907-1921, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38491869

RESUMEN

The sex of dioecious plants is mainly determined by genetic factors, but it can also be converted by environmental cues such as exogenous phytohormones. Gibberellic acids (GAs) are well-known inducers of flowering and sexual development, yet the pathway of gibberellin-induced sex conversion in dioecious spinach (Spinacia oleracea L.) remains elusive. Based on sex detection before and after GA3 application using T11A and SSR19 molecular markers, we confirmed and elevated the masculinization effect of GA on a single female plant through exogenous applications of GA3, showing complete conversion and functional stamens. Silencing of GIBBERELLIC ACID INSENSITIVE (SpGAI), a single DELLA family protein that is a central GA signaling repressor, results in similar masculinization. We also show that SpGAI can physically interact with the spinach KNOX transcription factor SHOOT MERISTEMLESS (SpSTM), which is a homolog of the flower meristem identity regulator STM in Arabidopsis. The silencing of SpSTM also masculinized female flowers in spinach. Furthermore, SpSTM could directly bind the intron of SpPI to repress SpPI expression in developing female flowers. Overall, our results suggest that GA induces a female masculinization process through the SpGAI-SpSTM-SpPI regulatory module in spinach. These insights may help to clarify the molecular mechanism underlying the sex conversion system in dioecious plants while also elucidating the physiological basis for the generation of unisexual flowers so as to establish dioecy in plants.


Asunto(s)
Flores , Regulación de la Expresión Génica de las Plantas , Giberelinas , Proteínas de Plantas , Spinacia oleracea , Giberelinas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Flores/genética , Flores/fisiología , Spinacia oleracea/genética , Spinacia oleracea/fisiología , Spinacia oleracea/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
3.
Ying Yong Sheng Tai Xue Bao ; 34(9): 2536-2544, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37899121

RESUMEN

Microplastics, a type of new environmental pollutant, have received much attention for their negative effects on organisms and environment. We examined the effects of microplastics on seed germination and seedling physiological characteristics of spinach (Spinacia oleracea) under alkali stress, taking polystyrene microspheres with a diameter of 100 nm (200, 400, 800, 1600 mg·L-1) as the microplastic treatment, and mixed NaHCO3 and Na2CO3 as alkaline salt solution (5, 10, 20, 40 mmol·L-1) according to the molar ratio of 1:1. The results showed that the presence of MPs (≥400 mg·L-1) inhibited seed germination, and that the length of roots and shoots increased at low while decreased at high concentration of MPs. Different concentrations of alkali alone could inhibit seed germination, root and bud elongation. With the increases of MPs concentration, SOD activity of spinach seedlings gradually decreased, while POD activity firstly increased and then decreased, and chlorophyll content increased at low concentration (200 mg·L-1) and decreased significantly at medium and high concentration (≥400 mg·L-1). Different alkali stresses reduced chlorophyll content of spinach seedlings, and the effects on SOD and POD were 'promotion at low concentration and inhibition at high'. In the treatments of microplastics (200, 800 mg·L-1) and alkali (5, 20 mmol·L-1) combined exposure, germination of spinach seeds was inhibited, and chlorophyll content decreased. The activities of SOD and POD in spinach seedlings were reduced under the combined exposure except the treatment of 200 mg·L-1 MPs and 5 mmol·L-1 alkali. Compared to the alkali stress, the combination of low concentration of MPs (200 mg·L-1) and alkali could improve germination rate, germination index, germination vigor and vigor index of seeds, and significantly promoted the elongation of roots and shoots, while the addition of high concentration of MPs (800 mg·L-1) reduced the germination rate, germination index, germination vigor and vigor index of seeds and inhibited the growth of roots and buds. The different concentrations of combined exposure inhibited the activities of SOD and POD and decreased the content of chlorophyll in spinach seedlings.


Asunto(s)
Germinación , Plantones , Spinacia oleracea/fisiología , Microplásticos/farmacología , Plásticos/farmacología , Álcalis/farmacología , Semillas , Clorofila , Superóxido Dismutasa , Estrés Fisiológico
4.
Int J Mol Sci ; 22(10)2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34069886

