Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.078
Filtrar
1.
PLoS Comput Biol ; 20(9): e1012330, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39236069

RESUMEN

How can inter-individual variability be quantified? Measuring many features per experiment raises the question of choosing them to recapitulate high-dimensional data. Tackling this challenge on spindle elongation phenotypes, we showed that only three typical elongation patterns describe spindle elongation in C. elegans one-cell embryo. These archetypes, automatically extracted from the experimental data using principal component analysis (PCA), accounted for more than 95% of inter-individual variability of more than 1600 experiments across more than 100 different conditions. The two first archetypes were related to spindle average length and anaphasic elongation rate. The third archetype, accounting for 6% of the variability, was novel and corresponded to a transient spindle shortening in late metaphase, reminiscent of kinetochore function-defect phenotypes. Importantly, these three archetypes were robust to the choice of the dataset and were found even considering only non-treated conditions. Thus, the inter-individual differences between genetically perturbed embryos have the same underlying nature as natural inter-individual differences between wild-type embryos, independently of the temperatures. We thus propose that beyond the apparent complexity of the spindle, only three independent mechanisms account for spindle elongation, weighted differently in the various conditions. Interestingly, the spindle-length archetypes covered both metaphase and anaphase, suggesting that spindle elongation in late metaphase is sufficient to predict the late anaphase length. We validated this idea using a machine-learning approach. Finally, given amounts of these three archetypes could represent a quantitative phenotype. To take advantage of this, we set out to predict interacting genes from a seed based on the PCA coefficients. We exemplified this firstly on the role of tpxl-1 whose homolog tpx2 is involved in spindle microtubule branching, secondly the mechanism regulating metaphase length, and thirdly the central spindle players which set the length at anaphase. We found novel interactors not in public databases but supported by recent experimental publications.


Asunto(s)
Caenorhabditis elegans , Fenotipo , Huso Acromático , Caenorhabditis elegans/embriología , Caenorhabditis elegans/fisiología , Caenorhabditis elegans/genética , Huso Acromático/fisiología , Animales , Análisis de Componente Principal , Biología Computacional , Embrión no Mamífero/embriología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo
3.
Curr Biol ; 34(15): R741-R744, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39106834

RESUMEN

Mitosis exhibits astonishing evolutionary plasticity, with dividing eukaryotic cells differing in the organization of the mitotic spindle and the extent of nuclear envelope breakdown. A new study suggests that a multinucleated lifestyle may favor the evolution of closed nuclear division.


Asunto(s)
Evolución Biológica , Mitosis , Huso Acromático , Mitosis/fisiología , Huso Acromático/fisiología , Animales , Membrana Nuclear/metabolismo , Membrana Nuclear/fisiología
4.
Bull Math Biol ; 86(9): 113, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39096399

RESUMEN

During cell division, the mitotic spindle moves dynamically through the cell to position the chromosomes and determine the ultimate spatial position of the two daughter cells. These movements have been attributed to the action of cortical force generators which pull on the astral microtubules to position the spindle, as well as pushing events by these same microtubules against the cell cortex and plasma membrane. Attachment and detachment of cortical force generators working antagonistically against centring forces of microtubules have been modelled previously (Grill et al. in Phys Rev Lett 94:108104, 2005) via stochastic simulations and mean-field Fokker-Planck equations (describing random motion of force generators) to predict oscillations of a spindle pole in one spatial dimension. Using systematic asymptotic methods, we reduce the Fokker-Planck system to a set of ordinary differential equations (ODEs), consistent with a set proposed by Grill et al., which can provide accurate predictions of the conditions for the Fokker-Planck system to exhibit oscillations. In the limit of small restoring forces, we derive an algebraic prediction of the amplitude of spindle-pole oscillations and demonstrate the relaxation structure of nonlinear oscillations. We also show how noise-induced oscillations can arise in stochastic simulations for conditions in which the mean-field Fokker-Planck system predicts stability, but for which the period can be estimated directly by the ODE model and the amplitude by a related stochastic differential equation that incorporates random binding kinetics.


