Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 565
1.
Front Immunol ; 15: 1369116, 2024.
Article En | MEDLINE | ID: mdl-38711505

Objective: Previous research has partially revealed distinct gut microbiota in ankylosing spondylitis (AS). In this study, we performed non-targeted fecal metabolomics in AS in order to discover the microbiome-metabolome interface in AS. Based on prospective cohort studies, we further explored the impact of the tumor necrosis factor inhibitor (TNFi) on the gut microbiota and metabolites in AS. Methods: To further understand the gut microbiota and metabolites in AS, along with the influence of TNFi, we initiated a prospective cohort study. Fecal samples were collected from 29 patients with AS before and after TNFi therapy and 31 healthy controls. Metagenomic and metabolomic experiments were performed on the fecal samples; moreover, validation experiments were conducted based on the association between the microbiota and metabolites. Results: A total of 7,703 species were annotated using the metagenomic sequencing system and by profiling the microbial community taxonomic composition, while 50,046 metabolites were identified using metabolite profiling. Differential microbials and metabolites were discovered between patients with AS and healthy controls. Moreover, TNFi was confirmed to partially restore the gut microbiota and the metabolites. Multi-omics analysis of the microbiota and metabolites was performed to determine the associations between the differential microbes and metabolites, identifying compounds such as oxypurinol and biotin, which were correlated with the inhibition of the pathogenic bacteria Ruminococcus gnavus and the promotion of the probiotic bacteria Bacteroides uniformis. Through experimental studies, the relationship between microbes and metabolites was further confirmed, and the impact of these two types of microbes on the enterocytes and the inflammatory cytokine interleukin-18 (IL-18) was explored. Conclusion: In summary, multi-omics exploration elucidated the impact of TNFi on the gut microbiota and metabolites and proposed a novel therapeutic perspective: supplementation of compounds to inhibit potential pathogenic bacteria and to promote potential probiotics, therefore controlling inflammation in AS.


Feces , Gastrointestinal Microbiome , Metabolome , Probiotics , Spondylitis, Ankylosing , Humans , Spondylitis, Ankylosing/microbiology , Spondylitis, Ankylosing/metabolism , Spondylitis, Ankylosing/immunology , Male , Female , Adult , Feces/microbiology , Metagenomics/methods , Middle Aged , Prospective Studies , Metabolomics , Bacteria/metabolism , Bacteria/classification , Bacteria/isolation & purification , Tumor Necrosis Factor Inhibitors/therapeutic use , Tumor Necrosis Factor Inhibitors/pharmacology
2.
Int J Hyperthermia ; 41(1): 2336149, 2024.
Article En | MEDLINE | ID: mdl-38679420

Heat shock proteins (HSP) have been associated with a range of persistent inflammatory disorders; however, little research has been conducted on the involvement of HSP in the development of ankylosing spondylitis (AS). The research aims to identify a diagnostic signature based on HSP-related genes and determine the molecular subtypes of AS. We gathered the transcriptional data of patients with AS from the GSE73754 dataset and conducted a literature search for HSP-related genes (HRGs). The logistic regression model was utilized for the identification of hub HRGs associated with AS. Subsequently, these HRGs were employed in the construction of a nomogram prediction model. We employed a consensus clustering approach to identify novel molecular subgroups. Subsequently, we conducted functional analyses, encompassing GO, KEGG, and GSEA, to elucidate the underlying mechanisms between these subgroups. To assess the immunological landscape, we employed the xCell algorithm. Through logistic regression analysis, the four core HRGs (CCT2, HSPA6, DNAJB14, and DNAJC5) were confirmed as potential biomarkers for AS. Subsequent stratification revealed two distinct molecular phenotypes, designated as Cluster 1 and Cluster 2. Notably, Cluster 2 was characterized by the upregulation of pathways pertinent to immune response and inflammation. Our research suggests that the CCT2, HSPA6, DNAJB14, and DNAJC5 exhibit potential as effective blood-based diagnostic biomarkers for AS. These findings contribute to a deeper comprehension of the underlying mechanisms involved in the development of AS and offer potential targets for personalized therapeutic interventions.


Heat-Shock Proteins , Spondylitis, Ankylosing , Humans , Spondylitis, Ankylosing/genetics , Spondylitis, Ankylosing/metabolism , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics
3.
RMD Open ; 10(1)2024 Feb 23.
Article En | MEDLINE | ID: mdl-38395454

OBJECTIVES: Ankylosing spondylitis (AS) is a chronic inflammatory rheumatic disease affecting mainly the axial skeleton. Peripheral involvement (arthritis, enthesitis and dactylitis) and extra-musculoskeletal manifestations, including uveitis, psoriasis and bowel inflammation, occur in a relevant proportion of patients. AS is responsible for chronic and severe back pain caused by local inflammation that can lead to osteoproliferation and ultimately spinal fusion. The association of AS with the human leucocyte antigen-B27 gene, together with elevated levels of chemokines, CCL17 and CCL22, in the sera of patients with AS, led us to study the role of CCR4+ T cells in the disease pathogenesis. METHODS: CD8+CCR4+ T cells isolated from the blood of patients with AS (n=76) or healthy donors were analysed by multiparameter flow cytometry, and gene expression was evaluated by RNA sequencing. Patients with AS were stratified according to the therapeutic regimen and current disease score. RESULTS: CD8+CCR4+ T cells display a distinct effector phenotype and upregulate the inflammatory chemokine receptors CCR1, CCR5, CX3CR1 and L-selectin CD62L, indicating an altered migration ability. CD8+CCR4+ T cells expressing CX3CR1 present an enhanced cytotoxic profile, expressing both perforin and granzyme B. RNA-sequencing pathway analysis revealed that CD8+CCR4+ T cells from patients with active disease significantly upregulate genes promoting osteogenesis, a core process in AS pathogenesis. CONCLUSIONS: Our results shed light on a new molecular mechanism by which T cells may selectively migrate to inflammatory loci, promote new bone formation and contribute to the pathological ossification process observed in AS.