RESUMEN

Although spinach (Spinacia oleracea L.) is considered to be one of the most nutrient-rich leafy vegetables, it is also a potent accumulator of anti-nutritional oxalate. Reducing oxalate content would increase the nutritional value of spinach by enhancing the dietary bioavailability of calcium and other minerals. This study aimed to investigate the proposed hypothesis that a complex network of genes associated with intrinsic metabolic and physiological processes regulates oxalate homeostasis in spinach. Transcriptomic (RNA-Seq) analysis of the leaf and root tissues of two spinach genotypes with contrasting oxalate phenotypes was performed under normal physiological conditions. A total of 2308 leaf- and 1686 root-specific differentially expressed genes (DEGs) were identified in the high-oxalate spinach genotype. Gene Ontology (GO) analysis of DEGs identified molecular functions associated with various enzymatic activities, while KEGG pathway analysis revealed enrichment of the metabolic and secondary metabolite pathways. The expression profiles of genes associated with distinct physiological processes suggested that the glyoxylate cycle, ascorbate degradation, and photorespiratory pathway may collectively regulate oxalate in spinach. The data support the idea that isocitrate lyase (ICL), ascorbate catabolism-related genes, and acyl-activating enzyme 3 (AAE3) all play roles in oxalate homeostasis in spinach. The findings from this study provide the foundation for novel insights into oxalate metabolism in spinach.


Asunto(s)
Oxalatos/metabolismo , Spinacia oleracea/genética , Spinacia oleracea/metabolismo , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , RNA-Seq/métodos , Spinacia oleracea/fisiología , Transcriptoma/genética
5.
BMC Plant Biol ; 21(1): 179, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33853527

RESUMEN

BACKGROUND: Bolting refers to the early flowering stem production on agricultural and horticultural crops before harvesting. Indeed, bolting is an event induced by the coordinated effects of various environmental factors and endogenous genetic components, which cause a large reduction in the quality and productivity of vegetable crops like spinach. However, little is known about the signaling pathways and molecular functions involved in bolting mechanisms in spinach. The genetic information regarding the transition from vegetative growth to the reproductive stage in spinach would represent an advantage to regulate bolting time and improvement of resistant cultivars to minimize performance loss. RESULTS: To investigate the key genes and their genetic networks controlling spinach bolting, we performed RNA-seq analysis on early bolting accession Kashan and late-bolting accession Viroflay at both vegetative and reproductive stages and found a significant number of differentially expressed genes (DEGs) ranging from 195 to 1230 in different comparisons. These genes were mainly associated with the signaling pathways of vernalization, photoperiod/circadian clock, gibberellin, autonomous, and aging pathways. Gene ontology analysis uncovered terms associated with carbohydrate metabolism, and detailed analysis of expression patterns for genes of Fructose-1, 6-bisphosphate aldolase, TREHALOSE-6-PHOSPHATE SYNTHASE 1, FLOWERING PROMOTING FACTOR 1, EARLY FLOWERING, GIGANTEA, and MADS-box proteins revealed their potential roles in the initiating or delaying of bolting. CONCLUSION: This study is the first report on identifying bolting and flowering-related genes based on transcriptome sequencing in spinach, which provides insight into bolting control and can be useful for molecular breeding programs and further study in the regulation of the genetic mechanisms related to bolting in other vegetable crops.


Asunto(s)
Redes Reguladoras de Genes , Genes de Plantas , ARN de Planta/genética , Spinacia oleracea/fisiología , Transcriptoma , Horticultura , ARN de Planta/metabolismo , RNA-Seq , Reproducción , Spinacia oleracea/genética
6.
PLoS One ; 16(3): e0248769, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33739969

RESUMEN

The visual perception of freshness is an important factor considered by consumers in the purchase of fruits and vegetables. However, panel testing when evaluating food products is time consuming and expensive. Herein, the ability of an image processing-based, nondestructive technique to classify spinach freshness was evaluated. Images of spinach leaves were taken using a smartphone camera after different storage periods. Twelve sensory panels ranked spinach freshness into one of four levels using these images. The rounded value of the average from all twelve panel evaluations was set as the true label. The spinach image was removed from the background, and then converted into a gray scale and CIE-Lab color space (L*a*b*) and Hue, Saturation and Value (HSV). The mean value, minimum value, and standard deviation of each component of color in spinach leaf were extracted as color features. Local features were extracted using the bag-of-words of key points from Oriented FAST (Features from Accelerated Segment Test) and Rotated BRIEF (Binary Robust Independent Elementary Features). The feature combinations selected from the spinach images were used to train machine learning models to recognize freshness levels. Correlation analysis between the extracted features and the sensory evaluation score showed a positive correlation (0.5 < r < 0.6) for four color features, and a negative correlation (‒0.6 < r < ‒0.5) for six clusters in the local features. The support vector machine classifier and artificial neural network algorithm successfully classified spinach samples with overall accuracy 70% in four-class, 77% in three-class and 84% in two-class, which was similar to that of the individual panel evaluations. Our findings indicate that a model using support vector machine classifiers and artificial neural networks has the potential to replace freshness evaluations currently performed by non-trained panels.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Aprendizaje Automático , Sensación/fisiología , Spinacia oleracea/fisiología , Algoritmos , Modelos Teóricos , Redes Neurales de la Computación , Máquina de Vectores de Soporte
7.
Photosynth Res ; 147(2): 229-237, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33532973