Asunto(s)
Simulación por Computador , Conceptos Matemáticos , Microtúbulos , Modelos Biológicos , Huso Acromático , Procesos Estocásticos , Huso Acromático/fisiología , Microtúbulos/fisiología , Microtúbulos/metabolismo , Dinámicas no Lineales , Mitosis/fisiología
5.
Elife ; 122024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39092485

RESUMEN

The spindle assembly checkpoint (SAC) temporally regulates mitosis by preventing progression from metaphase to anaphase until all chromosomes are correctly attached to the mitotic spindle. Centrosomes refine the spatial organization of the mitotic spindle at the spindle poles. However, centrosome loss leads to elongated mitosis, suggesting that centrosomes also inform the temporal organization of mitosis in mammalian cells. Here, we find that the mitotic delay in acentrosomal cells is enforced by the SAC in a MPS1-dependent manner, and that a SAC-dependent mitotic delay is required for bipolar cell division to occur in acentrosomal cells. Although acentrosomal cells become polyploid, polyploidy is not sufficient to cause dependency on a SAC-mediated delay to complete cell division. Rather, the division failure in absence of MPS1 activity results from mitotic exit occurring before acentrosomal spindles can become bipolar. Furthermore, prevention of centrosome separation suffices to make cell division reliant on a SAC-dependent mitotic delay. Thus, centrosomes and their definition of two spindle poles early in mitosis provide a 'timely two-ness' that allows cell division to occur in absence of a SAC-dependent mitotic delay.


Asunto(s)
Proteínas de Ciclo Celular , Centrosoma , Puntos de Control de la Fase M del Ciclo Celular , Mitosis , Centrosoma/metabolismo , Humanos , Puntos de Control de la Fase M del Ciclo Celular/fisiología , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Huso Acromático/metabolismo , Huso Acromático/fisiología , División Celular , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas/genética , Células HeLa
6.
Theriogenology ; 226: 335-342, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38959844

RESUMEN

Extracellular signal-regulated protein kinase 5 (Erk5), a member of the mitogen-activated protein kinase (MAPK) family, is ubiquitously expressed in all eukaryotic cells and is implicated in the various mitotic processes such as cell survival, proliferation, migration, and differentiation. However, the potential functional roles of Erk5 in oocyte meiosis have not been fully determined. In this study, we document that ERK5 participates in the meiotic maturation of mouse oocytes by regulating the spindle assembly to ensure the meiotic progression. We unexpectedly found that phosphorylated ERK5 was localized in the spindle pole region at metaphase I and II stages by immunostaining analysis. Inhibition of ERK5 activity using its specific inhibitor XMD8-92 dramatically reduced the incidence of first polar body extrusion. In addition, inhibition of ERK5 evoked the spindle assembly checkpoint to arrest oocytes at metaphase I stage by impairing the spindle assembly, chromosome alignment and kinetochore-microtubule attachment. Mechanically, over-strengthened microtubule stability was shown to disrupt the microtubule dynamics and thus compromise the spindle assembly in ERK5-inhibited oocytes. Conversely, overexpression of ERK5 caused decreased level of acetylated α-tubulin and spindle defects. Collectively, we conclude that ERK5 plays an important role in the oocyte meiotic maturation by regulating microtubule dynamics and spindle assembly.


Asunto(s)
Meiosis , Proteína Quinasa 7 Activada por Mitógenos , Oocitos , Huso Acromático , Animales , Oocitos/fisiología , Meiosis/fisiología , Ratones , Huso Acromático/fisiología , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Proteína Quinasa 7 Activada por Mitógenos/genética , Femenino
7.
Curr Biol ; 34(16): 3820-3829.e5, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39079532

