Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.515
1.
Proc Natl Acad Sci U S A ; 121(22): e2402764121, 2024 May 28.
Article En | MEDLINE | ID: mdl-38771879

Staphylococcus aureus (S. aureus) can evade antibiotics and host immune defenses by persisting within infected cells. Here, we demonstrate that in infected host cells, S. aureus type VII secretion system (T7SS) extracellular protein B (EsxB) interacts with the stimulator of interferon genes (STING) protein and suppresses the inflammatory defense mechanism of macrophages during early infection. The binding of EsxB with STING disrupts the K48-linked ubiquitination of EsxB at lysine 33, thereby preventing EsxB degradation. Furthermore, EsxB-STING binding appears to interrupt the interaction of 2 vital regulatory proteins with STING: aspartate-histidine-histidine-cysteine domain-containing protein 3 (DHHC3) and TNF receptor-associated factor 6. This persistent dual suppression of STING interactions deregulates intracellular proinflammatory pathways in macrophages, inhibiting STING's palmitoylation at cysteine 91 and its K63-linked ubiquitination at lysine 83. These findings uncover an immune-evasion mechanism by S. aureus T7SS during intracellular macrophage infection, which has implications for developing effective immunomodulators to combat S. aureus infections.


Bacterial Proteins , Macrophages , Membrane Proteins , Staphylococcal Infections , Staphylococcus aureus , Type VII Secretion Systems , Ubiquitination , Staphylococcus aureus/immunology , Membrane Proteins/metabolism , Membrane Proteins/immunology , Humans , Bacterial Proteins/metabolism , Bacterial Proteins/immunology , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , Animals , Staphylococcal Infections/immunology , Staphylococcal Infections/microbiology , Staphylococcal Infections/metabolism , Type VII Secretion Systems/metabolism , Type VII Secretion Systems/immunology , Type VII Secretion Systems/genetics , Mice , Immune Evasion , Host-Pathogen Interactions/immunology
2.
Nat Commun ; 15(1): 3666, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38693120

Respiratory viral infection increases host susceptibility to secondary bacterial infections, yet the precise dynamics within airway epithelia remain elusive. Here, we elucidate the pivotal role of CD47 in the airway epithelium during bacterial super-infection. We demonstrated that upon influenza virus infection, CD47 expression was upregulated and localized on the apical surface of ciliated cells within primary human nasal or bronchial epithelial cells. This induced CD47 exposure provided attachment sites for Staphylococcus aureus, thereby compromising the epithelial barrier integrity. Through bacterial adhesion assays and in vitro pull-down assays, we identified fibronectin-binding proteins (FnBP) of S. aureus as a key component that binds to CD47. Furthermore, we found that ciliated cell-specific CD47 deficiency or neutralizing antibody-mediated CD47 inactivation enhanced in vivo survival rates. These findings suggest that interfering with the interaction between airway epithelial CD47 and pathogenic bacterial FnBP holds promise for alleviating the adverse effects of super-infection.


CD47 Antigen , Epithelial Cells , Staphylococcal Infections , Staphylococcus aureus , Superinfection , CD47 Antigen/metabolism , CD47 Antigen/genetics , Humans , Animals , Superinfection/microbiology , Mice , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Epithelial Cells/virology , Staphylococcal Infections/immunology , Staphylococcal Infections/metabolism , Staphylococcal Infections/microbiology , Influenza, Human/metabolism , Influenza, Human/immunology , Influenza, Human/virology , Bacterial Adhesion , Respiratory Mucosa/metabolism , Respiratory Mucosa/microbiology , Respiratory Mucosa/virology , Mice, Inbred C57BL , Bronchi/metabolism , Bronchi/cytology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/metabolism , Orthomyxoviridae Infections/virology , Mice, Knockout , Influenza A Virus, H1N1 Subtype
3.
Immunol Cell Biol ; 102(5): 365-380, 2024.
Article En | MEDLINE | ID: mdl-38572664

Staphylococcus aureus is a significant bacterial pathogen in both community and hospital settings, and the escalation of antimicrobial-resistant strains is of immense global concern. Vaccination is an inviting long-term strategy to curb staphylococcal disease, but identification of an effective vaccine has proved to be challenging. Three well-characterized, ubiquitous, secreted immune evasion factors from the staphylococcal superantigen-like (SSL) protein family were selected for the development of a vaccine. Wild-type SSL3, 7 and 11, which inhibit signaling through Toll-like receptor 2, cleavage of complement component 5 and neutrophil function, respectively, were successfully combined into a stable, active fusion protein (PolySSL7311). Vaccination of mice with an attenuated form of the PolySSL7311 protein stimulated significantly elevated specific immunoglobulin G and splenocyte proliferation responses to each component relative to adjuvant-only controls. Vaccination with PolySSL7311, but not a mixture of the individual proteins, led to a > 102 reduction in S. aureus tissue burden compared with controls after peritoneal challenge. Comparable antibody responses were elicited after coadministration of the vaccine in either AddaVax (an analog of MF59) or an Alum-based adjuvant; but only AddaVax conferred a significant reduction in bacterial load, aligning with other studies that suggest both cellular and humoral immune responses are necessary for protective immunity to S. aureus. Anti-sera from mice immunized with PolySSL7311, but not individual proteins, partially neutralized the functional activities of SSL7. This study confirms the importance of these SSLs for the survival of S. aureus in vivo and suggests that PolySSL7311 is a promising vaccine candidate.