RESUMEN

Fe(II) cations bind with high efficiency and specificity at the high-affinity (HA), Mn-binding site (termed the "blocking effect" since Fe blocks further electron donation to the site) of the oxygen-evolving complex (OEC) in Mn-depleted, photosystem II (PSII) membrane fragments (Semin et al. in Biochemistry 41:5854, 2002). Furthermore, Fe(II) cations can substitute for 1 or 2Mn cations (pH dependent) in Ca-depleted PSII membranes (Semin et al. in Journal of Bioenergetics and Biomembranes 48:227, 2016; Semin et al. in Journal of Photochemistry and Photobiology B 178:192, 2018). In the current study, we examined the effect of Ca2+ cations on the interaction of Fe(II) ions with Mn-depleted [PSII(-Mn)] and Ca-depleted [PSII(-Ca)] photosystem II membranes. We found that Ca2+ cations (about 50 mM) inhibit the light-dependent oxidation of Fe(II) (5 µM) by about 25% in PSII(-Mn) membranes, whereas inhibition of the blocking process is greater at about 40%. Blocking of the HA site by Fe cations also decreases the rate of charge recombination between QA- and YZ•+ from t1/2 = 30 ms to 46 ms. However, Ca2+ does not affect the rate during the blocking process. An Fe(II) cation (20 µM) replaces 1Mn cation in the Mn4CaO5 catalytic cluster of PSII(-Ca) membranes at pH 5.7 but 2 Mn cations at pH 6.5. In the presence of Ca2+ (10 mM) during the substitution process, Fe(II) is not able to extract Mn at pH 5.7 and extracts only 1Mn at pH 6.5 (instead of two without Ca2+). Measurements of fluorescence induction kinetics support these observations. Inhibition of Mn substitution with Fe(II) cations in the OEC only occurs with Ca2+ and Sr2+ cations, which are also able to restore oxygen evolution in PSII(-Ca) samples. Nonactive cations like La3+, Ni2+, Cd2+, and Mg2+ have no influence on the replacement of Mn with Fe. These results show that the location and/or ligand composition of one Mn cation in the Mn4CaO5 cluster is strongly affected by calcium depletion or rebinding and that bound calcium affects the redox potential of the extractable Mn4 cation in the OEC, making it resistant to reduction.


Asunto(s)
Calcio/metabolismo , Compuestos Ferrosos/metabolismo , Manganeso/metabolismo , Oxígeno/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Spinacia oleracea/fisiología , Sitios de Unión , Cationes/metabolismo , Fluorescencia , Cinética , Oxidación-Reducción , Fotoquímica
8.
Photosynth Res ; 147(1): 1-10, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33034816

RESUMEN

Light harvesting in photosynthesis is currently an issue on-debate and studied widely in all over the world. Studies on light harvesting mainly focus on enlightening molecular mechanism of the process and enhancing absorption capacity of light harvesting complexes (LHCs). Enhancement of absorption capacity of LHCs can be done either by natural methods or by synthetic methods. Quantum dots (QDs), fluorescent semiconductor nanocrystals, are important constituents of inorganic-organic hybrid structures which are built to enhance absorption capacity of LHCs through synthetic methods. In this study, we synthesized carbon and heteroatom doped carbon QDs through a microwave assisted synthesis method. Each QD had unique photophysical and structural properties. Photosynthetic pigments (PP) (isolated from spinach leaves) were mixed with each QD separately to build a QD-PP hybrid structure. Our results revealed that significant amount of energy is transferred from carbon QDs to PPs and therefore chlorophyll fluorescence capacity of PPs enhanced significantly in 360-420 nm excitation wavelength interval. Our results suggested that non-toxic, inexpensive and easily synthesized carbon QDs can be an important constituent for hybrid structures to enhance absorption capacity of LHCs in highly energetic region of visible spectrum.