RESUMEN

Gametes are produced via meiosis, a specialized cell division associated with frequent errors that cause birth defects and infertility. Uniquely in meiosis I, homologous chromosomes segregate to opposite poles, usually requiring their linkage by chiasmata, the products of crossover recombination.1 The spindle checkpoint delays cell-cycle progression until all chromosomes are properly attached to microtubules,2 but the steps leading to the capture and alignment of chromosomes on the meiosis I spindle remain poorly understood. In budding yeast meiosis I, Mad2 and Mad3BUBR1 are equally important for spindle checkpoint delay, but biorientation of homologs on the meiosis I spindle requires Mad2, but not Mad3BUBR1.3,4 Here we reveal the distinct functions of Mad2 and Mad3BUBR1 in meiosis I chromosome segregation. Mad2 promotes the prophase to metaphase I transition, while Mad3BUBR1 associates with the TOGL1 domain of Stu1CLASP, a conserved plus-end microtubule protein that is important for chromosome capture onto the spindle. Homologous chromosome pairs that are proficient in crossover formation but fail to biorient rely on Mad3BUBR1-Stu1CLASP to ensure their efficient attachment to microtubules and segregation during meiosis I. Furthermore, we show that Mad3BUBR1-Stu1CLASP are essential to rescue the segregation of mini-chromosomes lacking crossovers. Our findings define a new pathway ensuring microtubule-dependent chromosome capture and demonstrate that spindle checkpoint proteins safeguard the fidelity of chromosome segregation both by actively promoting chromosome alignment and by delaying cell-cycle progression until this has occurred.


Asunto(s)
Proteínas de Ciclo Celular , Segregación Cromosómica , Puntos de Control de la Fase M del Ciclo Celular , Meiosis , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Huso Acromático , Meiosis/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Segregación Cromosómica/fisiología , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Puntos de Control de la Fase M del Ciclo Celular/fisiología , Huso Acromático/metabolismo , Huso Acromático/fisiología , Proteínas Mad2/metabolismo , Proteínas Mad2/genética , Microtúbulos/metabolismo
8.
Math Biosci ; 374: 109219, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38795952

RESUMEN

This paper develops a theory for anaphase in cells. After a brief description of microtubules, the mitotic spindle and the centrosome, a mathematical model for anaphase is introduced and developed in the context of the cell cytoplasm and liquid crystalline structures. Prophase, prometaphase and metaphase are then briefly described in order to focus on anaphase, which is the main study of this paper. The entities involved are modelled in terms of liquid crystal defects and microtubules are represented as defect flux lines. The mathematical techniques employed make extensive use of energy considerations based on the work that was developed by Dafermos (1970) from the classical Frank-Oseen nematic liquid crystal energy (Frank, 1958; Oseen, 1933). With regard to liquid crystal theory we introduce the concept of regions of influence for defects which it is believed have important implications beyond the subject of this paper. The results of this paper align with observed biochemical phenomena and are explored in application to HeLa cells and Caenorhabditis elegans. This unified approach offers the possibility of gaining insight into various consequences of mitotic abnormalities which may result in Down syndrome, Hodgkin lymphoma, breast, prostate and various other types of cancer.


Asunto(s)
Anafase , Caenorhabditis elegans , Modelos Biológicos , Humanos , Animales , Anafase/fisiología , Células HeLa , Microtúbulos , Huso Acromático/fisiología , Centrosoma/fisiología , Cristales Líquidos
9.
Reprod Sci ; 31(9): 2625-2636, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38773027