Spondylitis, Ankylosing , Humans , Spondylitis, Ankylosing/genetics , Spondylitis, Ankylosing/metabolism , Osteogenesis/genetics , T-Lymphocyte Subsets/metabolism , CD8-Positive T-Lymphocytes/metabolism , Inflammation
4.
Int J Rheum Dis ; 27(1): e15044, 2024 Jan.
Article En | MEDLINE | ID: mdl-38287541

AIM: Ankylosing spondylitis (AS) is a chronic, progressive, and inflammatory autoimmune disease of unknown origin that affects the axial skeleton and sacroiliac joints, resulting in pain and loss of function. AS is characterized by the overdifferentiation of T helper 17 (Th17) cells, which contribute to the development of the disease. The Hippo signaling pathway is an important regulator of Th17 differentiation, but its role in patients with AS is unclear. We aimed to investigate the role of key molecules of the Hippo signaling pathway in inflammatory Th17 differentiation in patients with AS and to examine their correlation with disease stages. METHODS: We examined the activity of the Hippo pathway in patients with AS and the regulation of Th17 differentiation during AS-mediated inflammation. Blood samples were collected from 60 patients with AS at various stages and 30 healthy controls. Peripheral blood mononuclear cells (PBMCs) were isolated from peripheral blood by density gradient centrifugation. The Serum Interleukin-17 (IL-17) levels in patients with AS and healthy controls were quantified by ELISA. The key molecules of Hippo pathway were assessed by real-time PCR for their mRNA expression, and protein levels were determined by Western blot analysis. RESULTS: Elevated serum interleukin-17 (IL-17) levels were observed in patients with AS compared with healthy controls. The protein and mRNA levels of retinoic acid receptor-related orphan receptor γt (RORγt), transcriptional coactivator with a PDZ-binding motif (TAZ), and key upstream transcription factors in the Hippo signaling pathway were measured. The expression of RORγt and TAZ was increased in the blood of patients with AS, whereas the expression of other Hippo pathway proteins, such as MST1/2 and NDR1/2, was significantly decreased. Increased levels of IL-17 and TAZ were significantly associated with disease activity. In addition, MST1, MST2, and NDR1 levels were negatively correlated with TAZ, RORγt, and IL-17 levels. CONCLUSION: Our findings suggest that the Hippo pathway plays a significant role in the regulation of Th17 differentiation and disease activity in patients with AS. The upregulation of TAZ and downregulation of key Hippo pathway proteins, such as MST1/2 and NDR1/2, may contribute to AS pathogenesis. These proteins may serve as biomarkers and may lead to the development of novel therapeutic strategies for AS.


Interleukin-17 , Spondylitis, Ankylosing , Humans , Hippo Signaling Pathway , Spondylitis, Ankylosing/diagnosis , Spondylitis, Ankylosing/genetics , Spondylitis, Ankylosing/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Leukocytes, Mononuclear/metabolism , RNA, Messenger/genetics , Th17 Cells
5.
Sci Rep ; 13(1): 21717, 2023 12 07.
Article En | MEDLINE | ID: mdl-38066013

Rheumatic joints have an altered cartilage turnover. Cartilage intermediate layer protein 1 (CILP-1) is secreted from articular chondrocytes and deposited into the cartilage extracellular matrix. We developed an immunoassay targeting a Matrix Metalloproteinase (MMP)-generated neo-epitope of CILP-1, named CILP-M. Human articular cartilage was cleaved with proteolytic enzymes and CILP-M levels were measured. We also quantified CILP-M in two studies from patients with rheumatoid arthritis (RA), ankylosing spondylitis (AS) and osteoarthritis (OA) and explored the monitoring and prognostic potential of CILP-M in TNF-α inhibitory treatment and modified Stoke AS Spine Score (mSASSS) progression. CILP-M was generated by MMP-1, -8 and -12. In the discovery study, CILP-M was significantly higher in patients with RA, AS and OA than healthy donors (p < 0.01, p < 0.001, p < 0.05) with an area under the curve (AUC) between the diseased groups and healthy donors > 0.95 (p < 0.001). In the validation study, patients with RA and AS had significantly higher CILP-M levels than healthy controls (p < 0.001) and AUC > 0.90 (p < 0.001). Patients with AS treated with TNF- α inhibitory treatment in the validation study had significantly lower CILP-M levels after treatment (p = 0.004). CILP-M may provide useful insights into cartilage degradation processes in rheumatic diseases.