Asunto(s)
Carbono/química , Complejos de Proteína Captadores de Luz/química , Fotosíntesis , Pigmentos Biológicos/química , Puntos Cuánticos/química , Spinacia oleracea/fisiología , Clorofila/metabolismo , Transferencia de Energía , Fluorescencia
9.
Ecotoxicol Environ Saf ; 207: 111230, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32898815

RESUMEN

Heavy metal like cadmium (Cd) is inessential and highly toxic and is posing serious environmental problems for agriculture worldwide. Presence of Cd gives rise to several physiological and structural disorders that leads to reduction in growth and performance of agricultural plants. Evidence related to subcellular distribution and accumulation of Cd is still enigmatic. Experiment was conducted using hydroponic culture to examine the subcellular accumulation of Cd in Spinacia oleracea L. leaves under Cd stress (50 µM and 100 µM); moreover, the Cd toxicity alleviation using 5 mM silicon (Si) was investigated. Our findings suggest that fresh and dry biomass, shoot and root length, leaf area and length of leaf declined when exposed to Cd stress (50 µM and 100 µM); however, an increase was noticed when Cd treated plants were supplied with Si (5 mM). The content of Ca2+, Mg2+ and Fe2+ in apoplastic washing fluid and symplasm were found to be lower in plants treated with alone Cd, when compared to control. Higher Cd2+:Ca2+, Cd2+:Fe2+ and Cd2+:Mg2+ ratios were detected under cadmium stress in both apoplast and symplast of leaves which were lowered by the addition of 5 mM Si. The novelty of the current study is the detection of increased apoplastic and symplastic Cd concentration in aerial part (i.e., spinach leaves) under alone Cd treatment which was considerably reduced when supplied with Si. Moreover, a noticeable increase in spinach growth and beneficial ionic concentrations suggest that Si can ameliorate the Cd stress in crop plants.


Asunto(s)
Cadmio/toxicidad , Contaminantes del Suelo/toxicidad , Spinacia oleracea/fisiología , Agricultura , Biomasa , Hojas de la Planta/química , Silicio , Contaminantes del Suelo/análisis , Fracciones Subcelulares/química
10.
PLoS One ; 15(12): e0244511, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33373403

RESUMEN

In this work, the effect of the inoculation of silver-incorporated titanium dioxide nanoparticles (Ag-TiO2 NPs) in spinach seeds was evaluated on certain growth, physiology and phytotoxicity parameters of the plants. This is an important crop for human consumption with high nutritional value due to their low calorie and fat content, providing various vitamins and minerals, especially iron. These NPs were obtained by means of the sol-gel method and heat treatment; the resulting powder material was characterized using X-ray diffraction and scanning electron microscopy and the influence of these NPs on plants was measured by estimating the germination rate, monitoring morphological parameters and evaluating phytotoxicity. The photosynthetic activity of the spinach plants was estimated through the quantification of the Ratio of Oxygen Evolution (ROE) by the photoacoustic technique. Samples of TiO2 powder with particle size between 9 and 43 nm were used to quantify the germination rate, which served to determine a narrower size range between 7 and 26 nm in the experiments with Ag-TiO2 NPs; the presence of Ag in TiO2 powder samples was confirmed by energy-dispersive X-ray spectroscopy. The analysis of variance showed that the dependent variable (plant growth) could be affected by the evaluated factors (concentration and size) with significant differences. The statistical trend indicated that the application of the Ag-TiO2 NPs suspension of lowest concentration and smallest particle size could be a promoting agent of the growth and development of these plants. The inoculation with NPs of 8.3 nm size and lowest concentration was related to the highest average ROE value, 24.6 ± 0.2%, while the control group was 20.2 ± 0.2%. The positive effect of the Ag-TiO2 NPs treatment could be associated to the generation of reactive oxygen species, antimicrobial activity, increased biochemical attributes, enzymatic activity or improvements in water absorption.


Asunto(s)
Fertilizantes , Nanopartículas del Metal , Plata/farmacología , Spinacia oleracea/efectos de los fármacos , Titanio/farmacología , Germinación/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Spinacia oleracea/fisiología , Suspensiones , Pruebas de Toxicidad
11.
Sci Rep ; 10(1): 19290, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-33168872

RESUMEN

High variability in somatic embryo (SE)-forming capacity has previously been observed in several spinach cultivars. Such variability frequently accounted for more variation in embryogenic response of the explants than the factor being investigated. Hence, the variability in embryogenic capacity was examined in the present study at both the population and the single-seedling level, using seeds of spinach cultivar Matador obtained from nine European seed companies. Seed population obtained from Slovenia (Sl) was superior to others, with the highest regeneration frequency (100%) and the highest mean SE number (14.4). A total of 82% of these seedlings had 80-100% of regenerating explants, while in populations with intermediate embryogenic capacity approximately 40% of seedlings had 20-60% of regenerating explants. The explants from the majority of seedlings (52-100%) in the least responsive populations were irresponsive. Furthermore, the explants from Sl seedlings regenerated from 10-20 (43.5%) up to > 20 (27.6%) SEs on average, while the explants from the majority of seedlings belonging to other populations regenerated 1-10 SEs. The present study strongly indicates that the variability of plant material must not be overlooked, because choosing more responsive individuals for one treatment and less responsive ones for another may lead to misinterpretation of the data.