RESUMEN

Cryopreservation of in vitro matured oocytes is still considered as an experimental alternative to mature oocyte vitrification after ovarian stimulation. Here, we investigated whether rescue-IVM should be performed before or after vitrification. For this, 101 immature oocytes (germinal vesicle stage) from women undergoing ICSI were used. Oocytes were divided into three groups: freshly in vitro matured oocytes (IVM), freshly in vitro matured oocytes subsequently vitrified (IVM + VIT) and vitrified/warmed GV oocytes then in vitro matured (VIT + IVM). Oocyte maturation rates and kinetics were assessed using time-lapse technology. Spindle dimensions and polarity, chromosome alignment and cytoplasmic F-actin filament length and density were determined using confocal microscopy and quantitative image analyses. No differences in IVM rates (fresh IVM: 63.16% and IVM post-VIT: 59.38%, p = 0.72) and timings (17.73 h in fresh IVM, 17.33 h in IVM post-VIT, p = 0.72) were observed whether IVM is performed freshly or after vitrification. Meiotic spindles were shorter in VIT + IVM (10.47 µm vs 11.23 µm in IVM and 11.40 µm in IVM + VIT, p = 0.012 and p = 0.043) and wider in IVM + VIT (9.37 µm vs 8.12 µm in IVM and 8.16 µm VIT + IVM, p = 0.027 and p = 0.026). The length-to-width ratio was lower in vitrified groups (IVM + VIT: 1.19 and VIT + IVM: 1.26) compared to IVM (1.38), p = 0.013 and p = 0.014. No differences in multipolar spindle and chromosome misalignment occurrence and cytoplasmic F-actin filament length and density were observed between groups. Our results suggest vitrification before or after rescue-IVM does not seem to impair maturation rates and kinetics parameters but induces meiotic spindle alterations.


Asunto(s)
Criopreservación , Técnicas de Maduración In Vitro de los Oocitos , Meiosis , Oocitos , Huso Acromático , Vitrificación , Femenino , Humanos , Oocitos/efectos de los fármacos , Huso Acromático/fisiología , Técnicas de Maduración In Vitro de los Oocitos/métodos , Adulto , Criopreservación/métodos , Meiosis/fisiología , Meiosis/efectos de los fármacos , Cinética , Citoesqueleto de Actina/metabolismo
10.
Curr Biol ; 34(10): 2085-2093.e6, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38670094

RESUMEN

Proper chromosome segregation in meiosis I relies on the formation of connections between homologous chromosomes. Crossovers between homologs provide a connection that allows them to attach correctly to the meiosis I spindle. Tension is transmitted across the crossover when the partners attach to microtubules from opposing poles of the spindle. Tension stabilizes microtubule attachments that will pull the partners toward opposite poles at anaphase. Paradoxically, in many organisms, non-crossover partners segregate correctly. The mechanism by which non-crossover partners become bioriented on the meiotic spindle is unknown. Both crossover and non-crossover partners pair their centromeres early in meiosis (prophase). In budding yeast, centromere pairing is correlated with subsequent correct segregation of the partners. The mechanism by which centromere pairing, in prophase, promotes later correct attachment of the partners to the metaphase spindle is unknown. We used live cell imaging to track the biorientation process of non-crossover chromosomes. We find that centromere pairing allows the establishment of connections between the partners that allows their later interdependent attachment to the meiotic spindle using tension-sensing biorientation machinery. Because all chromosome pairs experience centromere pairing, our findings suggest that crossover chromosomes also utilize this mechanism to achieve maximal segregation fidelity.


Asunto(s)
Centrómero , Segregación Cromosómica , Meiosis , Saccharomyces cerevisiae , Centrómero/metabolismo , Segregación Cromosómica/fisiología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Huso Acromático/metabolismo , Huso Acromático/fisiología , Emparejamiento Cromosómico , Cromosomas Fúngicos/genética , Microtúbulos/metabolismo
11.
EMBO J ; 43(7): 1244-1256, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38424239

RESUMEN

During mitosis, motor proteins and microtubule-associated protein organize the spindle apparatus by cross-linking and sliding microtubules. Kinesin-5 plays a vital role in spindle formation and maintenance, potentially inducing twist in the spindle fibers. The off-axis power stroke of kinesin-5 could generate this twist, but its implications in microtubule organization remain unclear. Here, we investigate 3D microtubule-microtubule sliding mediated by the human kinesin-5, KIF11, and found that the motor caused right-handed helical motion of anti-parallel microtubules around each other. The sidestepping ratio increased with reduced ATP concentration, indicating that forward and sideways stepping of the motor are not strictly coupled. Further, the microtubule-microtubule distance (motor extension) during sliding decreased with increasing sliding velocity. Intriguingly, parallel microtubules cross-linked by KIF11 orbited without forward motion, with nearly full motor extension. Altering the length of the neck linker increased the forward velocity and pitch of microtubules in anti-parallel overlaps. Taken together, we suggest that helical motion and orbiting of microtubules, driven by KIF11, contributes to flexible and context-dependent filament organization, as well as torque regulation within the mitotic spindle.