Bacterial Proteins , Staphylococcal Infections , Staphylococcal Vaccines , Staphylococcus aureus , Superantigens , Animals , Staphylococcus aureus/immunology , Staphylococcal Vaccines/immunology , Superantigens/immunology , Staphylococcal Infections/immunology , Staphylococcal Infections/prevention & control , Mice , Bacterial Proteins/immunology , Antibodies, Bacterial/immunology , Antibodies, Bacterial/blood , Female , Recombinant Fusion Proteins/immunology , Immunoglobulin G/immunology , Immunoglobulin G/blood , Feasibility Studies , Vaccination , Antigens, Bacterial/immunology , Mice, Inbred BALB C , Adjuvants, Immunologic
4.
Clin Immunol ; 263: 110221, 2024 Jun.
Article En | MEDLINE | ID: mdl-38636891

Staphylococcus aureus mucosal biofilms are associated with recalcitrant chronic rhinosinusitis (CRS). However, S. aureus colonisation of sinus mucosa is frequent in the absence of mucosal inflammation. This questions the relevance of S. aureus biofilms in CRS etiopathogenesis. This study aimed to investigate whether strain-level variation in in vitro-grown S. aureus biofilm properties relates to CRS disease severity, in vitro toxicity, and immune B cell responses in sinonasal tissue from CRS patients and non-CRS controls. S. aureus clinical isolates, tissue samples, and matched clinical datasets were collected from CRS patients with nasal polyps (CRSwNP), CRS without nasal polyps (CRSsNP), and controls. B cell responses in tissue samples were characterised by FACS. S. aureus biofilms were established in vitro, followed by measuring their properties of metabolic activity, biomass, colony-forming units, and exoprotein production. S. aureus virulence was evaluated using whole-genome sequencing, mass spectrometry and application of S. aureus biofilm exoproteins to air-liquid interface cultures of primary human nasal epithelial cells (HNEC-ALI). In vitro S. aureus biofilm properties were correlated with increased CRS severity scores, infiltration of antibody-secreting cells and loss of regulatory B cells in tissue samples. Biofilm exoproteins from S. aureus with high biofilm metabolic activity had enriched virulence genes and proteins, and negatively affected the barrier function of HNEC-ALI cultures. These findings support the notion of strain-level variation in S. aureus biofilms to be critical in the pathophysiology of CRS.


Biofilms , Rhinitis , Sinusitis , Staphylococcal Infections , Staphylococcus aureus , Humans , Sinusitis/immunology , Sinusitis/microbiology , Staphylococcus aureus/immunology , Rhinitis/immunology , Rhinitis/microbiology , Chronic Disease , Staphylococcal Infections/immunology , Staphylococcal Infections/microbiology , Male , Female , Middle Aged , Nasal Polyps/immunology , Nasal Polyps/microbiology , Adult , Nasal Mucosa/immunology , Nasal Mucosa/microbiology , B-Lymphocytes/immunology , Severity of Illness Index , Aged , Rhinosinusitis
5.
mSystems ; 9(5): e0017924, 2024 May 16.
Article En | MEDLINE | ID: mdl-38656122

The utilization of ATP within cells plays a fundamental role in cellular processes that are essential for the regulation of host-pathogen dynamics and the subsequent immune response. This study focuses on ATP-binding proteins to dissect the complex interplay between Staphylococcus aureus and human cells, particularly macrophages (THP-1) and keratinocytes (HaCaT), during an intracellular infection. A snapshot of the various protein activity and function is provided using a desthiobiotin-ATP probe, which targets ATP-interacting proteins. In S. aureus, we observe enrichment in pathways required for nutrient acquisition, biosynthesis and metabolism of amino acids, and energy metabolism when located inside human cells. Additionally, the direct profiling of the protein activity revealed specific adaptations of S. aureus to the keratinocytes and macrophages. Mapping the differentially activated proteins to biochemical pathways in the human cells with intracellular bacteria revealed cell-type-specific adaptations to bacterial challenges where THP-1 cells prioritized immune defenses, autophagic cell death, and inflammation. In contrast, HaCaT cells emphasized barrier integrity and immune activation. We also observe bacterial modulation of host processes and metabolic shifts. These findings offer valuable insights into the dynamics of S. aureus-host cell interactions, shedding light on modulating host immune responses to S. aureus, which could involve developing immunomodulatory therapies. IMPORTANCE: This study uses a chemoproteomic approach to target active ATP-interacting proteins and examines the dynamic proteomic interactions between Staphylococcus aureus and human cell lines THP-1 and HaCaT. It uncovers the distinct responses of macrophages and keratinocytes during bacterial infection. S. aureus demonstrated a tailored response to the intracellular environment of each cell type and adaptation during exposure to professional and non-professional phagocytes. It also highlights strategies employed by S. aureus to persist within host cells. This study offers significant insights into the human cell response to S. aureus infection, illuminating the complex proteomic shifts that underlie the defense mechanisms of macrophages and keratinocytes. Notably, the study underscores the nuanced interplay between the host's metabolic reprogramming and immune strategy, suggesting potential therapeutic targets for enhancing host defense and inhibiting bacterial survival. The findings enhance our understanding of host-pathogen interactions and can inform the development of targeted therapies against S. aureus infections.