Asunto(s)
Biotecnología/métodos , Técnicas de Embriogénesis Somática de Plantas , Semillas/fisiología , Spinacia oleracea/fisiología , Giberelinas , Concentración de Iones de Hidrógeno , Ácidos Naftalenoacéticos , Reguladores del Crecimiento de las Plantas , Hojas de la Planta , Regeneración , Plantones , Eslovenia , Temperatura
12.
Ecotoxicol Environ Saf ; 205: 111321, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32979800

RESUMEN

Soil pollution with cadmium (Cd) has posed a threat to our food safety. And rice consumption is the main source of Cd intake in China. Rice intercropping with water spinach is an efficient way for crop production and phytoremediation in Cd-contaminated soil. However, few people work on the Cd remediation by a combination of the passivation and intercropping. In this study, two passivators (the Si-Ca-Mg ameliorant and the Fe-modified biochar with microbial inoculants) were used in the monoculture and intercropping systems to evaluate the potential of co-effect of passivators and cropping systems on the plant growth and Cd phytoremediation. Results showed that the highest rice biomass and rice yield were presented in the intercropping system with the passivator additions, however, relatively lower biomass was showed in water spinach due to the competition with rice. And more Cd accumulated in water spinach while lower Cd in that of different rice parts. The intercropping system with the addition of the Si-Ca-Mg ameliorant and the microbial Fe-modified biochar significantly reduced the Cd contents in brown rice by 58.86% and 63.83%, while notably enhanced the Cd accumulation of water spinach by 32.0% and 22.0%, compared with the monoculture without passivation, respectively. This probably due to the increased pH, the lowered Cd availability in soil, and the reduced TF and BCF values in rice plants with passivator applications. Collectively, this study indicated that rice-water spinach intercropping, especially with the passivator additions, may function as an effective way for Cd remediation and guarantee rice grain safety.


Asunto(s)
Biodegradación Ambiental , Cadmio/análisis , Oryza/fisiología , Spinacia oleracea/fisiología , Biomasa , Carbón Orgánico , China , Grano Comestible/química , Ipomoea , Oryza/crecimiento & desarrollo , Suelo/química , Contaminantes del Suelo/análisis , Agua
13.
Ecotoxicol Environ Saf ; 198: 110685, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32387845

RESUMEN

Microorganism technologies can provide a potential alternative to traditional methods of removing heavy metals to conserve agricultural soils. This study aimed to identify and characterize heavy metals-resistant bacteria (HM-RB) isolated from industry-affected soil and their desired impact as bioremediators of heavy metals-stressed spinach plants. Three of 135 isolates were selected based on a high level of resistance to heavy metals. Based on morphological and biochemical characteristics, the selected isolates were identified as Bacillus subtilis subsp. spizizenii DSM 15029 T DSM (MA3), Paenibacillus jamilae DSM 13815 T DSM (LA22), or Pseudomonas aeruginosa DSM 1117 DSM (SN36). Experiments were implemented to investigate the three isolated HM-RB ability on improving attributes of growth, physio-biochemistry, and components of the antioxidant defense system of spinach plant exposed to the stress of cadmium (Cd2+; 2 mM), lead (Pb2+; 2 mM) or 2 mM Cd2++2 mM Pb2+. Compared to control, Cd2+ or Pb2+ stress markedly lowered plant fresh and dry weights, leaf contents of chlorophylls and carotenoids, rates of transpiration (Tr), net photosynthesis (Pn) and stomatal conductance (gs), relative water content (RWC), and membrane stability index (MSI). In contrast, contents of α.tochopherol (α.TOC), ascorbic acid (AsA), glutathione (GSH), proline, soluble sugars, Cd2+, and Pb2+, as well as activities of enzymatic and non-enzymatic antioxidants were markedly elevated. The application of HM-RB promoted the tolerance to heavy metal stress in spinach plants by improving Tr, Pn, gs, RWC, and MSI, while activities of enzymatic and non-enzymatic antioxidants were suppressed. These results reflected positively in promoting plant growth under heavy metal stress. Therefore, the application of HM-RB as potential bioremediators may be a promising strategy for promoting plant growth and productivity under heavy metal stress.