Asunto(s)
Cinesinas , Microtúbulos , Humanos , Cinesinas/metabolismo , Microtúbulos/metabolismo , Huso Acromático/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis
12.
Reprod Sci ; 31(5): 1420-1428, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38294668

RESUMEN

Oocyte cryopreservation is offered to women of various age groups for both health and social reasons. Oocytes derived from either controlled ovarian stimulation or in vitro maturation (IVM) are cryopreserved via vitrification. As maternal age is a significant determinant of oocyte quality, there is limited data on the age-related susceptibility of oocytes to the vitrification-warming procedure alone or in conjunction with IVM. In the present study, metaphase II oocytes obtained from 2, 6, 9, and 12 month old Swiss albino mice either by superovulation or IVM were used. To understand the association between maternal age and oocyte cryotolerance, oocytes were subjected to vitrification-warming and compared to non vitrified sibling oocytes. Survived oocytes were evaluated for mitochondrial potential, spindle integrity, relative expression of spindle checkpoint protein transcripts, and DNA double-strand breaks. Maturation potential and vitrification-warming survival were significantly affected (p < 0.001 and p < 0.05, respectively) in ovulated oocytes from the advanced age group but not in IVM oocytes. Although vitrification-warming significantly increased spindle abnormalities in ovulated oocytes from advanced maternal age (p < 0.01), no significant changes were observed in IVM oocytes. Furthermore, Bub1 and Mad2 transcript levels were significantly higher in vitrified-warmed IVM oocytes (p < 0.05). In conclusion, advanced maternal age can have a negative impact on the cryosusceptibility of ovulated oocytes but not IVM oocytes in mice.


Asunto(s)
Criopreservación , Técnicas de Maduración In Vitro de los Oocitos , Edad Materna , Oocitos , Vitrificación , Animales , Oocitos/fisiología , Femenino , Ratones , Criopreservación/métodos , Proteínas Mad2/metabolismo , Huso Acromático/fisiología , Huso Acromático/metabolismo , Roturas del ADN de Doble Cadena , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Supervivencia Celular/fisiología
13.
PLoS Genet ; 20(1): e1011111, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38206959

RESUMEN

Meiosis is a highly conserved feature of sexual reproduction that ensures germ cells have the correct number of chromosomes prior to fertilization. A subset of microtubules, known as the spindle, are essential for accurate chromosome segregation during meiosis. Building evidence in mammalian systems has recently highlighted the unexpected requirement of the actin cytoskeleton in chromosome segregation; a network of spindle actin filaments appear to regulate many aspects of this process. Here we show that Drosophila oocytes also have a spindle population of actin that appears to regulate the formation of the microtubule spindle and chromosomal movements throughout meiosis. We demonstrate that genetic and pharmacological disruption of the actin cytoskeleton has a significant impact on spindle morphology, dynamics, and chromosome alignment and segregation during maturation and the metaphase-anaphase transition. We further reveal a role for calcium in maintaining the microtubule spindle and spindle actin. Together, our data highlights potential conservation of morphology and mechanism of the spindle actin during meiosis.


Asunto(s)
Actinas , Drosophila , Animales , Huso Acromático/fisiología , Meiosis , Microtúbulos , Oocitos , Citoesqueleto de Actina , Segregación Cromosómica , Mamíferos
14.
Zygote ; 32(1): 21-27, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38047349

RESUMEN

Our previous studies have suggested that spastin, which aggregates on spindle microtubules in oocytes, may promote the assembly of mouse oocyte spindles by cutting microtubules. This action may be related to CRMP5, as knocking down CRMP5 results in reduced spindle microtubule density and maturation defects in oocytes. In this study, we found that, after knocking down CRMP5 in oocytes, spastin distribution shifted from the spindle to the spindle poles and errors in microtubule-kinetochore attachment appeared in oocyte spindles. However, CRMP5 did not interact with the other two microtubule-severing proteins, katanin-like-1 (KATNAL1) and fidgetin-like-1 (FIGNL1), which aggregate at the spindle poles. We speculate that, in oocytes, due to the reduction of spastin distribution on chromosomes after knocking down CRMP5, microtubule-kinetochore errors cannot be corrected through severing, resulting in meiotic division abnormalities and maturation defects in oocytes. This finding provides new insights into the regulatory mechanisms of spastin in oocytes and important opportunities for the study of meiotic division mechanisms.