Adenosine Triphosphate , Host-Pathogen Interactions , Keratinocytes , Macrophages , Staphylococcus aureus , Humans , Staphylococcus aureus/metabolism , Adenosine Triphosphate/metabolism , Host-Pathogen Interactions/immunology , Macrophages/microbiology , Macrophages/metabolism , Macrophages/immunology , Keratinocytes/microbiology , Keratinocytes/metabolism , Keratinocytes/immunology , THP-1 Cells , Staphylococcal Infections/immunology , Staphylococcal Infections/metabolism , Staphylococcal Infections/microbiology , Proteomics/methods , Bacterial Proteins/metabolism , HaCaT Cells
6.
Nat Commun ; 15(1): 3420, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38658531

Poly-ß-(1-6)-N-acetylglucosamine (PNAG) is an important vaccine target, expressed on many pathogens. A critical hurdle in developing PNAG based vaccine is that the impacts of the number and the position of free amine vs N-acetylation on its antigenicity are not well understood. In this work, a divergent strategy is developed to synthesize a comprehensive library of 32 PNAG pentasaccharides. This library enables the identification of PNAG sequences with specific patterns of free amines as epitopes for vaccines against Staphylococcus aureus (S. aureus), an important human pathogen. Active vaccination with the conjugate of discovered PNAG epitope with mutant bacteriophage Qß as a vaccine carrier as well as passive vaccination with diluted rabbit antisera provides mice with near complete protection against infections by S. aureus including methicillin-resistant S. aureus (MRSA). Thus, the comprehensive PNAG pentasaccharide library is an exciting tool to empower the design of next generation vaccines.


Staphylococcal Infections , Staphylococcus aureus , Animals , Staphylococcal Infections/prevention & control , Staphylococcal Infections/immunology , Staphylococcal Infections/microbiology , Mice , Staphylococcus aureus/immunology , Rabbits , Staphylococcal Vaccines/immunology , Staphylococcal Vaccines/administration & dosage , Female , Methicillin-Resistant Staphylococcus aureus/immunology , Acetylglucosamine/immunology , Humans , Epitopes/immunology , Mice, Inbred BALB C
7.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article En | MEDLINE | ID: mdl-38673764

The exacerbation of pneumonia in children with human adenovirus type 3 (HAdV-3E) is secondary to a Staphylococcus aureus (S. aureus) infection. The influence of host-pathogen interactions on disease progression remains unclear. It is important to note that S. aureus infections following an HAdV-3E infection are frequently observed in clinical settings, yet the underlying susceptibility mechanisms are not fully understood. This study utilized an A549 cell model to investigate secondary infection with S. aureus following an HAdV-3E infection. The findings suggest that HAdV-3E exacerbates the S. aureus infection by intensifying lung epithelial cell damage. The results highlight the role of HAdV-3E in enhancing the interferon signaling pathway through RIG-I (DDX58), resulting in the increased expression of interferon-stimulating factors like MX1, RSAD2, and USP18. The increase in interferon-stimulating factors inhibits the NF-κB and MAPK/P38 pro-inflammatory signaling pathways. These findings reveal new mechanisms of action for HAdV-3E and S. aureus in secondary infections, enhancing our comprehension of pathogenesis.


Adaptor Proteins, Signal Transducing , Adenovirus Infections, Human , Adenoviruses, Human , DEAD Box Protein 58 , Signal Transduction , Staphylococcal Infections , Staphylococcus aureus , Ubiquitin Thiolesterase , Humans , DEAD Box Protein 58/metabolism , Staphylococcus aureus/pathogenicity , A549 Cells , Staphylococcal Infections/immunology , Staphylococcal Infections/metabolism , Staphylococcal Infections/microbiology , Adenoviruses, Human/physiology , Adenoviruses, Human/immunology , Adaptor Proteins, Signal Transducing/metabolism , Adenovirus Infections, Human/metabolism , Adenovirus Infections, Human/immunology , Adenovirus Infections, Human/virology , Host-Pathogen Interactions/immunology , Receptors, Immunologic/metabolism , Coinfection/microbiology , NF-kappa B/metabolism , Inflammation/metabolism
8.
Actual. Sida Infectol. (En linea) ; 32(114): 9-15, 20240000. tab, graf
Article Es | LILACS, BINACIS | ID: biblio-1551750

ntroducción: Las infecciones de piel y partes blandas (IPPB) constituyen la tercera causa de consulta en nuestro centro. S.aureus es el agente etiológico más frecuente en este tipo de infecciones y la meticilino resistencia es clínicamente el mecanismo de resistencia más importante. El objetivo de este trabajo fue analizar la prevalencia de los distintos agentes etiológicos en IPPB en pacientes ambulatorios, así como también estudiar su sensibilidad a los antibióticos y resistencias acompañantes más frecuentes. Materiales y métodos: Estudio descriptivo y retrospectivo que incluyó todas las muestras provenientes de IPPB de pacientes ambulatorios desde octubre de 2017 a abril de 2022. Resultados: Se obtuvieron 180 cultivos positivos de muestras provenientes de IPPB durante el periodo estudiado, 12 fueron infecciones polimicrobianas. En total se obtuvieron 307 aislamientos: el microorganismo aislado con mayor frecuencia fue S.aureus (111; 36,2%). Se hallaron 71 SAMR (64%) y 40 SAMS (36%). De los SAMR, 67 (95%) fueron comunitarios (SAMRC) por criterios microbiológicos, y 4 SAMR hospitalarios (5%). De las cepas SAMRC, 44 (66%) no presentaron resistencias acompañantes, 15 (22% ) fueron resistentes a eritromicina, 12 (18%) a gentamicina y 7 (10%) a clindamicina. Conclusiones: El microorganismo más frecuentemente aislado en IPPB en pacientes ambulatorios fue el S.aureus y 67 aislamientos fueron categorizados como SAMRC por lo cual es necesario considerar al SAMRC como un patógeno frecuente. Debido a la baja resistencia hallada para CLI y TMS ambos podrían ser de elección en el tratamiento empírico en las IPPB en pacientes ambulatorios