Asunto(s)
Biodegradación Ambiental , Metales Pesados/análisis , Contaminantes del Suelo/toxicidad , Spinacia oleracea/fisiología , Agricultura , Antioxidantes , Ácido Ascórbico , Bacillus/fisiología , Cadmio , Clorofila , Glutatión , Paenibacillus/fisiología , Fotosíntesis , Hojas de la Planta/química , Suelo , Contaminantes del Suelo/análisis , Spinacia oleracea/microbiología
14.
Physiol Plant ; 168(4): 777-789, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31600406

RESUMEN

Plant tissues subjected to short or prolonged freezing to a fixed sub-freezing temperature are expected to undergo similar freeze-desiccation but the former causes substantially less injury than the latter. To gain metabolic insight into this differential response, metabolome changes in spinach (Spinacia oleracea L.) leaves were determined following short-term (0.5 and 3.0 h) vs. prolonged freezing (5.5 and 10.5 h) at -4.5°C resulting in reversible or irreversible injury, respectively. LD50 , the freezing duration causing 50% injury, was estimated to be ∼3.1 h and defined as the threshold beyond which tissues were irreversibly injured. From 39 identified metabolites, 19 were selected and clustered into 3 groups: (1) signaling-related (salicylic acid, aliphatic and aromatic amino acids), (2) injury-related (GABA, lactic acid, maltose, fatty acids, policosanols, TCA intermediates) and (3) recovery-related (ascorbic acid, α-tocopherol). Initial accumulation of salicylic acid during short-term freezing followed by a decline may be involved in triggering tolerance mechanisms in moderately injured tissues, while its resurgence during prolonged freezing may signal programmed cell death. GABA accumulated with increasing freezing duration, possibly to serve as a 'pH-stat' against cytoplasmic acidification resulting from lactic acid accumulation. Mitochondria seem to be more sensitive to prolonged freezing than chloroplasts since TCA intermediates decreased after LD50 while salicylic acid and maltose, produced in chloroplasts, accumulate even at 10.5-h freezing. Fatty acids and policosanols accumulation with increasing freezing duration indicates greater injury to membrane lipids and epicuticular waxes. Ascorbic acid and α-tocopherol accumulated after short-term freezing, supposedly facilitating recovery while their levels decreased in irreversibly injured tissues.


Asunto(s)
Congelación , Metaboloma , Hojas de la Planta/fisiología , Spinacia oleracea/fisiología , Cloroplastos/fisiología , Mitocondrias/fisiología
15.
Sci Rep ; 9(1): 12522, 2019 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-31467324

RESUMEN

Spinach (Spinacia oleracea L.) is a vegetable plant with high nutritional properties. In the present work, we studied responses of in vitro shoot cultures to salt stress (0 (control), 100, 200 and 300 mM NaCl) and salt stress-induced accumulation of 20-hydroxyecdysone (20E). Our results revealed that effect of low to moderate level of salinity stress (100-200 mM) was less pronounced on growth and tissue water content (TWC) of shoot cultures compared to higher salinity level (300 mM). The salt treated shoot cultures showed better osmotic adjustment in terms of significant accumulation of compatible solutes and total soluble sugars and also higher antioxidant enzyme activity. As the NaCl stress was increased, there was a corresponding linear raise in the Na+ accumulation while the contents of both K+ and Ca2+ decreased significantly. We also studied salt-stress induced accumulation of a bioactive compound; 20E and results showed that 200 mM salt treated shoot cultures accumulated significantly 2.9 fold higher 20E as compared to untreated shoot cultures. The results suggest that Spinacia oleracea exhibits considerable salt tolerance with better osmotic adjustment and can be considered a suitable candidate for the production of bioactive secondary metabolite.


Asunto(s)
Ecdisterona/metabolismo , Cloruro de Sodio/metabolismo , Spinacia oleracea/fisiología , Técnicas de Cultivo de Célula , Ósmosis , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/fisiología , Estrés Salino , Tolerancia a la Sal , Sodio/metabolismo , Spinacia oleracea/crecimiento & desarrollo
16.
Int J Mol Sci ; 20(16)2019 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-31398909

RESUMEN

High temperatures seriously limit plant growth and productivity. Investigating heat-responsive molecular mechanisms is important for breeding heat-tolerant crops. In this study, heat-responsive mechanisms in leaves from a heat-sensitive spinach (Spinacia oleracea L.) variety Sp73 were investigated using two-dimensional gel electrophoresis (2DE)-based and isobaric tags for relative and absolute quantification (iTRAQ)-based proteomics approaches. In total, 257 heat-responsive proteins were identified in the spinach leaves. The abundance patterns of these proteins indicated that the photosynthesis process was inhibited, reactive oxygen species (ROS) scavenging pathways were initiated, and protein synthesis and turnover, carbohydrate and amino acid metabolism were promoted in the spinach Sp73 in response to high temperature. By comparing this with our previous results in the heat-tolerant spinach variety Sp75, we found that heat inhibited photosynthesis, as well as heat-enhanced ROS scavenging, stress defense pathways, carbohydrate and energy metabolism, and protein folding and turnover constituting a conservative strategy for spinach in response to heat stress. However, the heat-decreased biosynthesis of chlorophyll and carotenoid as well as soluble sugar content in the variety Sp73 was quite different from that in the variety Sp75, leading to a lower capability for photosynthetic adaptation and osmotic homeostasis in Sp73 under heat stress. Moreover, the heat-reduced activities of SOD and other heat-activated antioxidant enzymes in the heat-sensitive variety Sp73 were also different from the heat-tolerant variety Sp75, implying that the ROS scavenging strategy is critical for heat tolerance.


Asunto(s)
Respuesta al Choque Térmico , Proteoma , Proteómica , Spinacia oleracea/fisiología , Antioxidantes/metabolismo , Biología Computacional/métodos , Electroforesis en Gel Bidimensional , Respuesta al Choque Térmico/genética , Calor , Anotación de Secuencia Molecular , Fenotipo , Fotosíntesis , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , Proteómica/métodos , Especies Reactivas de Oxígeno/metabolismo
17.
Plant Cell Physiol ; 60(10): 2206-2219, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31271439

RESUMEN

Photosynthetic induction, a gradual increase in photosynthetic rate on a transition from darkness or low light to high light, has ecological significance, impact on biomass accumulation in fluctuating light and relevance to photoprotection in strong light. However, the experimental quantification of the component electron fluxes in and around both photosystems during induction has been rare. Combining optimized chlorophyll fluorescence, the redox kinetics of P700 [primary electron donor in Photosystem I (PSI)] and membrane inlet mass spectrometry in the absence/presence of inhibitors/mediator, we partially estimated the components of electron fluxes in spinach leaf disks on transition from darkness to 1,000 �mol photons�m-2�s-1 for up to 10 min, obtaining the following findings: (i) the partitioning of energy between both photosystems did not change noticeably; (ii) in Photosystem II (PSII), the combined cyclic electron flow (CEF2) and charge recombination (CR2) to the ground state decreased gradually toward 0 in steady state; (iii) oxygen reduction by electrons from PSII, partly bypassing PSI, was small but measurable; (iv) cyclic electron flow around PSI (CEF1) peaked before becoming somewhat steady; (v) peak magnitudes of some of the electron fluxes, all probably photoprotective, were in the descending order: CEF1 > CEF2 + CR2 > chloroplast O2 uptake; and (vi) the chloroplast NADH dehydrogenase-like complex appeared to aid the antimycin A-sensitive CEF1. The results are important for fine-tuning in silico simulation of in vivo photosynthetic electron transport processes; such simulation is, in turn, necessary to probe partial processes in a complex network of interactions in response to environmental changes.


Asunto(s)
Transporte de Electrón , Oxígeno/metabolismo , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Spinacia oleracea/fisiología , Antimicina A/farmacología , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Oscuridad , Fluorescencia , Cinética , Luz , Oxidación-Reducción , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Spinacia oleracea/efectos de la radiación
18.
Environ Pollut ; 253: 599-605, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31330351

RESUMEN

Irrigation of crop plants with microcystins (MCs) contaminated water could be a threat to human health via bioaccumulation. Despite the fact MCs bioaccumulation in crop plants is well documented, MCs depuration, as well as the mechanism involved remains unclear. The objectives of the present study were to investigate the bioaccumulation and depuration of microcystin-LR (MC-LR) in lettuce (Lactuca sativa L.) and spinach (Spinacia oleracea L.), as well as to explore the role of glutathione (GSH) biosynthesis in MC-LR depuration. The tested plants were irrigated with deionized water containing 10 µg L-1 MC-LR for 12 days (bioaccumulation), and subsequently, with either deionized water only or deionized water containing 0.5 mM buthionine sulfoximine (BSO, a specific inhibitor of GSH biosynthesis) for 12 days (depuration). After bioaccumulation period, highest concentrations of MC-LR found in lettuce and spinach were 114.4 and 138.5 µg kg-1 dry weight (DW) respectively. Depuration rates of MC-LR in lettuce and spinach were 9.5 and 8.1 µg kg-1 DW d-1, which deceased to 3.7 and 4.6 µg kg-1 DW d-1 in treatments with BSO application. GSH content in both lettuce and spinach were not significantly affected during depuration without BSO; whereas after treatment with BSO, GSH content significantly decreased by 36.0% and 24.7% in lettuce and spinach on 15 d, and the decrease remained on 18 d and 21 d in lettuce. Moreover, during the bioaccumulation period, activities of glutathione reductase (GR) and glutathione S-transferase (GST) were enhanced in both plants. Our results suggested that GSH biosynthesis played an important role in MC-LR depuration in the tested plants. Concerning human health risk, most of the estimated daily intake (EDI) values during the bioaccumulation period exceeded the tolerable daily intake (TDI) guideline. However, the risk could be alleviated by irrigating with MCs-free water for a certain amount of time before harvest.


Asunto(s)
Glutatión/biosíntesis , Lactuca/fisiología , Microcistinas/metabolismo , Spinacia oleracea/fisiología , Animales , Glutatión Reductasa , Glutatión Transferasa , Humanos , Toxinas Marinas
19.
Ecotoxicology ; 28(6): 631-642, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31161525

RESUMEN

Understanding the effects of many essential non-steroidal anti-inflammatory drugs (NSAIDs) on plants is still limited, especially at environmentally realistic concentrations. This paper presents the influence of three of the most frequently used NSAIDs (diclofenac, ibuprofen, and naproxen) at environmentally realistic concentrations on the autochthonous green leafy vegetables: orache (Atriplex patula L.), spinach (Spinacia oleracea L.) and lettuce (Lactuca sativa L.). Our research was focused on the determination of the photosynthetic parameters, the emission rate of volatile organic compounds, and the evaluation of the ultrastructure of leaves of studied vegetables after exposure to abiotic stress induced by environmental pollutants, namely NSAIDs. The data obtained indicate a moderate reduction of foliage physiological activity as a response to the stress induced by NSAIDs to the selected green leafy vegetables. The increase of the 3-hexenal and monoterpene emission rates with increasing NSAIDs concentration could be used as a sensitive and a rapid indicator to assess the toxicity of the NSAIDs. Microscopic analysis showed that the green leafy vegetables were affected by the selected NSAIDs. In comparison to the controls, the green leafy vegetables treated with NSAIDs presented irregular growth of glandular trichomes on the surface of the adaxial side of the leaves, less stomata, cells with less cytoplasm, irregular cell walls and randomly distributed chloroplasts. Of the three NSAIDs investigated in this study, ibuprofen presented the highest influence. The results obtained in this study can be used to better estimate the impact of drugs on the environment and to improve awareness on the importance of the responsible use of drugs.


Asunto(s)
Antiinflamatorios no Esteroideos/efectos adversos , Atriplex/efectos de los fármacos , Contaminantes Ambientales/efectos adversos , Lactuca/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Spinacia oleracea/efectos de los fármacos , Compuestos Orgánicos Volátiles/metabolismo , Atriplex/fisiología , Atriplex/ultraestructura , Diclofenaco/efectos adversos , Ibuprofeno/efectos adversos , Lactuca/fisiología , Lactuca/ultraestructura , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Naproxeno/efectos adversos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/ultraestructura , Spinacia oleracea/fisiología , Spinacia oleracea/ultraestructura
20.
Plant Sci ; 283: 385-395, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31128709

RESUMEN

High temperature is a major environmental factor affecting plant growth. Heat shock proteins (Hsps) are molecular chaperones that play important roles in improving plant thermotolerance during heat stress. Spinach (Spinacia oleracea) is very sensitive to high temperature; however, the specific function of Hsps in spinach is unclear. In this study, cytosolic heat shock 70 protein (SoHSC70), which was induced by heat stress, was cloned from spinach. Overexpressing SoHSC70 in spinach calli and Arabidopsis enhanced their thermotolerance. In contrast, spinach seedlings with silenced SoHSC70 by virus-induced gene silencing (VIGS) showed more sensitivity to heat stress. Further analysis revealed that overexpressing SoHSC70 altered relative electrical conductivity (REC), malondialdehyde (MDA) content, photosynthetic rate, reactive oxygen species (ROS) accumulation and the activities of antioxidant enzymes, such as superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), and catalase (CAT) after the heat treatment. Taken together, our results suggest that overexpressing SoHSC70 positively affects heat tolerance by reducing membrane damage and ROS accumulation and improving activities of antioxidant enzymes.


Asunto(s)
Antioxidantes/metabolismo , Membrana Celular/metabolismo , Proteínas de Choque Térmico/fisiología , Proteínas de Plantas/fisiología , Especies Reactivas de Oxígeno/metabolismo , Spinacia oleracea/metabolismo , Termotolerancia , Arabidopsis , Membrana Celular/fisiología , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico , Malondialdehído/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Análisis de Secuencia de ADN , Spinacia oleracea/genética , Spinacia oleracea/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...