Asunto(s)
Cinetocoros , Huso Acromático , Ratones , Animales , Cinetocoros/metabolismo , Espastina/genética , Espastina/metabolismo , Huso Acromático/fisiología , Microtúbulos/metabolismo , Meiosis , Oocitos/fisiología
15.
Dev Cell ; 58(17): 1519-1533.e6, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37419117

RESUMEN

Planar spindle orientation is critical for epithelial tissue organization and is generally instructed by the long cell-shape axis or cortical polarity domains. We introduced mouse intestinal organoids in order to study spindle orientation in a monolayered mammalian epithelium. Although spindles were planar, mitotic cells remained elongated along the apico-basal (A-B) axis, and polarity complexes were segregated to basal poles, so that spindles oriented in an unconventional manner, orthogonal to both polarity and geometric cues. Using high-resolution 3D imaging, simulations, and cell-shape and cytoskeleton manipulations, we show that planar divisions resulted from a length limitation in astral microtubules (MTs) which precludes them from interacting with basal polarity, and orient spindles from the local geometry of apical domains. Accordingly, lengthening MTs affected spindle planarity, cell positioning, and crypt arrangement. We conclude that MT length regulation may serve as a key mechanism for spindles to sense local cell shapes and tissue forces to preserve mammalian epithelial architecture.


Asunto(s)
Microtúbulos , Huso Acromático , Animales , Ratones , Huso Acromático/fisiología , División Celular , Microtúbulos/fisiología , Epitelio , Polaridad Celular/fisiología , Mamíferos
16.
J Reprod Dev ; 69(1): 1-9, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36436912

RESUMEN

The study of the size of cells and organelles has a long history, dating back to the 1600s when cells were defined. In particular, various methods have elucidated the size of the nucleus and the mitotic spindle in several species. However, little research has been conducted on oocyte size and organelles in mammals, and many questions remain to be answered. The appropriate size is essential to cell function properly. Oocytes have a very large cytoplasm, which is more than 100 times larger than that of general somatic cells in mammals. In this review, we discuss how oocytes acquire an enormous cytoplasmic size and the adverse effects of a large cytoplasmic size on cellular functions.


Asunto(s)
Meiosis , Oocitos , Animales , Citoplasma , Huso Acromático/fisiología , Mamíferos
17.
Elife ; 112022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36346735

RESUMEN

During cell division, the spindle generates force to move chromosomes. In mammals, microtubule bundles called kinetochore-fibers (k-fibers) attach to and segregate chromosomes. To do so, k-fibers must be robustly anchored to the dynamic spindle. We previously developed microneedle manipulation to mechanically challenge k-fiber anchorage, and observed spatially distinct response features revealing the presence of heterogeneous anchorage (Suresh et al., 2020). How anchorage is precisely spatially regulated, and what forces are necessary and sufficient to recapitulate the k-fiber's response to force remain unclear. Here, we develop a coarse-grained k-fiber model and combine with manipulation experiments to infer underlying anchorage using shape analysis. By systematically testing different anchorage schemes, we find that forces solely at k-fiber ends are sufficient to recapitulate unmanipulated k-fiber shapes, but not manipulated ones for which lateral anchorage over a 3 µm length scale near chromosomes is also essential. Such anchorage robustly preserves k-fiber orientation near chromosomes while allowing pivoting around poles. Anchorage over a shorter length scale cannot robustly restrict pivoting near chromosomes, while anchorage throughout the spindle obstructs pivoting at poles. Together, this work reveals how spatially regulated anchorage gives rise to spatially distinct mechanics in the mammalian spindle, which we propose are key for function.