Background:S. aureus is the main cause of skin and soft tissues infections (SSTIs) in immunocompetent patients. This type of infection is the third cause of medical consultation in our center. Our objective was to evaluate the prevalence of S. aureus, as well as its sensitivity to antimicrobials, isolated from skin and soft tissue samples from outpatients at an interzonal general acute care hospital located in Buenos Aires, Argentina.Methods: Descriptive and retrospective study that included all outpatient SSTIs samples from October 2017 to April 2022.Results: We obtained 215 positive cultures of samples from SSTIs during the study period. Of a total of 276 isolates: the most frequently isolated microorganism wasS. aureus (111; 40.22%). The prevalence of S. aureuswas 51.63%. We found 71 MRSA (63.96%). Of the SAMR strains, 60.56% did not present accompanying resistance, and only 8 isolates (11.27%) showed resistance to clindamycin. All SAMRs remained sensitive to minocycline and trimethoprim-sulfamethoxazole.Conclusions: The most frequently isolated microorganism in SSTIs was S. aureus and 71 isolates were categorized as SAMR, therefore it is necessary to consider SAMR as a frequent pathogen. Due to the low resistance found for CLI and TMS, they should be considered for empirical treatment in SSTIs in outpatients


Humans , Male , Female , Outpatients , Staphylococcal Infections/immunology , Prevalence , Specimen Handling
9.
G3 (Bethesda) ; 14(5)2024 05 07.
Article En | MEDLINE | ID: mdl-38478633

Innate immunity functions as a rapid defense against broad classes of pathogenic agents. While the mechanisms of innate immunity in response to antigen exposure are well-studied, how pathogen exposure activates the innate immune responses and the role of genetic variation in immune activity is currently being investigated. Previously, we showed significant survival differences between the N2 and the CB4856 Caenorhabditis elegans isolates in response to Staphylococcus epidermidis infection. One of those differences was expression of the mab-5 Hox family transcription factor, which was induced in N2, but not CB4856, after infection. In this study, we use survival assays and RNA-sequencing to better understand the role of mab-5 in response to S. epidermidis. We found that mab-5 loss-of-function (LOF) mutants were more susceptible to S. epidermidis infection than N2 or mab-5 gain-of-function (GOF) mutants, but not as susceptible as CB4856 animals. We then conducted transcriptome analysis of infected worms and found considerable differences in gene expression profiles when comparing animals with mab-5 LOF to either N2 or mab-5 GOF. N2 and mab-5 GOF animals showed a significant enrichment in expression of immune genes and C-type lectins, whereas mab-5 LOF mutants did not. Overall, gene expression profiling in mab-5 mutants provided insight into MAB-5 regulation of the transcriptomic response of C. elegans to pathogenic bacteria and helps us to understand mechanisms of innate immune activation and the role that transcriptional regulation plays in organismal health.


Caenorhabditis elegans Proteins , Caenorhabditis elegans , Immunity, Innate , Staphylococcus epidermidis , Transcription Factors , Animals , Caenorhabditis elegans/immunology , Caenorhabditis elegans/microbiology , Staphylococcus epidermidis/immunology , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/immunology , Transcription Factors/genetics , Transcription Factors/metabolism , Staphylococcal Infections/immunology , Gene Expression Profiling , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Mutation , Transcriptome
10.
Fish Shellfish Immunol ; 149: 109526, 2024 Jun.
Article En | MEDLINE | ID: mdl-38554743

In teleost blood, red blood cells (RBCs) are the most common type of cell, and they differ from mammalian RBCs in having a nucleus and other organelles. As nucleated cells, teleost RBCs contribute to the immune response against pathogens, but their antibacterial mechanism remains unclear. Here, we utilized RNA-Seq to analyze gene expression patterns of grass carp (Ctenopharyngodon idellus) RBCs (GcRBCs) stimulated by Aeromonas hydrophila, Escherichia coli, and Staphylococcus aureus. Our transcriptomic data showed that bacterial stimulation generated many differentially expressed genes (DEGs). Furthermore, several inflammatory pathways responded to bacterial activation, and the TLR, IL-17, and tumor necrosis factor (TNF) signaling pathways were significantly activated based on Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Furthermore, the findings of qRT-PCR showed markedly elevated expression of various cytokines, including IL-1ß, IL4, IL6, IL8, IL12, and TNFα, in GcRBCs after incubation with bacteria. Reactive oxygen species (ROS) production in GcRBCs was markedly increased after the cells were stimulated with the three bacteria, and the expression of superoxide dismutase, glutathione peroxidase, and antioxidant enzymes, including catalase, was altered. Flow cytometry analysis showed that the apoptosis rate of GcRBCs was enhanced after stimulation with the three bacteria for different times. In summary, our findings reveal that bacterial stimulation activates the immune response of GcRBCs by regulating ROS release, cytokine expression, and the antioxidant system, leading to apoptosis of GcRBCs.


Aeromonas hydrophila , Carps , Erythrocytes , Escherichia coli , Fish Diseases , Gram-Negative Bacterial Infections , Immunity, Innate , Animals , Carps/immunology , Carps/genetics , Fish Diseases/immunology , Erythrocytes/immunology , Aeromonas hydrophila/physiology , Immunity, Innate/genetics , Escherichia coli/immunology , Escherichia coli/physiology , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/veterinary , Staphylococcus aureus/physiology , Staphylococcus aureus/immunology , Fish Proteins/genetics , Fish Proteins/immunology , Staphylococcal Infections/immunology , Staphylococcal Infections/veterinary , Transcriptome/immunology , Escherichia coli Infections/immunology , Escherichia coli Infections/veterinary
11.
J Steroid Biochem Mol Biol ; 240: 106508, 2024 Jun.
Article En | MEDLINE | ID: mdl-38521361

Mastitis is one the most widespread and serious diseases in dairy cattle. Recurrent and chronic infections are often attributable to certain pathogenicity mechanisms in mastitis-causing pathogens such as Staphylococcus spp. These include growing in biofilm and invading cells, both of which make it possible to resist or evade antimicrobial therapies and the host's immune system. This study tested the effects of active vitamin D3 (i.e., calcitriol or 1,25-dihydroxyvitamin D3) on the internalization and phagocytosis of biofilm-forming Staphylococcus spp. isolated from animals with mastitis. Two established bovine cell lines were used: MAC-T (mammary epithelial cells) and BoMac (macrophages). Calcitriol (0-200 nM) did not affect the viability of MAC-T cells nor that of BoMac cells after 24 and 72 h. Concentrations of 0-100 mM for 24 h upregulated the expression of 24-hydroxylase in MAC-T cells, but did not alter that of VDR. Pre-treatment of the cells with calcitriol for 24 h decreased the internalization of S. aureus V329 into MAC-T cells (0-100 nM), and stimulated the phagocytosis of the same strain and of S. xylosus 4913 (0-10 nM). Calcitriol and two conditioned media, obtained by treating the cells with 25-200 nM of the metabolite for 24 h, were also assessed in terms of their antimicrobial and antibiofilm activity. Neither calcitriol by itself nor the conditioned media affected staphylococcal growth or biofilm formation (0-200 nM for 12 and 24 h, respectively). In contrast, the conditioned media (0-100 nM for 24 h) decreased the biomass of preformed non-aureus staphylococcal biofilms and killed the bacteria within them, without affecting metabolic activity. These effects may be mediated by reactive oxygen species and proteins with antimicrobial and/or antibiofilm activity. In short, calcitriol could make pathogens more accessible to antimicrobial therapies and enhance bacterial clearance by professional phagocytes. Moreover, it may modulate the host's endogenous defenses in the bovine udder and help combat preformed non-aureus staphylococcal biofilms (S. chromogenes 40, S. xylosus 4913, and/or S. haemolyticus 6). The findings confirm calcitriol's potential as an adjuvant to prevent and/or treat intramammary infections caused by Staphylococcus spp., which would in turn contribute to reducing antibiotic use on dairy farms.


Biofilms , Immunity, Innate , Mastitis, Bovine , Phagocytosis , Staphylococcus , Animals , Cattle , Biofilms/drug effects , Biofilms/growth & development , Female , Mastitis, Bovine/microbiology , Mastitis, Bovine/immunology , Immunity, Innate/drug effects , Staphylococcus/drug effects , Phagocytosis/drug effects , Calcitriol/pharmacology , Staphylococcal Infections/microbiology , Staphylococcal Infections/veterinary , Staphylococcal Infections/immunology , Staphylococcal Infections/drug therapy , Cell Line , Mammary Glands, Animal/microbiology , Mammary Glands, Animal/immunology , Macrophages/microbiology , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism
12.
Int Arch Allergy Immunol ; 185(5): 466-479, 2024.
Article En | MEDLINE | ID: mdl-38354721

INTRODUCTION: Chronic rhinosinusitis with nasal polyps (CRSwNP) is a common chronic inflammatory disease of the nose characterized by barrier disruption and environmental susceptibility, and the deletion of ZNF365 may be a factor inducing these manifestations. However, there is no study on the mechanism of action between CRSwNP and ZNF365. Therefore, this study focuses on the effect of the zinc finger protein ZNF365 on the proliferation of nasal mucosal epithelial cells and their defense against Staphylococcus aureus (S. aureus). METHODS: Immunohistochemistry and Western blot were applied to verify the changes of ZNF365 expression in nasal polyp tissues and control tissues, as well as in primary epithelial cells. ZNF365 was knocked down in human nasal mucosa epithelial cell line (HNEpc), and the proliferation, migration, and transdifferentiation of epithelium were observed by immunofluorescence, QPCR, CCK8, and cell scratch assay. The changes of mesenchymal markers and TLR4-MAPK-NF-κB pathway were also observed after the addition of S. aureus. RESULTS: ZNF365 expression was reduced in NP tissues and primary nasal mucosal epithelial cells compared to controls. Knockdown of ZNF365 in HNEpc resulted in decreased proliferation and migration ability of epithelial cells and abnormal epithelial differentiation (decreased expression of tight junction proteins). S. aureus stimulation further inhibited epithelial cell proliferation and migration, while elevated markers of epithelial-mesenchymal transition and inflammatory responses occurred. CONCLUSION: ZNF365 is instrumental in maintaining the proliferative capacity of nasal mucosal epithelial cells and defending against the invasion of S. aureus. The findings suggest that ZNF365 may participate in the development of CRSwNP.


Cell Proliferation , Nasal Mucosa , Staphylococcus aureus , Humans , Staphylococcus aureus/immunology , Nasal Mucosa/immunology , Nasal Mucosa/microbiology , Nasal Mucosa/metabolism , Staphylococcal Infections/immunology , Rhinitis/immunology , Rhinitis/microbiology , Epithelial Cells/metabolism , Epithelial Cells/immunology , Sinusitis/immunology , Sinusitis/microbiology , Cell Movement/genetics , Nasal Polyps/immunology , Nasal Polyps/microbiology , Cell Line , Signal Transduction , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism
13.
mBio ; 15(1): e0022523, 2024 Jan 16.
Article En | MEDLINE | ID: mdl-38112465

IMPORTANCE: The prevalence of multidrug-resistant Staphylococcus aureus is of global concern, and vaccines are urgently needed. The iron-regulated surface determinant protein B (IsdB) of S. aureus was investigated as a vaccine candidate because of its essential role in bacterial iron acquisition but failed in clinical trials despite strong immunogenicity. Here, we reveal an unexpected second function for IsdB in pathogen-host interaction: the bacterial fitness factor IsdB triggers a strong inflammatory response in innate immune cells via Toll-like receptor 4 and the inflammasome, thus acting as a novel pathogen-associated molecular pattern of S. aureus. Our discovery contributes to a better understanding of how S. aureus modulates the immune response, which is necessary for vaccine development against the sophisticated pathogen.


Bacterial Proteins , Cation Transport Proteins , Cytokines , Methicillin-Resistant Staphylococcus aureus , NLR Family, Pyrin Domain-Containing 3 Protein , Staphylococcal Infections , Toll-Like Receptor 4 , Humans , Bacterial Proteins/immunology , Caspase 1/metabolism , Cation Transport Proteins/immunology , Cytokines/metabolism , Inflammasomes/metabolism , Iron/metabolism , Methicillin-Resistant Staphylococcus aureus/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Staphylococcal Infections/immunology , Toll-Like Receptor 4/metabolism
14.
Vet Res ; 54(1): 32, 2023 Apr 04.
Article En | MEDLINE | ID: mdl-37016420

Host response to invasive microbes in the bovine udder has an important role on the animal health and is essential to the dairy industry to ensure production of high-quality milk and reduce the mastitis incidence. To better understand the biology behind these host-microbiome interactions, we investigated the somatic cell proteomes at quarter level for four cows (collected before and after milking) using a shotgun proteomics approach. Simultaneously, we identified the quarter microbiota by amplicon sequencing to detect presence of mastitis pathogens or other commensal taxa. In total, 32 quarter milk samples were analyzed divided in two groups depending on the somatic cell count (SCC). The high SCC group (>100,000 cell/mL) included 10 samples and significant different proteome profiles were detected. Differential abundance analysis uncovers a specific expression pattern in high SCC samples revealing pathways involved in immune responses such as inflammation, activation of the complement system, migration of immune cells, and tight junctions. Interestingly, different proteome profiles were also identified in quarter samples containing one of the two mastitis pathogens, Staphylococcus aureus and Streptococcus uberis, indicating a different response of the host depending on the pathogen. Weighted correlation network analysis identified three modules of co-expressed proteins which were correlated with the SCC in the quarters. These modules contained proteins assigned to different aspects of the immune response, but also amino sugar and nucleotide sugar metabolism, and biosynthesis of amino acids. The results of this study provide deeper insights on how the proteome expression changes at quarter level in naturally infected cows and pinpoint potential interactions and important biological functions during host-microbe interaction.


Host Microbial Interactions , Mammary Glands, Animal , Milk , Proteome , Animals , Cattle , Female , Cattle Diseases/immunology , Cattle Diseases/microbiology , Cell Count/veterinary , Mammary Glands, Animal/immunology , Mammary Glands, Animal/microbiology , Mastitis, Bovine/immunology , Mastitis, Bovine/microbiology , Milk/cytology , Proteome/immunology , Staphylococcal Infections/immunology , Staphylococcal Infections/veterinary , Host Microbial Interactions/immunology
15.
J Control Release ; 353: 591-610, 2023 01.
Article En | MEDLINE | ID: mdl-36503071

Intracellular Methicillin-Resistant Staphylococcus aureus (MRSA) remains a major factor of refractory and recurrent infections, which cannot be well addressed by antibiotic therapy. Here, we design a cellular infectious microenvironment-activatable polymeric nano-system to mediate targeted intracellular drug delivery for macrophage reprogramming and intracellular MRSA eradication. The polymeric nano-system is composed of a ferrocene-decorated polymeric nanovesicle formulated from poly(ferrocenemethyl methacrylate)-block-poly(2-methacryloyloxyethyl phosphorylcholine) (PFMMA-b-PMPC) copolymer with co-encapsulation of clofazimine (CFZ) and interferon-γ (IFN-γ). The cellular-targeting PMPC motifs render specific internalization by macrophages and allow efficient intracellular accumulation. Following the internalization, the ferrocene-derived polymer backbone sequentially undergoes hydrophobic-to-hydrophilic transition, charge reversal and Fe release in response to intracellular hydrogen peroxide over-produced upon infection, eventually triggering endosomal escape and on-site cytosolic drug delivery. The released IFN-γ reverses the immunosuppressive status of infected macrophages by reprogramming anti-inflammatory M2 to pro-inflammatory M1 phenotype. Meanwhile, intracellular Fe2+-mediated Fenton reaction together with antibiotic CFZ contributes to increased intracellular hydroxyl radical (•OH) generation. Ultimately, the nano-system achieves robust potency in ablating intracellular MRSA and antibiotic-tolerant persisters by synchronous immune modulation and efficient •OH killing, providing an innovative train of thought for intracellular MRSA control.


Anti-Bacterial Agents , Macrophages , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Interferon-gamma , Macrophages/immunology , Metallocenes/therapeutic use , Methicillin-Resistant Staphylococcus aureus/immunology , Polymers/therapeutic use , Staphylococcal Infections/drug therapy , Staphylococcal Infections/immunology , Nanostructures/therapeutic use
16.
Int Immunopharmacol ; 114: 109531, 2023 Jan.
Article En | MEDLINE | ID: mdl-36513023

To investigate the characteristics and functions of yak ß-defensin 124 (DEFB124), prokaryotic expression, analysis of gut microbiological and other methods were used in this study. The results showed that the sequence of yak DEFB124 gene was 306 bp in length and 207 bp in open reading frame, which encoded 68 amino acids. Yak DEFB124 protein was highly conserved and had the closest relationship with cattle. Yak DEFB124 protein was a secreted cationic ß-defensin. The recombinant expression plasmid pET32a-DEFB124 was constructed, and an about 24 kDa protein was successfully expressed. Yak DEFB124 protein had inhibitory activity against Staphylococcus aureus (S. aureus), and its MIC value was 64 µg/mL. After treating with yak DEFB124 protein, the activities of alkaline phosphatase (AKP) and total superoxide dismutase (T-SOD) were higher (P < 0.01) in the jejunum tissue, but the activity of lysozyme (LZM) was lower (P < 0.01). The number of goblet cells in the duodenum, jejunum, and ileum of the mice in the DEFB124 group was increased (P < 0.01). Besides, the expressions of MUC2 mRNA and protein were increased (P < 0.05) after the treatment with yak DEFB124 protein. Furthermore, the relative abundance of Lactobacillus in jejunum of mice in DEFB124 group was also increased. In summary, yak DEFB124 protein could increase the number of goblet cells in mice intestine and the abundance of intestinal probiotics Lactobacillus, thereby protecting the intestinal tract and alleviating intestinal damage.


Staphylococcal Infections , beta-Defensins , Animals , Cattle , Mice , beta-Defensins/genetics , beta-Defensins/immunology , Goblet Cells , Probiotics , Staphylococcal Infections/immunology , Staphylococcus aureus , Intestines/immunology , Intestines/pathology
17.
BMC Microbiol ; 22(1): 219, 2022 09 17.
Article En | MEDLINE | ID: mdl-36115948

BACKGROUND: The prevalence of Staphylococcus aureus isolates carrying the Panton-Valentine leukocidin (PVL) gene is higher in Africa (≈50%) compared to Europe (< 5%). The study aimed to measure anti-PVL-antibodies in Africans and Germans in a multi-center study and to test whether detected antibodies can neutralize the cytotoxic effect of PVL on polymorphonuclear leukocytes (PMNs). METHODS: Sera from asymptomatic Africans (n = 22, Nigeria, Gabon) and Caucasians (n = 22, Germany) were used to quantify antibody titers against PVL and α-hemolysin (in arbitrary units [AU]) by ELISA. PMNs from one African and German donor were exposed to 5 nM recombinant PVL to measure the neutralizing effect of serial dilutions of pooled sera from African and Caucasian participants, or donor sera at 0.625 and 2.5% (v/v). RESULTS: Anti-PVL-antibodies were significantly higher in Africans than in Germans (1.9 vs. 0.7 AU, p < 0.0001). The pooled sera from the study participants neutralized the cytotoxic effect of PVL on African and German PMNs in a dose dependent manner. Also, neutralization of PVL on PMNs from the African and German donors had a stronger effect with African sera (half-maximal inhibitory concentration (IC50) = 0.27 and 0.47%, respectively) compared to Caucasian sera (IC50 = 3.51 and 3.59% respectively). CONCLUSION: Africans have higher levels of neutralizing anti-PVL-antibodies. It remains unclear if or at what level these antibodies protect against PVL-related diseases.


Antibodies, Neutralizing/blood , Leukocidins , Neutrophils , Staphylococcal Infections , Staphylococcus aureus , Antibodies, Neutralizing/immunology , Bacterial Toxins/blood , Bacterial Toxins/immunology , Exotoxins/blood , Exotoxins/immunology , Germany/epidemiology , Hemolysin Proteins , Humans , Leukocidins/blood , Leukocidins/immunology , Neutrophils/immunology , Nigeria/epidemiology , Staphylococcal Infections/blood , Staphylococcal Infections/epidemiology , Staphylococcal Infections/immunology , Staphylococcus aureus/immunology , Staphylococcus aureus/pathogenicity
18.
Proc Natl Acad Sci U S A ; 119(32): e2111726119, 2022 08 09.
Article En | MEDLINE | ID: mdl-35914162

A large number of neutrophils infiltrate the lymph node (LN) within 4 h after Staphylococcus aureus skin infection (4 h postinfection [hpi]) and prevent systemic S. aureus dissemination. It is not clear how infection in the skin can remotely and effectively recruit neutrophils to the LN. Here, we found that lymphatic vessel occlusion substantially reduced neutrophil recruitment to the LN. Lymphatic vessels effectively transported bacteria and proinflammatory chemokines (i.e., Chemokine [C-X-C motif] motif 1 [CXCL1] and CXCL2) to the LN. However, in the absence of lymph flow, S. aureus alone in the LN was insufficient to recruit neutrophils to the LN at 4 hpi. Instead, lymph flow facilitated the earliest neutrophil recruitment to the LN by delivering chemokines (i.e., CXCL1, CXCL2) from the site of infection. Lymphatic dysfunction is often found during inflammation. During oxazolone (OX)-induced skin inflammation, CXCL1/2 in the LN was reduced after infection. The interrupted LN conduits further disrupted the flow of lymph and impeded its communication with high endothelial venules (HEVs), resulting in impaired neutrophil migration. The impaired neutrophil interaction with bacteria contributed to persistent infection in the LN. Our studies showed that both the flow of lymph from lymphatic vessels to the LN and the distribution of lymph in the LN are critical to ensure optimal neutrophil migration and timely innate immune protection in S. aureus infection.


Chemokines , Neutrophil Infiltration , Skin Diseases, Bacterial , Staphylococcal Infections , Animals , Chemokines/immunology , Immunity, Innate , Inflammation/pathology , Lymph/immunology , Lymph Nodes/cytology , Mice , Mice, Inbred C57BL , Neutrophils/cytology , Skin Diseases, Bacterial/immunology , Staphylococcal Infections/immunology , Staphylococcus aureus
19.
Proc Natl Acad Sci U S A ; 119(31): e2123017119, 2022 08 02.
Article En | MEDLINE | ID: mdl-35881802

Staphylococcus aureus is an opportunistic pathogen and chief among bloodstream-infecting bacteria. S. aureus produces an array of human-specific virulence factors that may contribute to immune suppression. Here, we defined the response of primary human phagocytes following infection with S. aureus using RNA-sequencing (RNA-Seq). We found that the overall transcriptional response to S. aureus was weak both in the number of genes and in the magnitude of response. Using an ex vivo bacteremia model with fresh human blood, we uncovered that infection with S. aureus resulted in the down-regulation of genes related to innate immune response and cytokine and chemokine signaling. This muted transcriptional response was conserved across diverse S. aureus clones but absent in blood exposed to heat-killed S. aureus or blood infected with the less virulent staphylococcal species Staphylococcus epidermidis. Notably, this signature was also present in patients with S. aureus bacteremia. We identified the master regulator S. aureus exoprotein expression (SaeRS) and the SaeRS-regulated pore-forming toxins as key mediators of the transcriptional suppression. The S. aureus-mediated suppression of chemokine and cytokine transcription was reflected by circulating protein levels in the plasma. Wild-type S. aureus elicited a soluble milieu that was restrictive in the recruitment of human neutrophils compared with strains lacking saeRS. Thus, S. aureus blunts the inflammatory response resulting in impaired neutrophil recruitment, which could promote the survival of the pathogen during invasive infection.


Host-Pathogen Interactions , Neutrophils , Staphylococcal Infections , Staphylococcus aureus , Bacteremia/immunology , Bacteremia/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cytokines/metabolism , Gene Expression Regulation, Bacterial , Host-Pathogen Interactions/immunology , Humans , Neutrophils/immunology , Neutrophils/microbiology , Pore Forming Cytotoxic Proteins/genetics , Staphylococcal Infections/blood , Staphylococcal Infections/immunology , Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics , Staphylococcus aureus/pathogenicity , Staphylococcus epidermidis/pathogenicity , Transcription Factors/genetics , Transcription Factors/metabolism
20.
Toxins (Basel) ; 14(7)2022 07 06.
Article En | MEDLINE | ID: mdl-35878202

Staphylococcus aureus is a very common Gram-positive bacterium, and S. aureus infections play an extremely important role in a variety of diseases. This paper describes the types of virulence factors involved, the inflammatory cells activated, the process of host cell death, and the associated diseases caused by S. aureus. S. aureus can secrete a variety of enterotoxins and other toxins to trigger inflammatory responses and activate inflammatory cells, such as keratinocytes, helper T cells, innate lymphoid cells, macrophages, dendritic cells, mast cells, neutrophils, eosinophils, and basophils. Activated inflammatory cells can express various cytokines and induce an inflammatory response. S. aureus can also induce host cell death through pyroptosis, apoptosis, necroptosis, autophagy, etc. This article discusses S. aureus and MRSA (methicillin-resistant S. aureus) in atopic dermatitis, psoriasis, pulmonary cystic fibrosis, allergic asthma, food poisoning, sarcoidosis, multiple sclerosis, and osteomyelitis. Summarizing the pathogenic mechanism of Staphylococcus aureus provides a basis for the targeted treatment of Staphylococcus aureus infection.


Inflammation , Staphylococcal Infections , Staphylococcus aureus , Humans , Immunity, Innate , Inflammation/microbiology , Lymphocytes , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections/immunology , Staphylococcal Infections/microbiology
...