Arthritis, Rheumatoid , Cartilage, Articular , Extracellular Matrix Proteins , Osteoarthritis , Pyrophosphatases , Spondylitis, Ankylosing , Humans , Arthritis, Rheumatoid/diagnosis , Arthritis, Rheumatoid/metabolism , Biomarkers/metabolism , Cartilage, Articular/metabolism , Matrix Metalloproteinase 1/metabolism , Osteoarthritis/diagnosis , Osteoarthritis/metabolism , Spondylitis, Ankylosing/diagnosis , Spondylitis, Ankylosing/metabolism , Tumor Necrosis Factor-alpha/metabolism , Pyrophosphatases/metabolism , Extracellular Matrix Proteins/metabolism
6.
Genomics ; 115(6): 110730, 2023 Nov.
Article En | MEDLINE | ID: mdl-37866658

RNA-binding proteins (RBPs), which are key effectors of gene expression, play critical roles in inflammation and immune regulation. However, the potential biological function of RBPs in ankylosing spondylitis (AS) remains unclear. We identified differentially expressed genes (DEGs) in peripheral blood mononuclear cells (PBMCs) of five patients with AS and three healthy persons by RNA-seq, obtained differentially expressed RBPs by overlapping DEGs and RBPs summary table. RIOK3 was selected as a target RBP and knocked down in mouse bone marrow mesenchymal stem cells (mBMSCs), and transcriptomic studies of siRIOK3 mBMSCs were performed again using RNA-seq. Results showed that RIOK3 knockdown inhibited the expression of genes related to osteogenic differentiation, ribosome function, and ß-interferon pathways in mBMSCs. In vitro experiments have shown that RIOK3 knockdown reduced the osteogenic differentiation ability of mBMSCs. Collectively, RIOK3 may affect the differentiation of mBMSCs and participate in the pathogenesis of AS, especially pathological bone formation.


Mesenchymal Stem Cells , Spondylitis, Ankylosing , Animals , Humans , Mice , Cell Differentiation , Cells, Cultured , Leukocytes, Mononuclear/metabolism , Mesenchymal Stem Cells/metabolism , Osteogenesis/genetics , Spondylitis, Ankylosing/genetics , Spondylitis, Ankylosing/metabolism , Spondylitis, Ankylosing/pathology
7.
Arthritis Res Ther ; 25(1): 194, 2023 10 05.
Article En | MEDLINE | ID: mdl-37798786

OBJECTIVES: Ankylosing spondylitis (AS) is a chronic inflammatory disease that mainly affects the sacroiliac joint and spine. However, the real mechanisms of immune cells acting on syndesmophyte formation in AS are not well identified. We aimed to find the key AS-associated cytokine and assess its pathogenic role in AS. METHODS: A protein array with 1000 cytokines was performed in five AS patients with the first diagnosis and five age- and gender-matched healthy controls to discover the differentially expressed cytokines. The candidate differentially expressed cytokines were further quantified by multiplex protein quantitation (3 AS-associated cytokines and 3 PDGF-pathway cytokines) and ELISA (PDGFB) in independent samples (a total of 140 AS patients vs 140 healthy controls). The effects of PDGFB, the candidate cytokine, were examined by using adipose-derived stem cells (ADSCs) and human fetal osteoblast cell line (hFOB1.19) as in vitro mesenchymal cell and preosteoblast models, respectively. Furthermore, whole-transcriptome sequencing and enrichment of phosphorylated peptides were performed by using cell models to explore the underlying mechanisms of PDGFB. The xCELLigence system was applied to examine the proliferation, chemotaxis, and migration abilities of PDGFB-stimulated or PDGFB-unstimulated cells. RESULTS: The PDGF pathway was observed to have abnormal expression in the protein array, and PDGFB expression was further found to be up-regulated in 140 Chinese AS patients. Importantly, PDGFB expression was significantly correlated with BASFI (Pearson coefficient/p value = 0.62/6.70E - 8) and with the variance of the mSASSS score (mSASSS 2 years - baseline, Pearson coefficient/p value = 0.76/8.75E - 10). In AS patients, preosteoclasts secreted more PDGFB than the healthy controls (p value = 1.16E - 2), which could promote ADSCs osteogenesis and enhance collagen synthesis (COLI and COLIII) of osteoblasts (hFOB 1.19). In addition, PDGFB promoted the proliferation, chemotaxis, and migration of ADSCs. Mechanismly, in ADSCs, PDGFB stimulated ERK phosphorylation by upregulating GRB2 expression and then increased the expression of RUNX2 to promote osteoblastogenesis of ADSCs. CONCLUSION: PDGFB stimulates the GRB2/ERK/RUNX2 pathway in ADSCs, promotes osteoblastogenesis of ADSCs, and enhances the extracellular matrix of osteoblasts, which may contribute to pathological bone formation in AS.


Proto-Oncogene Proteins c-sis , Spondylitis, Ankylosing , Humans , Core Binding Factor Alpha 1 Subunit/metabolism , Cytokines/metabolism , GRB2 Adaptor Protein/metabolism , Osteogenesis/physiology , Proto-Oncogene Proteins c-sis/genetics , Proto-Oncogene Proteins c-sis/metabolism , Spine/metabolism , Spondylitis, Ankylosing/genetics , Spondylitis, Ankylosing/metabolism
8.
Ann Rheum Dis ; 82(11): 1429-1443, 2023 11.
Article En | MEDLINE | ID: mdl-37532285

INTRODUCTION: Recent advances in understanding the biology of ankylosing spondylitis (AS) using innovative genomic and proteomic approaches offer the opportunity to address current challenges in AS diagnosis and management. Altered expression of genes, microRNAs (miRNAs) or proteins may contribute to immune dysregulation and may play a significant role in the onset and persistence of inflammation in AS. The ability of exosomes to transport miRNAs across cells and alter the phenotype of recipient cells has implicated exosomes in perpetuating inflammation in AS. This study reports the first proteomic and miRNA profiling of plasma-derived exosomes in AS using comprehensive computational biology analysis. METHODS: Plasma samples from patients with AS and healthy controls (HC) were isolated via ultracentrifugation and subjected to extracellular vesicle flow cytometry analysis to characterise exosome surface markers by a multiplex immunocapture assay. Cytokine profiling of plasma-derived exosomes and cell culture supernatants was performed. Next-generation sequencing was used to identify miRNA populations in exosomes enriched from plasma fractions. CD4+ T cells were sorted, and the frequency and proliferation of CD4+ T-cell subsets were analysed after treatment with AS-exosomes using flow cytometry. RESULTS: The expression of exosome marker proteins CD63 and CD81 was elevated in the patients with AS compared with HC (q<0.05). Cytokine profiling in plasma-derived AS-exosomes demonstrated downregulation of interleukin (IL)-8 and IL-10 (q<0.05). AS-exosomes cocultured with HC CD4+ T cells induced significant upregulation of IFNα2 and IL-33 (q<0.05). Exosomes from patients with AS inhibited the proliferation of regulatory T cells (Treg), suggesting a mechanism for chronically activated T cells in this disease. Culture of CD4+ T cells from healthy individuals in the presence of AS-exosomes reduced the proliferation of FOXP3+ Treg cells and decreased the frequency of FOXP3+IRF4+ Treg cells. miRNA sequencing identified 24 differentially expressed miRNAs found in circulating exosomes of patients with AS compared with HC; 22 of which were upregulated and 2 were downregulated. CONCLUSIONS: Individuals with AS have different immunological and genetic profiles, as determined by evaluating the exosomes of these patients. The inhibitory effect of exosomes on Treg in AS suggests a mechanism contributing to chronically activated T cells in this disease.


Exosomes , MicroRNAs , Spondylitis, Ankylosing , Humans , Spondylitis, Ankylosing/genetics , Spondylitis, Ankylosing/metabolism , Exosomes/genetics , Exosomes/metabolism , Proteomics , Genetic Profile , MicroRNAs/genetics , T-Lymphocytes, Regulatory , Inflammation/metabolism , Forkhead Transcription Factors/genetics
9.
Rheumatology (Oxford) ; 62(12): 4000-4005, 2023 12 01.
Article En | MEDLINE | ID: mdl-37279731

OBJECTIVES: Th17 cells are known to play a significant role in AS. C-C motif chemokine ligand 20 (CCL20) binds to C-C chemokine receptor 6 (CCR6) on Th17 cells, promoting their migration to inflammation sites. The aim of this research is to examine the effectiveness of CCL20 inhibition in treating inflammation in AS. METHODS: Mononuclear cells from peripheral blood (PBMC) and SF (SFMC) were collected from healthy individuals and AS. Flow cytometry was used to analyse cells producing inflammatory cytokines. CCL20 levels were determined using ELISA. The impact of CCL20 on Th17 cell migration was verified using a Trans-well migration assay. The in vivo efficacy of CCL20 inhibition was evaluated using an SKG mouse model. RESULTS: The presence of Th17 cells and CCL20 expressing cells was higher in SFMCs from AS patients compared with their PBMCs. The CCL20 level in AS SF was significantly higher than in OA patients. The percentage of Th17 cells in PBMCs from AS patients increased when exposed to CCL20, whereas the percentage of Th17 cells in SFMCs from AS patients decreased when treated with CCL20 inhibitor. The migration of Th17 cells was found to be influenced by CCL20, and this effect was counteracted by the CCL20 inhibitor. In the SKG mouse model, the use of CCL20 inhibitor significantly reduced joint inflammation. CONCLUSION: This research validates the critical role of CCL20 in AS and suggests that targeting CCL20 inhibition could serve as a novel therapeutic approach for AS treatment.


Spondylitis, Ankylosing , Mice , Animals , Humans , Spondylitis, Ankylosing/metabolism , Ligands , Leukocytes, Mononuclear/metabolism , Chemokine CCL20/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Th17 Cells/metabolism , Disease Models, Animal , Receptors, CCR6/metabolism
10.
Clin Lab ; 69(5)2023 May 01.
Article En | MEDLINE | ID: mdl-37145067

BACKGROUND: The goal was to explore the value of neutrophil to lymphocyte ratio (NLR) and monocyte to lymphocyte ratio (MLR) in evaluating the risk of hip involvement in patients with ankylosing spondylitis (AS). METHODS: The study included 188 AS patients (Based on BASRI-hip score, patients were classified as hip involvement group (BASRI-hip ≥ 2; n = 84) and non-hip involvement group (BASRI-hip ≤ 1; n = 104), 173 patients with osteoarthritis (OA) of the hip and 181 age- and gender-matched healthy controls (HCs). The value of NLR and MLR in different groups were observed. RESULTS: The NLR and MLR in AS patients with hip involvement were significantly higher than in the non-hip involvement group (p < 0.05), and patients with moderate and severe hip involvement were significantly higher than mild hip involvement (p < 0.05). The analysis of receiver operating characteristic (ROC) curve showed that the area under the curve (AUC) of NLR, MLR, and the combination of NLR and MLR for AS patients with hip involvement were 0.817, 0.840, and 0.863, respectively (each p < 0.001) and the AUC values for predicting AS patients with moderate and severe hip involvement in patients with AS were 0.862, 0.847, and 0.889, respectively (each p < 0.001), which showed their significance in clinical settings. Also, NLR and MLR of AS patients were positively correlated with erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) (each p < 0.01). CONCLUSIONS: Therefore, NLR and MLR may be diagnostic hematological indexes in evaluating AS patients with hip involvement, particularly in the patients with moderate and severe hip involvement and higher diagnostic efficiency when combined analysis is done.


Spondylitis, Ankylosing , Humans , Spondylitis, Ankylosing/complications , Spondylitis, Ankylosing/diagnosis , Spondylitis, Ankylosing/metabolism , Lymphocytes/metabolism , Monocytes , Neutrophils/metabolism , Blood Sedimentation , Retrospective Studies
11.
J Leukoc Biol ; 114(6): 595-603, 2023 11 24.
Article En | MEDLINE | ID: mdl-37192369

Macrophages play a critical role in ankylosing spondylitis by promoting autoimmune tissue inflammation through various effector functions. The inflammatory potential of macrophages is highly influenced by their metabolic environment. Here, we demonstrate that glycolysis is linked to the proinflammatory activation of human blood monocyte-derived macrophages in ankylosing spondylitis. Specifically, ankylosing spondylitis macrophages produced excessive inflammation, including TNFα, IL1ß, and IL23, and displayed an overactive status by exhibiting stronger costimulatory signals, such as CD80, CD86, and HLA-DR. Moreover, we found that patient-derived monocyte-derived M1-type macrophages (M1 macrophages) exhibited intensified glycolysis, as evidenced by a higher extracellular acidification rate. Upregulation of PKM2 and GLUT1 was observed in ankylosing spondylitis-derived monocytes and monocyte-derived macrophages, especially in M1 macrophages, indicating glucose metabolic alteration in ankylosing spondylitis macrophages. To investigate the impact of glycolysis on macrophage inflammatory ability, we treated ankylosing spondylitis M1 macrophages with 2 inhibitors: 2-deoxy-D-glucose, a glycolysis inhibitor, and shikonin, a PKM2 inhibitor. Both inhibitors reduced proinflammatory function and reversed the overactive status of ankylosing spondylitis macrophages, suggesting their potential utility in treating the disease. These data place PKM2 at the crosstalk between glucose metabolic changes and the activation of inflammatory macrophages in patients with ankylosing spondylitis.


Spondylitis, Ankylosing , Humans , Spondylitis, Ankylosing/metabolism , Macrophage Activation , Macrophages/metabolism , Inflammation/metabolism , Glucose/metabolism
12.
Curr Opin Rheumatol ; 35(4): 213-218, 2023 07 01.
Article En | MEDLINE | ID: mdl-37115850

PURPOSE OF REVIEW: Over the past several decades, the concept that the primary lesion accounting for the development of axSpA is an enthesopathy has been widely accepted. However, the hallmark abnormality of axSpA occurs in the sacroiliac joint at the interface of cartilage and bone at a location remote from any anatomical enthesis. Both imaging and histopathological data from the sacroiliac joint point to immunopathogenetic events in the bone marrow as being of primary importance. Here, we discuss new developments in our understanding of immune events in the bone marrow relevant to axSpA that reinforce the need for a change in our conceptual paradigm for the pathogenesis of axSpA. RECENT FINDINGS: Human spinal enthesis samples contain myeloperoxidase-expressing cells, a marker of neutrophils, and mucosal-associated invariant T cells in the perientheseal bone marrow, which may be activated by stromal cells and circulating microbial products to express IL-17A and IL-17F and tumor necrosis factor (TNF). Evaluation of transcriptomes of monocytes from patients with axSpA demonstrates a lipopolysaccharide/TNF signature characterized by the expression of genes associated with granulocytopoietic bone marrow cells. This neutrophil-like phenotype is more evident in established and more severe axSpA and may be activated by microbial products from the gut. A similar expansion of granulocyte-monocyte progenitor-driven hematopoiesis occurs in the SKG mouse driven by granulocyte-macrophage colony-stimulating factor. Mesenchymal stem cells (MSCs) from ankylosing spondylitis patients are more likely to exhibit osteogenic differentiation than MSCs from healthy donors, which may be mediated by the formation of specific clusters of transcriptional factors, super enhancers, regulated by axSpA-associated single nucleotide polymorphisms located mostly in noncoding regions. TNF-α may enhance directional migration of AS-MSC compared with MSC from healthy controls from the bone marrow to entheseal soft tissue, which is mediated by increased expression of engulfment and cell motility protein 1 (ELMO1). TNF and IL-17A display differential effects on adipogenesis and osteogenesis of MSC in perientheseal bone marrow and soft tissue. SUMMARY: Bone marrow has the capacity to undergo rapid adaptation in terms of cell composition, differentiation, and immune function, resulting in inflammation and osteogenesis in axSpA.


Spondylarthritis , Spondylitis, Ankylosing , Humans , Animals , Mice , Interleukin-17/metabolism , Bone Marrow , Osteogenesis , Spondylitis, Ankylosing/metabolism , Cell Differentiation , Tumor Necrosis Factor-alpha , Adaptor Proteins, Signal Transducing/metabolism
13.
Int Immunopharmacol ; 118: 110132, 2023 May.
Article En | MEDLINE | ID: mdl-37023698

OBJECTIVE: Ankylosing spondylitis (AS) exhibits paradoxical bone features typically characterized by new bone formation and systemic bone loss. Although abnormal kynurenine (Kyn), a tryptophan metabolite, has been closely linked to the disease activity of AS, the distinct role of its pathological bone features remains unknown. METHODS: Kynurenine sera level was collected from healthy control (HC; n = 22) and AS (n = 87) patients and measured by ELISA. In the AS group, we analyzed and compared the Kyn level based on the modified stoke ankylosing spondylitis spinal score (mSASSS), MMP13, and OCN. Under osteoblast differentiation, the treatment with Kyn in AS-osteoprogenitors conducted cell proliferation, alkaline phosphatase activity, bone mineralization-related alizarin red s (ARS), von kossa (VON), hydroxyapatite (HA) staining, and mRNA expression markers (ALP, RUNX2, OCN, and OPG) for bone formation. TRAP and F-actin staining was used for osteoclast formation of mouse osteoclast precursors. RESULTS: Kyn sera level was significantly elevated in the AS group compared to the HC. In addition, Kyn sera level was correlated with mSASSS (r = 0.03888, p = 0.067), MMP13 (r = 0.0327, p = 0.093), and OCN (r = 0.0436, p = 0.052). During osteoblast differentiation, treatment with Kyn exhibited no difference in cell proliferation and alkaline phosphate (ALP) activity for bone matrix maturation but promoted ARS, VON, and HA staining for bone mineralization. Interestingly, osteoprotegerin (OPG) and OCN expressions of AS-osteoprogenitors were augmented in the Kyn treatment during differentiation. In growth medium, Kyn treatment of AS-osteoprogenitors resulted in induction of OPG mRNA, protein expression, and Kyn-response genes (AhRR, CYP1b1, and TIPARP). Secreted OPG proteins were observed in the supernatant of AS-osteoprogenitors treated with Kyn. Notably, the supernatant of Kyn-treated AS-osteoprogenitors interrupted the RANKL-mediated osteoclastogenesis of mouse osteoclast precursor such as TRAP-positive osteoclast formation, NFATc1 expression, and osteoclast differentiation markers. CONCLUSION: Our results revealed that elevated Kyn level increased the bone mineralization of osteoblast differentiation in AS and decreased RANKL-mediated osteoclast differentiation by inducing OPG expression. Out study have implication for potential coupling factors linking osteoclast and osteoblast where abnormal Kyn level could be involved in pathological bone features of AS.


Kynurenine , Spondylitis, Ankylosing , Animals , Mice , Kynurenine/metabolism , Matrix Metalloproteinase 13/metabolism , Osteoblasts/metabolism , Gene Expression Regulation , Spondylitis, Ankylosing/metabolism , Osteoclasts/metabolism , Osteoprotegerin/genetics , Osteoprotegerin/metabolism , Cell Differentiation , RNA, Messenger/metabolism , RANK Ligand/metabolism
14.
J Orthop Surg Res ; 18(1): 237, 2023 Mar 24.
Article En | MEDLINE | ID: mdl-36964567

OBJECTIVE: Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have been reported to exert regulatory effects on biological processes. This study intended to assess the role of the lncRNA HOXA transcript at the distal tip (HOTTIP)/miR-30b-3p/phosphoglycerate kinase 1 (PGK1) axis in ankylosing spondylitis (AS). METHODS: Levels of HOTTIP, miR-30b-3p and PGK1 in AS synovial tissues and cultured AS fibroblast-like synoviocytes (ASFLSs) were assessed. The ASFLSs were identified and, respectively, treated with altered expression of HOTTIP and miR-30b-3p, and then, the proliferation and differentiation of the ASFLSs were assessed. The AS mouse models were established by injection of proteoglycan and Freund's complete adjuvant and then were treated with altered expression of HOTTIP and miR-30b-3p, and the pathological changes and apoptosis of synoviocytes in mice' synovial tissues were measured. The relationship of HOTTIP, miR-30b-3p and PGK1 was verified. RESULTS: HOTTIP and PGK1 were elevated, while miR-30b-3p was reduced in AS synovial tissues and ASFLSs. Elevated miR-30b-3p or inhibited HOTTIP restrained proliferation and differentiation of ASFLSs and also improved the pathological changes and promoted apoptosis of synoviocytes in mice's synovial tissues. PGK1 was a target of miR-30b-3p, and miR-30b-3p could directly bind to HOTTIP. Silencing miR-30b-3p or overexpressing PGK1 reversed the improvement of AS by knocking down HOTTIP or up-regulating miR-30b-3p. CONCLUSION: Our study suggests that reduced HOTTIP ameliorates AS progression by suppressing the proliferation and differentiation of ASFLSs through the interaction of miR-30b-3p and PGK1.


MicroRNAs , RNA, Long Noncoding , Spondylitis, Ankylosing , Synoviocytes , Animals , Mice , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Synoviocytes/metabolism , Spondylitis, Ankylosing/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Proliferation/genetics , Fibroblasts/metabolism
15.
Science ; 379(6637): eabg2482, 2023 03 17.
Article En | MEDLINE | ID: mdl-36927018

Autoimmune diseases such as ankylosing spondylitis (AS) can be driven by emerging neoantigens that disrupt immune tolerance. Here, we developed a workflow to profile posttranslational modifications involved in neoantigen formation. Using mass spectrometry, we identified a panel of cysteine residues differentially modified by carboxyethylation that required 3-hydroxypropionic acid to generate neoantigens in patients with AS. The lysosomal degradation of integrin αIIb [ITGA2B (CD41)] carboxyethylated at Cys96 (ITGA2B-ceC96) generated carboxyethylated peptides that were presented by HLA-DRB1*04 to stimulate CD4+ T cell responses and induce autoantibody production. Immunization of HLA-DR4 transgenic mice with the ITGA2B-ceC96 peptide promoted colitis and vertebral bone erosion. Thus, metabolite-induced cysteine carboxyethylation can give rise to pathogenic neoantigens that lead to autoreactive CD4+ T cell responses and autoantibody production in autoimmune diseases.


Autoantibodies , Autoimmune Diseases , Cysteine , HLA-DRB1 Chains , Integrin alpha2 , Protein Processing, Post-Translational , Spondylitis, Ankylosing , Animals , Mice , Autoantibodies/metabolism , Autoimmune Diseases/genetics , Autoimmune Diseases/metabolism , Autoimmunity/genetics , Autoimmunity/immunology , Cysteine/metabolism , HLA-DRB1 Chains/genetics , HLA-DRB1 Chains/metabolism , Mice, Transgenic , Integrin alpha2/metabolism , Gastrointestinal Microbiome , Humans , Spondylitis, Ankylosing/genetics , Spondylitis, Ankylosing/metabolism
16.
Int Immunopharmacol ; 116: 109810, 2023 Mar.
Article En | MEDLINE | ID: mdl-36774858

Ankylosing spondylitis (AS) is a chronic inflammatory rheumatic disease that mainly affects the axial skeleton, whose typical features are inflammatory back pain, bone structural damage and pathological new bone formation. The pathology of ectopic new bone formation is still little known. In this study, we found increased purine metabolites in plasma of patients with AS. Similarly, metabolome analysis indicated increased purine metabolites in both serum of CD4-Cre; Ptpn11fl/fl and SHP2-deficient chondrocytes. SHP2-deficient chondrocytes promoted the growth of wild type chondrocytes and differentiation of osteoblasts in CD4-Cre; Ptpn11fl/fl mice, which spontaneously developed AS-like bone disease. Purine metabolites, along with PTHrP derived from SHP2-deficient chondrocytes, accelerated the growth of chondrocytes and ectopic new bone formation through PKA/CREB signaling. Moreover, Suramin, a purinergic receptor antagonist, suppressed pathological new bone formation in AS-like bone disease. Overall, these results highlight the potential role of targeting purinergic signaling in retarding ectopic new bone formation in AS.


Osteogenesis , Spondylitis, Ankylosing , Animals , Mice , Spondylitis, Ankylosing/metabolism , Chondrocytes/metabolism , Bone and Bones/metabolism , Purines
17.
Arthritis Res Ther ; 25(1): 28, 2023 02 21.
Article En | MEDLINE | ID: mdl-36803548

BACKGROUND: Ectopic ossification is an important cause of disability in patients with ankylosing spondylitis (AS). Whether fibroblasts can transdifferentiate into osteoblasts and contribute to ossification remains unknown. This study aims to investigate the role of stem cell transcription factors (POU5F1, SOX2, KLF4, MYC, etc.) of fibroblasts in ectopic ossification in patients with AS. METHODS: Primary fibroblasts were isolated from the ligaments of patients with AS or osteoarthritis (OA). In an in vitro study, primary fibroblasts were cultured in osteogenic differentiation medium (ODM) to induce ossification. The level of mineralization was assessed by mineralization assay. The mRNA and protein levels of stem cell transcription factors were measured by real-time quantitative PCR (q-PCR) and western blotting. MYC was knocked down by infecting primary fibroblasts with lentivirus. The interactions between stem cell transcription factors and osteogenic genes were analysed by chromatin immunoprecipitation (ChIP). Recombinant human cytokines were added to the osteogenic model in vitro to evaluate their role in ossification. RESULTS: We found that MYC was elevated significantly in the process of inducing primary fibroblasts to differentiate into osteoblasts. In addition, the level of MYC was remarkably higher in AS ligaments than in OA ligaments. When MYC was knocked down, the expression of the osteogenic genes alkaline phosphatase (ALP) and bone morphogenic protein 2 (BMP2) was decreased, and the level of mineralization was reduced significantly. In addition, the ALP and BMP2 were confirmed to be the direct target genes of MYC. Furthermore, interferon-γ (IFN-γ), which showed high expression in AS ligaments, was found to promote the expression of MYC in fibroblasts in the process of ossification in vitro. CONCLUSIONS: This study demonstrates the role of MYC in ectopic ossification. MYC may act as the critical bridge that links inflammation with ossification in AS, thus providing new insights into the molecular mechanisms of ectopic ossification in AS.


Ossification, Heterotopic , Osteoarthritis , Proto-Oncogene Proteins c-myc , Spondylitis, Ankylosing , Humans , Alkaline Phosphatase/metabolism , Bone Morphogenetic Protein 2/metabolism , Cell Differentiation/genetics , Cells, Cultured , Fibroblasts/metabolism , Ossification, Heterotopic/metabolism , Osteoarthritis/genetics , Osteoarthritis/metabolism , Osteogenesis/genetics , Spondylitis, Ankylosing/genetics , Spondylitis, Ankylosing/metabolism , Transcription Factors/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism
18.
Int J Biol Macromol ; 235: 123783, 2023 Apr 30.
Article En | MEDLINE | ID: mdl-36822282

Circular RNAs (circRNAs), a class of non-coding RNAs (ncRNAs), are highly stable and ubiquitous molecules that exhibit tissue-specific expression. Accumulating evidence has shown that aberrant expression of circRNAs can play a role in the pathogenesis of several diseases. Rheumatic diseases are a varied group of autoimmune and inflammatory disorders affecting mainly the musculoskeletal system. Notably, circRNAs, which are essential immune system gene modulators, are strongly linked to the occurrence and progression of autoimmune disorders. Here, we present and discuss the current findings concerning the roles, implications and theragnostic potentials of circRNAs in common rheumatic diseases, including ankylosing spondylitis (AS), osteoarthritis (OA), osteoporosis (OP), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), Crohn's disease (CD), and gout. This review aims to provide new insights to support the development of novel diagnostic and therapeutic strategies for these disabling diseases.


Arthritis, Rheumatoid , Autoimmune Diseases , Rheumatic Diseases , Spondylitis, Ankylosing , Humans , RNA, Circular/genetics , Rheumatic Diseases/genetics , Arthritis, Rheumatoid/metabolism , Spondylitis, Ankylosing/genetics , Spondylitis, Ankylosing/metabolism
19.
Ann Rheum Dis ; 82(4): 533-545, 2023 04.
Article En | MEDLINE | ID: mdl-36543525

OBJECTIVE: The aim of this study was to identify the role of Piezo1-mediated mechanotransduction in entheseal pathological new bone formation and to explore the underlying molecular mechanism. METHODS: Spinal ligament tissues were collected from 14 patients with ankylosing spondylitis (AS) and 14 non-AS controls and bulk RNA sequencing was conducted. Collagen antibody-induced arthritis models were established to observe pathological new bone formation. Pharmacological inhibition and genetic ablation of Piezo1 was performed in animal models to identify the essential role of Piezo1. Entheseal osteo-chondral lineage cells were collected and in vitro cell culture system was established to study the role and underlying mechanism of Piezo1 in regulation of chondrogenesis, osteogenesis and its own expression. RESULTS: Piezo1 was aberrantly upregulated in ligaments and entheseal tissues from patients with AS and animal models. Pharmaceutical and genetic inhibition of Piezo1 attenuated while activation of Piezo1 promoted pathological new bone formation. Mechanistically, activation of CaMKII (Calcium/calmodulin dependent protein kinase II) signalling was found essential for Piezo1-mediated mechanotransduction. In addition, Piezo1 was upregulated by AS-associated inflammatory cytokines. CONCLUSION: Piezo1-mediated mechanotransduction promotes entheseal pathological new bone formation through CaMKII signalling in AS.


Ion Channels , Mechanotransduction, Cellular , Ossification, Heterotopic , Spondylitis, Ankylosing , Animals , Humans , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Osteogenesis/genetics , Spondylitis, Ankylosing/genetics , Spondylitis, Ankylosing/metabolism , Ion Channels/metabolism
20.
J Bone Miner Res ; 38(2): 300-312, 2023 02.
Article En | MEDLINE | ID: mdl-36422470

Enthesophyte formation plays a crucial role in the development of spinal ankylosis in ankylosing spondylitis (AS). We aimed to investigate the role of platelet-derived growth factor B (PDGFB) in enthesophyte formation of AS using in vitro and in vivo models and to determine the association between PDGFB and spinal progression in AS. Serum PDGFB levels were measured in AS patients and healthy controls (HC). Human entheseal tissues attached to facet joints or spinous processes were harvested at the time of surgery and investigated for bone-forming activity. The impact of a pharmacological agonist and antagonist of platelet-derived growth factor B receptor (PDGFRB) were investigated respectively in curdlan-treated SKG mice. PDGFB levels were elevated in AS sera and correlated with radiographic progression of AS in the spine. Mature osteoclasts secreting PDGFB proteins were increased in the AS group compared with HC and were observed in bony ankylosis tissues of AS. Expression of PDGFRB was significantly elevated in the spinous enthesis and facet joints of AS compared with controls. Moreover, recombinant PDGFB treatment accelerated bone mineralization of enthesis cells, which was pronounced in AS, whereas PDGFRB inhibition efficiently reduced the PDGFB-induced bone mineralization. Also, PDGFRB inhibition attenuated the severity of arthritis and enthesophyte formation at the joints of curdlan-treated SKG mice. This study suggests that regulating PDGFB/PDGFRB signaling could be a novel therapeutic strategy to block key pathophysiological processes of AS. © 2022 American Society for Bone and Mineral Research (ASBMR).


Proto-Oncogene Proteins c-sis , Receptor, Platelet-Derived Growth Factor beta , Spondylitis, Ankylosing , Animals , Humans , Mice , Ossification, Heterotopic/genetics , Ossification, Heterotopic/metabolism , Proto-Oncogene Proteins c-sis/genetics , Proto-Oncogene Proteins c-sis/metabolism , Receptor, Platelet-Derived Growth Factor beta/antagonists & inhibitors , Receptor, Platelet-Derived Growth Factor beta/genetics , Receptor, Platelet-Derived Growth Factor beta/metabolism , Spinal Osteophytosis/genetics , Spinal Osteophytosis/metabolism , Spine/diagnostic imaging , Spine/metabolism , Spine/pathology , Spondylitis, Ankylosing/genetics , Spondylitis, Ankylosing/metabolism
...