Asunto(s)
Cinetocoros , Huso Acromático , Animales , Huso Acromático/fisiología , Microtúbulos/fisiología , División Celular , Mamíferos , Mitosis
18.
J Cell Mol Med ; 26(19): 4904-4910, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36029193

RESUMEN

Proper spindle orientation is essential for cell fate determination and tissue morphogenesis. Recently, accumulating studies have elucidated several factors that regulate spindle orientation, including geometric, internal and external cues. Abnormality in these factors generally leads to defects in the physiological functions of various organs and the development of severe diseases. Herein, we first review models that are commonly used for studying spindle orientation. We then review a conservative heterotrimeric complex critically involved in spindle orientation regulation in different models. Finally, we summarize some cues that affect spindle orientation and explore whether we can establish a model that precisely elucidates the effects of spindle orientation without interfusing other spindle functions. We aim to summarize current models used in spindle orientation studies and discuss whether we can build a model that disturbs spindle orientation alone. This can substantially improve our understanding of how spindle orientation is regulated and provide insights to investigate this complex event.


Asunto(s)
Huso Acromático , Diferenciación Celular , Morfogénesis , Huso Acromático/fisiología
19.
FASEB J ; 36(9): e22524, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36006032

RESUMEN

As a surveillance mechanism, the activated spindle assembly checkpoint (SAC) potently inhibits the E3 ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome) to ensure accurate chromosome segregation. Although the protein phosphatase 2A (PP2A) has been proposed to be both, directly and indirectly, involved in spindle assembly checkpoint inactivation in mammalian cells, whether it is similarly operating in the fission yeast Schizosaccharomycer pombe has never been demonstrated. Here, we investigated whether fission yeast PP2A is involved in SAC silencing by following the rate of cyclin B (Cdc13) destruction at SPBs during the recovery phase in nda3-KM311 cells released from the inhibition of APC/C by the activated spindle checkpoint. The timing of the SAC inactivation is only slightly delayed when two B56 regulatory subunits (Par1 and Par2) of fission yeast PP2A are absent. Overproduction of individual PP2A subunits either globally in the nda3-KM311 arrest-and-release system or locally in the synthetic spindle checkpoint activation system only slightly suppresses the SAC silencing defects in PP1 deletion (dis2Δ) cells. Our study thus demonstrates that the fission yeast PP2A is not a key regulator actively involved in SAC inactivation.


Asunto(s)
Schizosaccharomyces , Ciclosoma-Complejo Promotor de la Anafase/genética , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Puntos de Control de la Fase M del Ciclo Celular , Mamíferos/metabolismo , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Huso Acromático/fisiología
20.
Proc Natl Acad Sci U S A ; 119(33): e2206398119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35960844

RESUMEN

During cell division, cross-linking motors determine the architecture of the spindle, a dynamic microtubule network that segregates the chromosomes in eukaryotes. It is unclear how motors with opposite directionality coordinate to drive both contractile and extensile behaviors in the spindle. Particularly, the impact of different cross-linker designs on network self-organization is not understood, limiting our understanding of self-organizing structures in cells but also our ability to engineer new active materials. Here, we use experiment and theory to examine active microtubule networks driven by mixtures of motors with opposite directionality and different cross-linker design. We find that although the kinesin-14 HSET causes network contraction when dominant, it can also assist the opposing kinesin-5 KIF11 to generate extensile networks. This bifunctionality results from HSET's asymmetric design, distinct from symmetric KIF11. These findings expand the set of rules underlying patterning of active microtubule assemblies and allow a better understanding of motor cooperation in the spindle.


Asunto(s)
Cinesinas , Microtúbulos , Proteínas Oncogénicas , Huso Acromático , División Celular , Humanos , Cinesinas/química , Cinesinas/fisiología , Microtúbulos/química , Microtúbulos/fisiología , Proteínas Oncogénicas/química , Proteínas Oncogénicas/fisiología , Huso Acromático/química , Huso Acromático/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA