Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 41
1.
Microbiol Spectr ; 10(4): e0099722, 2022 08 31.
Article En | MEDLINE | ID: mdl-35862947

Staphylococcus haemolyticus and Staphylococcus hominis subsp. hominis are common coagulase-negative staphylococcus opportunistic pathogens. In Thailand, the clinical strains S. haemolyticus 1864 and 48 and S. hominis subsp. hominis 384 and 371 have been recovered from sick dogs. These strains were methicillin resistant with the nontypeable staphylococcal cassette chromosome mec (NT-SCCmec). The SCCmec element distribution in the clinical isolates from dogs was analyzed using whole-genome sequencing, which revealed the presence of different SCCmec composite islands (CIs) and gene structure. The SCCmec-CIs of ψSCCmec1864 (13 kb) and ψSCC1864 (11 kb) with a class C1 mec complex but no ccr gene were discovered in S. haemolyticus 1864. The CIs of ψSCCmec48 with a C1 mec complex (28 kb), SCC48 with ccrA4B4 (23 kb), and ψSCC48 (2.6 kb) were discovered in S. haemolyticus 48. In SCC48, insertion sequence IS256 contained an aminoglycoside-resistant gene [aph(2″)-Ia]. Two copies of IS431 containing the tetracycline-resistant gene tet(K) were found downstream of ψSCC48. In S. hominis subsp. hominis, the SCCmec-CI in strain 384 had two separate sections: ψSCCmec384 (20 kb) and SCCars (23 kb). ψSCCmec384 lacked the ccr gene complex but carried the class A mec complex. Trimethoprim-resistant dihydrofolate reductase (dfrC) was discovered on ψSCCmec384 between two copies of IS257. In strain 371, SCCmec VIII (4A) (37 kb) lacking a direct repeat at the chromosomal end was identified. This study found SCCmec elements in clinical isolates from dogs that were structurally complex and varied in their genetic content, with novel organization. IMPORTANCE In Thailand, the staphylococcal cassette chromosome mec (SCCmec) element, which causes methicillin resistance through acquisition of the mec gene, has been studied in clinical coagulase-negative Staphylococcus isolates from various companion animals, and Staphylococcus haemolyticus and Staphylococcus hominis subsp. hominis were found to have the most nontypeable (NT)-SCCmec elements. These species are more prone to causing illness and more resistant to a variety of antimicrobials than other coagulase-negative staphylococci. However, full characterization of NT-SCCmec in clinical S. haemolyticus and S. hominis subsp. hominis isolates from such animals has been limited. Our findings support the use of full nucleotide sequencing rather than PCR designed for Staphylococcus aureus in further research of novel SCCmec elements. Moreover, several antimicrobial resistance and heavy metal resistance genes were identified on the SCCmec elements; these are important as they could limit the therapeutic options available in veterinary medicine.


Staphylococcal Infections , Staphylococcus haemolyticus , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/genetics , Chromosomes/chemistry , Chromosomes, Bacterial/chemistry , Chromosomes, Bacterial/genetics , Coagulase/genetics , Dogs , Staphylococcal Infections/drug therapy , Staphylococcal Infections/veterinary , Staphylococcus haemolyticus/genetics , Staphylococcus hominis/genetics
2.
Antimicrob Agents Chemother ; 65(11): e0077721, 2021 10 18.
Article En | MEDLINE | ID: mdl-34370581

Staphylococcal cassette chromosome mec (SCCmec) has predominantly been described in methicillin-resistant Staphylococcus aureus. However, studies have indicated that coagulase-negative staphylococci (CoNS) carry a larger diversity of SCC elements. We characterized a composite SCCmec element carrying an uncharacterized ccr1 and type A mec gene combination, in conjunction with a secondary element bearing ccr4, from a clinical strain of Staphylococcus hominis. The element's complex structure points to a high degree of recombination occurring in SCCmec in CoNS.


Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Bacterial Proteins/genetics , Chromosomes , Chromosomes, Bacterial/genetics , Humans , Methicillin-Resistant Staphylococcus aureus/genetics , Staphylococcus/genetics , Staphylococcus hominis/genetics
3.
Microb Drug Resist ; 27(2): 145-153, 2021 Feb.
Article En | MEDLINE | ID: mdl-32456543

This study aimed at determining the mechanisms of linezolid resistance and the molecular characteristics of clinical Staphylococcus aureus (n = 2) and coagulase-negative staphylococci (n = 15) isolates obtained from four Spanish hospitals. The detection of linezolid resistance mechanisms (mutations and acquisition of resistance genes) was performed by PCR/sequencing. The antimicrobial resistance and virulence profile was determined, and the isolates were typed by different molecular techniques. Moreover, the genetic environment of the cfr gene was determined by whole-genome sequencing. The cfr gene was detected in one methicillin-resistant S. aureus (MRSA) that also displayed the amino acid change Val118Ala in the ribosomal protein L4. The second S. aureus isolate was methicillin susceptible and showed different alterations in the ribosomal protein L4. All remaining linezolid-resistant Staphylococcus epidermidis (n = 14) and Staphylococcus hominis isolates (n = 1) showed the mutation G2576T (n = 14) or C2534T (n = 1) in the 23S rRNA. Moreover, different amino acid changes were detected in the ribosomal proteins L3 and L4 in S. epidermidis isolates. All S. epidermidis isolates belonged to the multilocus sequence type ST2. Linezolid-resistant staphylococci (LRS) showed a multiresistance phenotype, including methicillin resistance that was detected in all isolates but one, and was mediated by the mecA gene. The cfr gene in the MRSA isolate was located together with the fexA gene on a conjugative 38,864 bp plasmid. Linezolid- and methicillin-resistant S. epidermidis ST2 showing mutations in the 23S rRNA and in the ribosomal proteins L3 and L4 are spread among Spanish hospitals, whereas LRS carrying acquired linezolid resistance genes are rarely detected.


Drug Resistance, Bacterial/drug effects , Drug Resistance, Bacterial/genetics , Linezolid/pharmacology , Anti-Bacterial Agents/pharmacology , Coagulase/genetics , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/genetics , Microbial Sensitivity Tests , RNA, Ribosomal, 23S/genetics , Ribosomal Protein L3 , Ribosomal Proteins/genetics , Spain , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Staphylococcus epidermidis/drug effects , Staphylococcus epidermidis/genetics , Staphylococcus hominis/drug effects , Staphylococcus hominis/genetics
4.
J Antimicrob Chemother ; 76(1): 152-159, 2021 01 01.
Article En | MEDLINE | ID: mdl-33057728

OBJECTIVES: To determine the epidemiological cut-off values (ECOFFs) of norvancomycin for Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus and Staphylococcus hominis. METHODS: We collected 1199 clinical isolates of Staphylococcus species from five laboratories located in four cities in China. MICs and inhibitory zone diameters of norvancomycin were determined by broth microdilution and the disc diffusion method, separately. ECOFFs of norvancomycin for four species were calculated by ECOFFinder software following EUCAST principles. Methicillin and vancomycin resistance genes (mecA/mecC and vanA/vanB/vanC/vanD/vanE) were screened for by PCR in all isolates. Pearson correlation and χ2 test were used to calculate the correlation of MICs and inhibition zone diameters, and MICs and resistance genes, respectively. RESULTS: MICs of norvancomycin for all strains from five laboratories fell in the range of 0.12-2 mg/L. ECOFFs of norvancomycin were determined to be 2 mg/L for S. epidermidis and S. haemolyticus and 1 mg/L for S. aureus and S. hominis. A weak correlation was observed between MIC values and zone diameters for S. haemolyticus (r = -0.36) and S. hominis (r = -0.26), while no correlation was found for S. epidermidis and S. aureus. The mecA gene was detected in 63.1% of Staphylococcus, whereas no isolate carried mecC, vanA, vanB, vanC, vanD or vanE. ECOFFs of norvancomycin were not correlated with mecA gene carriage in Staphylococcus species. CONCLUSIONS: ECOFFs of norvancomycin for four Staphylococcus species were determined, which will be helpful to differentiate WT strains. The correlation of MICs and zone diameters of norvancomycin was weak in Staphylococcus species.


Staphylococcal Infections , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , China/epidemiology , Humans , Microbial Sensitivity Tests , Staphylococcal Infections/epidemiology , Staphylococcus epidermidis/genetics , Staphylococcus haemolyticus/genetics , Staphylococcus hominis/genetics , Vancomycin/analogs & derivatives
5.
Balkan Med J ; 37(4): 215-221, 2020 06 01.
Article En | MEDLINE | ID: mdl-32270947

Background: Coagulase-negative staphylococci, which belong to the normal microbiota of the skin and mucous membranes, are opportunistic pathogens. sasX, a newly described protein, is thought to play an important role in nasal colonization and methicillin-resistant Staphylococcus aureus virulence, and it may be acquired from coagulase-negative staphylococci by horizontal gene transfer. It has been considered that understanding the function of sasX gene may help clarify the relevance of the different adhesion mechanisms in the pathogenesis of infections associated with biofilm. Aims: To investigate the sasX gene presence, staphylococcal cassette chromosome mec types, and antimicrobial resistance patterns of invasive and noninvasive coagulase-negative staphylococci isolates. Study Design: Cross-sectional study. Methods: The study included a total of 180 coagulase-negative staphylococci strains. Non-invasive isolates (n=91) were obtained from the hands of healthy volunteers who do not work at the hospital (n=30), the nasal vestibule of healthy volunteer hospital workers (n=26), and central venous catheter (n=35). Invasive isolates (n=89) were isolated from peripheral blood cultures of inpatients who do not have catheters. All isolates were identified by conventional microbiological methods, automated systems, and, if needed, with matrix-assisted laser desorption/ionization-time of flight. Staphylococcal cassette chromosome mec typing, sasX and mec gene detection, antibiotic susceptibility, and sasX gene sequence analysis were performed. Results: Peripheral blood, central venous catheter colonization, and nasal vestibule isolates were positive for the sasX gene, whereas hand isolates were negative. sasX gene was present in 17 isolates, and no statistical significance was found between invasive and noninvasive isolates (p=0.173). Sequence analysis of the sasX genes showed high homology to related proteins of Staphylococcus phage SPbeta-like and Staphylococcus epidermidis RP62A. staphylococcal cassette chromosome mec type V was the most prevalent regardless of species. staphylococcal cassette chromosome mec type II was more frequent in invasive isolates and found to be statistically important for invasive and noninvasive S. epidermidis isolates (p=0.029). Staphylococcus haemolyticus isolates had the overall highest resistance rates. Resistance to ciprofloxacin, trimethoprim-sulfamethoxazole, and erythromycin was found to be higher in isolates from catheter and blood culture. Staphylococcus hominis isolates had the highest rate for inducible clindamycin resistance. None of the isolates were resistant to vancomycin, teicoplanin, and linezolid. Conclusion: The sasX gene is detected in 9.44% of the isolates. There is no statistical difference between the sasX-positive and -negative isolates in terms of antibacterial resistance and the presence of sasX and SCCmec types. Further studies about the role of sasX at virulence in coagulase-negative staphylococci, especially from clinical samples such as tracheal aspirate and abscess isolates, and distribution of staphylococcal cassette chromosome mec types are needed.


Coagulase/analysis , Staphylococcus/genetics , Staphylococcus/metabolism , Coagulase/blood , Coagulase/metabolism , Cross-Sectional Studies , Humans , Microbial Sensitivity Tests/methods , Staphylococcus/isolation & purification , Staphylococcus capitis/genetics , Staphylococcus capitis/isolation & purification , Staphylococcus epidermidis/genetics , Staphylococcus epidermidis/isolation & purification , Staphylococcus haemolyticus/genetics , Staphylococcus haemolyticus/isolation & purification , Staphylococcus hominis/genetics , Staphylococcus hominis/isolation & purification , Staphylococcus lugdunensis/genetics , Staphylococcus lugdunensis/isolation & purification , Staphylococcus saprophyticus/genetics , Staphylococcus saprophyticus/isolation & purification
6.
Microb Drug Resist ; 26(3): 251-260, 2020 Mar.
Article En | MEDLINE | ID: mdl-31549905

This study compared changes in antimicrobial susceptibilities and molecular characteristics of coagulase-negative staphylococci (CNS) between the year 2000 and the year 2014-2015 to evaluate the policy of separating drug prescribing and dispensing in Korea. We obtained 68 CNS clinical isolates from two tertiary general hospitals before (the year 2000; n = 25) and after (the year 2014 - 2015; n = 43) implementation of the separation. Isolates were identified as Staphylococcus capitis, Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus hominis, Staphylococcus saprophyticus, and Staphylococcus warneri. When minimal inhibitory concentrations of 14 antimicrobials were applied to isolates, resistance rates to gentamicin and oxacillin in 2000 were significantly higher than in 2014-2015 (p < 0.05). Fifty-seven isolates were methicillin-resistant CNS (MR-CNS), 42 of which were also multidrug resistant; overall, multidrug resistance decreased from 72% in the year 2000 to 55.8% in 2014-2015. Staphylococcal cassette chromosome mec (SCCmec) type III was the dominant type of MR-CNS in the year 2000, while SCCmec type IV was the dominant type in 2014-2015. Twenty-five sequence types (STs) were identified; ST2 appeared most frequently in both periods. After 15 years of implementation of this policy, multidrug resistance as well as methicillin and gentamicin resistance in CNS decreased, but not resistance to other antibiotics. Long-term surveillance at both genotypic and phenotypic levels of various species is necessary for further evaluation of this policy.


Anti-Bacterial Agents/pharmacology , Drug Prescriptions/statistics & numerical data , Drug Resistance, Multiple, Bacterial/genetics , Staphylococcal Infections/epidemiology , Staphylococcus epidermidis/genetics , Staphylococcus haemolyticus/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Coagulase/deficiency , Coagulase/genetics , Gene Expression , Gentamicins/pharmacology , Humans , Legislation, Drug , Microbial Sensitivity Tests , Oxacillin/pharmacology , Phylogeny , Republic of Korea/epidemiology , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Staphylococcus , Staphylococcus capitis/classification , Staphylococcus capitis/drug effects , Staphylococcus capitis/genetics , Staphylococcus capitis/isolation & purification , Staphylococcus epidermidis/classification , Staphylococcus epidermidis/drug effects , Staphylococcus epidermidis/isolation & purification , Staphylococcus haemolyticus/classification , Staphylococcus haemolyticus/drug effects , Staphylococcus haemolyticus/isolation & purification , Staphylococcus hominis/classification , Staphylococcus hominis/drug effects , Staphylococcus hominis/genetics , Staphylococcus hominis/isolation & purification , Staphylococcus saprophyticus , Tertiary Care Centers
7.
Biotechnol J ; 14(7): e1800682, 2019 Jul.
Article En | MEDLINE | ID: mdl-30925011

N-acetylneuraminic acid (NeuAc) is a common sialic acid that has a wide range of applications in nutraceuticals and pharmaceuticals. However, low production efficiency and high environmental pollution associated with traditional extraction and chemical synthesis methods constrain the supply of NeuAc. Here, a biological approach is developed for food-grade NeuAc production via whole-cell biocatalysis by the generally regarded as safe (GRAS) bacterium Bacillus subtilis (B. subtilis). Promoters for controlling N-acetylglucosamine 2-epimerase (AGE) and NeuAc adolase (NanA) are optimized, yielding 32.84 g L-1 NeuAc production with a molar conversion rate of 26.55% from N-acetylglucosamine (GlcNAc). Next, NeuAc production is further enhanced to 46.04 g L-1 , which is 40.2% higher than that of the strain with promoter optimization, by expressing NanA from Staphylococcus hominis instead of NanA from Escherichia coli. To enhance the expression level of ShNanA, the N-terminal coding sequences of genes with high expression levels are fused to the 5'-end of the ShNanA gene, resulting in 56.82 g L-1 NeuAc production. Finally, formation of the by-product acetoin from pyruvate is blocked by deleting the alsS and alsD genes, resulting in 68.75 g L-1 NeuAc production with a molar conversion rate of 55.57% from GlcNAc. Overall, a GRAS B. subtilis strain is demonstrated as a whole-cell biocatalyst for efficient NeuAc production.


Bacillus subtilis , Metabolic Engineering/methods , N-Acetylneuraminic Acid/metabolism , Acetoin/metabolism , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Biocatalysis , Escherichia coli/genetics , N-Acetylneuraminic Acid/analysis , Pyruvic Acid/metabolism , Staphylococcus hominis/genetics
8.
Elife ; 72018 07 03.
Article En | MEDLINE | ID: mdl-29966586

Mammals produce volatile odours that convey different types of societal information. In Homo sapiens, this is now recognised as body odour, a key chemical component of which is the sulphurous thioalcohol, 3-methyl-3-sulfanylhexan-1-ol (3M3SH). Volatile 3M3SH is produced in the underarm as a result of specific microbial activity, which act on the odourless dipeptide-containing malodour precursor molecule, S-Cys-Gly-3M3SH, secreted in the axilla (underarm) during colonisation. The mechanism by which these bacteria recognise S-Cys-Gly-3M3SH and produce body odour is still poorly understood. Here we report the structural and biochemical basis of bacterial transport of S-Cys-Gly-3M3SH by Staphylococcus hominis, which is converted to the sulphurous thioalcohol component 3M3SH in the bacterial cytoplasm, before being released into the environment. Knowledge of the molecular basis of precursor transport, essential for body odour formation, provides a novel opportunity to design specific inhibitors of malodour production in humans.


Bacterial Proteins/chemistry , Carrier Proteins/chemistry , Dipeptides/metabolism , Gene Expression Regulation, Bacterial , Hexanols/metabolism , Odorants/analysis , Staphylococcus hominis/metabolism , Sulfanilic Acids/metabolism , Axilla/microbiology , Axilla/physiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Biological Transport , Biotransformation , Carrier Proteins/genetics , Carrier Proteins/metabolism , Crystallography, X-Ray , Cytoplasm/metabolism , Dipeptides/chemistry , Hexanols/chemistry , Humans , Kinetics , Models, Molecular , Odorants/prevention & control , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Staphylococcus hominis/genetics , Substrate Specificity , Sulfanilic Acids/chemistry , Sweat/chemistry , Sweat/metabolism , Sweat/microbiology
9.
Article En | MEDLINE | ID: mdl-29868500

The worldwide increase in antibiotic-resistant pathogens means that identification of alternative antibacterial drug targets and the subsequent development of new treatment strategies are urgently required. One such new target is the quorum sensing (QS) system. Coral microbial consortia harbor an enormous diversity of microbes, and are thus rich sources for isolating novel bioactive and pharmacologically valuable natural products. However, to date, the versatility of their bioactive compounds has not been broadly explored. In this study, about two hundred bacterial colonies were isolated from a coral species (Pocillopora damicornis) and screened for their ability to inhibit QS using the bioreporter strain Chromobacterium violaceum ATCC 12472. Approximately 15% (30 isolates) exhibited anti-QS activity, against the indicator strain. Among them, a typical Gram-positive bacterium, D11 (Staphylococcus hominis) was identified and its anti-QS activity was investigated. Confocal microscopy observations showed that the bacterial extract inhibited the biofilm formation of clinical isolates of wild-type P. aeruginosa PAO1 in a dose-dependent pattern. Chromatographic separation led to the isolation of a potent QS inhibitor that was identified by high-performance liquid chromatography-mass spectrometry (HPLC-MS) and nuclear magnetic resonance (NMR) spectroscopy as DL-homocysteine thiolactone. Gene expression analyses using RT-PCR showed that strain D11 led to a significant down-regulation of QS regulatory genes (lasI, lasR, rhlI, and rhlR), as well as a virulence-related gene (lasB). From the chemical structure, the target compound (DL-homocysteine thiolactone) is an analog of the acyl-homoserine lactones (AHLs), and we presume that DL-homocysteine thiolactone outcompetes AHL in occupying the receptor and thereby inhibiting QS. Whole-genome sequence analysis of S. hominis D11 revealed the presence of predicted genes involved in the biosynthesis of homocysteine thiolactone. This study indicates that coral microbes are a resource bank for developing QS inhibitors and they will facilitate the discovery of new biotechnologically relevant compounds that could be used instead of traditional antibiotics.


Anthozoa/microbiology , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Bacteria/isolation & purification , Bacteria/metabolism , Quorum Sensing/drug effects , Acyl-Butyrolactones/isolation & purification , Acyl-Butyrolactones/pharmacology , Animals , Bacteria/genetics , Bacterial Adhesion/drug effects , Bacterial Proteins/genetics , Biofilms/drug effects , Biofilms/growth & development , China , Chromobacterium , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Gram-Positive Bacteria/isolation & purification , Gram-Positive Bacteria/metabolism , Ligases/genetics , Metalloendopeptidases/genetics , Microbial Consortia , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Quorum Sensing/genetics , Seawater/microbiology , Staphylococcus hominis/genetics , Staphylococcus hominis/isolation & purification , Staphylococcus hominis/metabolism , Symbiosis , Trans-Activators/genetics , Transcription Factors/genetics , Virulence/genetics , Whole Genome Sequencing
10.
Eur J Clin Microbiol Infect Dis ; 37(8): 1539-1545, 2018 Aug.
Article En | MEDLINE | ID: mdl-29777490

The study was performed to assess potential differences in the etiological relevance of two coagulase-negative staphylococci (CoNS), Staphylococcus haemolyticus and Staphylococcus hominis, in an observational single-center study. Over a 5-year interval, patients in whom there was detected S. haemolyticus or S. hominis of presumed etiological relevance were assessed for the primary endpoint death during hospital stay and the secondary endpoint transfer to an intensive care unit (ICU) after the detection of S. haemolyticus or S. hominis. Patients with S. haemolyticus or S. hominis died in 11.3% (50 out of 444) and 9.5% (60 out of 631) of cases, respectively, and were transferred to ICU after S. haemolyticus and S. hominis detection in 8.7% (19 out of 219) and 11.7% (44 out of 377) of cases, respectively. There was no significance for species-related influence on the primary outcome parameter (P > 0.1), while ICU transfers were more likely for patients with S. hominis detections (P = 0.016). Delayed diagnosis of both CoNS species was associated with an increased probability of death (P = 0.009). The study revealed comparable morbidity caused by S. haemolyticus and S. hominis identified in a clinically relevant context.


Staphylococcal Infections/epidemiology , Staphylococcal Infections/microbiology , Staphylococcus haemolyticus , Staphylococcus hominis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacterial Typing Techniques , Biodiversity , Coagulase/genetics , Germany/epidemiology , Humans , Incidence , Intensive Care Units , Length of Stay , Outcome Assessment, Health Care , Retrospective Studies , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Staphylococcal Infections/diagnosis , Staphylococcal Infections/drug therapy , Staphylococcus haemolyticus/classification , Staphylococcus haemolyticus/drug effects , Staphylococcus haemolyticus/genetics , Staphylococcus haemolyticus/isolation & purification , Staphylococcus hominis/classification , Staphylococcus hominis/drug effects , Staphylococcus hominis/genetics , Staphylococcus hominis/isolation & purification
11.
Int J Antimicrob Agents ; 51(6): 875-880, 2018 Jun.
Article En | MEDLINE | ID: mdl-29407274

The fusidic acid (FUS) resistance determinants fusB, fusC, fusD and fusF in coagulase-negative staphylococci (CoNS) clinical isolates were examined. Among 208 FUS-resistant isolates, the fusB gene was the most common resistance determinant in each species, except in Staphylococcus hominis subsp. hominis or in species carrying intrinsic fusD or fusF. In S. hominis subsp. hominis, the fusC gene was the major determinant responsible for FUS resistance. To understand the genetic context of fusC in S. hominis subsp. hominis, 31 fusC-positive S. hominis subsp. hominis isolates were examined. Among these isolates, 14 carried SCCfusC, 3 carried an SCC476-like element and 7 carried a new SCC structure (SCC3390). As shown by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) analyses, the S. hominis subsp. hominis clinical isolates showed limited clonality. Taken together, SCCfusC has been found in S. hominis subsp. hominis, Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus capitis subsp. ureolyticus and Staphylococcus aureus, suggesting its wide distribution and spread among different species of staphylococci.


Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Fusidic Acid/pharmacology , Gene Transfer, Horizontal/genetics , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/genetics , Staphylococcus hominis/genetics , Bacterial Proteins/genetics , Humans , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Microbial Sensitivity Tests , Multilocus Sequence Typing , Staphylococcus capitis/drug effects , Staphylococcus capitis/genetics , Staphylococcus capitis/isolation & purification , Staphylococcus epidermidis/drug effects , Staphylococcus epidermidis/genetics , Staphylococcus epidermidis/isolation & purification , Staphylococcus haemolyticus/drug effects , Staphylococcus haemolyticus/genetics , Staphylococcus haemolyticus/isolation & purification , Staphylococcus hominis/drug effects , Staphylococcus hominis/isolation & purification , Taiwan
12.
PLoS One ; 12(8): e0184172, 2017.
Article En | MEDLINE | ID: mdl-28859149

Methicillin-resistant coagulase negative staphylococci (MR-CoNS) are the major cause of infectious diseases because of their potential ability to form biofilm and colonize the community or hospital environments. This study was designed to investigate the biofilm producing ability, and the presence of mecA, icaAD, bap and fnbA genes in MR-CoNS isolates. The MR-CoNS used in this study were isolated from various samples of community environment and five wards of hospital environments, using mannitol salt agar (MSA) supplemented with 4 µg/ml of oxacillin. The specie level of Staphylococcus haemolyticus, Staphylococcus epidermidis, Staphylococcus hominis and Staphylococcus warneri was identified by specific primers of groESL (S. haemolyticus), rdr (S. epidermidis) and nuc (S. hominis and S. warneri). The remainder isolates were identified by tuf gene sequencing. Biofilm production was determined using Congo red agar (CRA) and Microtiter plate (MTP) assay. The mecA and biofilm associated genes (icaAD, fnbA and bap) were detected using PCR method. From the 558 samples from community and hospital environments, 292 MR-CoNS were isolated (41 from community environments, and 251 from hospital environments). S. haemolyticus (41.1%) and S. epidermidis (30.1%) were the predominant species in this study. Biofilm production was detected in 265 (90.7%) isolates by CRA, and 260 (88.6%) isolates were detected by MTP assay. The staphylococci isolates derived from hospital environments were more associated with biofilm production than the community-derived isolates. Overall, the icaAD and bap genes were detected in 74 (29.5%) and 14 (5.6%) of all isolates from hospital environments. When tested by MTP, the icaAD gene from hospital environment isolates was associated with biofilm biomass. No association was found between bap gene and biofilm formation. The MR-CoNS isolates obtained from community environments did not harbor the icaAD and bap genes. Conversely, fnbA gene presented in MR-CoNS isolated from both community and hospital environments. The high prevalence of biofilm producing MR-CoNS strains demonstrated in this study indicates the persisting ability in environments, and is useful in developing prevention strategies countering the spread of MR-CoNS.


Biofilms/growth & development , Cross Infection/genetics , Methicillin Resistance/genetics , Staphylococcal Infections/genetics , Bacterial Proteins/genetics , Coagulase/genetics , Cross Infection/microbiology , Humans , Oxacillin/administration & dosage , Penicillin-Binding Proteins/genetics , Staphylococcal Infections/microbiology , Staphylococcus epidermidis/genetics , Staphylococcus epidermidis/growth & development , Staphylococcus haemolyticus/genetics , Staphylococcus haemolyticus/growth & development , Staphylococcus hominis/genetics , Staphylococcus hominis/growth & development
13.
Microb Drug Resist ; 22(2): 147-54, 2016 Mar.
Article En | MEDLINE | ID: mdl-26248114

We investigated the prevalence of methicillin-resistant coagulase-negative staphylococci (MRCoNS) isolated from hospitalized patients and outpatients (OP). Out of 350 staphylococcal isolates collected from three hospitals, 190 were coagulase-negative staphylococci (CoNS). These isolates were subjected to antimicrobial susceptibility tests, detection of mecA, and pulsed-field gel electrophoresis (PFGE) typing. Among the 190 isolated CoNS, Staphylococcus epidermidis (47.3%) and Staphylococcus haemolyticus (44.2%) were the most prevalent species. Other CoNS species that were isolated were Staphylococcus saprophyticus (2.1%), Staphylococcus warneri (2.1%), Staphylococcus simulans (1.6%), Staphylococcus capitis (1.1%), Staphylococcus schleiferi (1.1%), and Staphylococcus hominis (0.5%). The rate of resistance to methicillin was 60% with 58 (50%) S. epidermidis and 55 (49%) S. haemolyticus. The rate of resistance to 13 antibiotics tested with the lowest and highest to chloramphenicol and penicillin, respectively. High clonal diversity with different PFGE patterns was obtained for methicillin-resistant S. epidermidis and S. haemolyticus by 32 and 31 types, respectively. Our results indicated that the dissemination of MRCoNS is widespread in Tehran. The majority of these isolates showed distinct genotyping patterns. At the same time, the common patterns were found among the MRCoNS obtained from outpatient and inpatient isolates, suggestive of an epidemiological link.


Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Genetic Variation , Methicillin Resistance , Staphylococcus/genetics , Bacterial Proteins/metabolism , Chloramphenicol/pharmacology , Clone Cells , Coagulase/deficiency , Coagulase/genetics , Electrophoresis, Gel, Pulsed-Field , Genotype , Humans , Inpatients , Iran , Methicillin/pharmacology , Microbial Sensitivity Tests , Outpatients , Penicillins/pharmacology , Phylogeny , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Staphylococcus/classification , Staphylococcus/drug effects , Staphylococcus/isolation & purification , Staphylococcus epidermidis/drug effects , Staphylococcus epidermidis/genetics , Staphylococcus epidermidis/isolation & purification , Staphylococcus haemolyticus/drug effects , Staphylococcus haemolyticus/genetics , Staphylococcus haemolyticus/isolation & purification , Staphylococcus hominis/drug effects , Staphylococcus hominis/genetics , Staphylococcus hominis/isolation & purification
14.
Folia Microbiol (Praha) ; 61(2): 143-7, 2016 Mar.
Article En | MEDLINE | ID: mdl-26253583

Coagulase-negative staphylococci (CoNS) are the most frequently isolated bacteria from the blood and the predominant cause of nosocomial infections. Macrolides, lincosamides and streptogramin B (MLSB) antibiotics, especially erythromycin and clindamycin, are important therapeutic agents in the treatment of methicillin-resistant staphylococci infections. Among CoNS, Staphylococcus hominis represents the third most common organism. In spite of its clinical significance, very little is known about its mechanisms of resistance to antibiotics, especially MLSB. Fifty-five S. hominis isolates from the blood and the surgical wounds of hospitalized patients were studied. The erm(C) gene was predominant in erythromycin-resistant S. hominis isolates. The methylase genes, erm(A) and erm(B), were present in 15 and 25% of clinical isolates, respectively. A combination of various erythromycin resistance methylase (erm) genes was detected in 15% S. hominis isolates. The efflux gene msr(A) was detected in 18% of isolates, alone in four isolates, and in different combinations in a further six. The lnu(A) gene, responsible for enzymatic inactivation of lincosamides was carried by 31% of the isolates. No erythromycin resistance that could not be attributed to the genes erm(A), erm(B), erm(C) and msr(A) was detected. In S. hominis, 75 and 84%, respectively, were erythromycin resistant and clindamycin susceptible. Among erythromycin-resistant S. hominis isolates, 68% of these strains showed the inducible MLSB phenotype. Four isolates harbouring the msr(A) genes alone displayed the MSB phenotype. These studies indicated that resistance to MLSB in S. hominis is mostly based on the ribosomal target modification mechanism mediated by erm genes, mainly the erm(C), and enzymatic drug inactivation mediated by lnu(A).


Anti-Bacterial Agents/pharmacology , Lincosamides/pharmacology , Macrolides/pharmacology , Staphylococcal Infections/microbiology , Staphylococcus hominis/drug effects , Streptogramins/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Multiple, Bacterial , Humans , Methyltransferases/genetics , Methyltransferases/metabolism , Microbial Sensitivity Tests , Staphylococcus hominis/classification , Staphylococcus hominis/enzymology , Staphylococcus hominis/genetics
15.
PLoS One ; 10(12): e0144684, 2015.
Article En | MEDLINE | ID: mdl-26659110

OBJECTIVES: We aimed to characterise the staphylococcal cassette chromosome mec (SCCmec) type, genetic relatedness, biofilm formation and composition, icaADBC genes detection, icaD expression, and antibiotic susceptibility of planktonic and biofilm cells of Staphylococcus hominis isolates from blood. METHODS: The study included 67 S. hominis blood isolates. Methicillin resistance was evaluated with the cefoxitin disk test. mecA gene and SCCmec were detected by multiplex PCR. Genetic relatedness was determined by pulsed-field gel electrophoresis. Biofilm formation and composition were evaluated by staining with crystal violet and by detachment assay, respectively; and the biofilm index (BI) was determined. Detection and expression of icaADBC genes were performed by multiplex PCR and real-time PCR, respectively. Antibiotic susceptibilities of planktonic cells (minimum inhibitory concentration, MIC) and biofilm cells (minimum biofilm eradication concentration, MBEC) were determined by the broth dilution method. RESULTS: Eighty-five percent (57/67) of isolates were methicillin resistant and mecA positive. Of the mecA-positive isolates, 66.7% (38/57) carried a new putative SCCmec type. Four clones were detected, with two to five isolates each. Among all isolates, 91% (61/67) were categorised as strong biofilm producers. Biofilm biomass composition was heterogeneous (polysaccharides, proteins and DNA). All isolates presented the icaD gene, and 6.66% (1/15) isolates expressed icaD. This isolate presented the five genes of ica operon. Higher BI and MBEC values than the MIC values were observed for amikacin, vancomycin, linezolid, oxacillin, ciprofloxacin, and chloramphenicol. CONCLUSIONS: S. hominis isolates were highly resistant to methicillin and other antimicrobials. Most of the detected SCCmec types were different than those described for S. aureus. Isolates indicated low clonality. The results indicate that S. hominis is a strong biofilm producer with an extracellular matrix with similar composition of proteins, DNA and N-acetylglucosamine; and presents high frequency and low expression of icaD gene. Biofilm production is associated with increased antibiotic resistance.


Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Biofilms/drug effects , Drug Resistance, Bacterial/genetics , Gene Expression Regulation, Bacterial , Staphylococcus hominis/genetics , Amidohydrolases/genetics , Amidohydrolases/metabolism , Bacteremia/drug therapy , Bacteremia/microbiology , Bacterial Proteins/metabolism , Biofilms/growth & development , Cefoxitin/pharmacology , Chromosomes, Bacterial/chemistry , Chromosomes, Bacterial/metabolism , Ciprofloxacin/pharmacology , Humans , Methicillin/pharmacology , Microbial Sensitivity Tests , Operon , Oxacillin/pharmacology , Penicillin-Binding Proteins/genetics , Penicillin-Binding Proteins/metabolism , Phylogeny , Plankton/drug effects , Plankton/growth & development , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Staphylococcus hominis/classification , Staphylococcus hominis/drug effects , Staphylococcus hominis/isolation & purification , Vancomycin/pharmacology
16.
APMIS ; 123(10): 867-71, 2015 Oct.
Article En | MEDLINE | ID: mdl-26227107

The aim of this article were to determinate the mechanism of linezolid resistance in coagulase-negative methicillin-resistant staphylococci from hospitals in the northeast of Brazil. We identified the isolates using VITEK(®) 2 and MALDI-TOF. Susceptibility to antibiotics was measured by the disk-diffusion method and by Etest(®) . Extraction of the whole genome DNA was performed, followed by screening of all the strains for the presence of mecA and cfr genes. The domain V region of 23S rRNA gene was sequenced and then aligned with a linezolid-susceptible reference strain. Pulsed-field gel electrophoresis (PFGE) macro-restriction analysis was performed. Three linezolid-resistant Staphylococcus hominis and two linezolid-resistant Staphylococcus epidermidis strains were analyzed. The isolates showed two point mutations in the V region of the 23S rRNA gene (C2190T and G2603T). We did not detect the cfr gene in any isolate by PCR. The S. hominis showed the same pulsotype, while the S. epidermidis did not present any genetic relation to each other. In conclusion, this study revealed three S. hominis and two S. epidermidis strains with resistance to linezolid due to a double mutation (C2190T and G2603T) in the domain V of the 23S rRNA gene. For the first time, the mutation of C2190T in S. epidermidis is described. This study also revealed the clonal spread of a S. hominis pulsotype between three public hospitals in the city of Natal, Brazil. These findings highlight the importance of continued vigilance of linezolid resistance in staphylococci.


Linezolid/pharmacology , Methicillin/pharmacology , RNA, Ribosomal, 23S/genetics , Staphylococcus epidermidis/drug effects , Staphylococcus hominis/drug effects , Anti-Bacterial Agents , Base Sequence , Coagulase/biosynthesis , Humans , Methicillin Resistance/genetics , Microbial Sensitivity Tests , Mutation/genetics , Sequence Analysis, RNA , Staphylococcus epidermidis/genetics , Staphylococcus epidermidis/isolation & purification , Staphylococcus hominis/genetics , Staphylococcus hominis/isolation & purification
17.
Vet Microbiol ; 177(3-4): 353-8, 2015 Jun 12.
Article En | MEDLINE | ID: mdl-25891423

The aim of this study was to investigate the genetic basis of combined pleuromutilin-lincosamide-streptogramin A resistance in 26 unrelated methicillin-resistant Staphylococcus aureus (MRSA) and coagulase-negative staphylococci (CoNS) from dairy cows suffering from mastitis. The 26 pleuromutilin-resistant staphylococcal isolates were screened for the presence of the genes vga(A), vga(B), vga(C), vga(E), vga(E) variant, sal(A), vmlR, cfr, lsa(A), lsa(B), lsa(C), and lsa(E) by PCR. None of the 26 isolates carried the genes vga(B), vga(C), vga(E), vga(E) variant, vmlR, cfr, lsa(A), lsa(B), or lsa(C). Two Staphylococcus haemolyticus and single Staphylococcus xylosus, Staphylococcus lentus, and Staphylococcus hominis were vga(A)-positive. Twelve S. aureus, two Staphylococcus warneri, as well as single S. lentus and S. xylosus carried the lsa(E) gene. Moreover, single S. aureus, S. haemolyticus, S. xylosus, and Staphylococcus epidermidis were positive for both genes, vga(A) and lsa(E). The sal(A) gene was found in a single Staphylococcus sciuri. All ABC transporter genes were located in the chromosomal DNA, except for a plasmid-borne vga(A) gene in the S. epidermidis isolate. The genetic environment of the lsa(E)-positive isolates was analyzed using previously described PCR assays. Except for the S. warneri and S. xylosus, all lsa(E)-positive isolates harbored a part of the previously described enterococcal multiresistance gene cluster. This is the first report of the novel lsa(E) gene in the aforementioned bovine CoNS species. This is also the first identification of the sal(A) gene in a S. sciuri from a case of bovine mastitis. Moreover, the sal(A) gene was shown to also confer pleuromutilin resistance.


ATP-Binding Cassette Transporters/genetics , Anti-Bacterial Agents/pharmacology , Mastitis, Bovine/microbiology , Methicillin-Resistant Staphylococcus aureus/drug effects , Staphylococcus/drug effects , Animals , Cattle , Coagulase/genetics , Diterpenes/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Female , Lincosamides/pharmacology , Mastitis, Bovine/drug therapy , Methicillin/pharmacology , Methicillin-Resistant Staphylococcus aureus/genetics , Microbial Sensitivity Tests , Polycyclic Compounds , Staphylococcal Infections/microbiology , Staphylococcal Infections/veterinary , Staphylococcus/enzymology , Staphylococcus epidermidis/drug effects , Staphylococcus epidermidis/genetics , Staphylococcus haemolyticus/drug effects , Staphylococcus haemolyticus/genetics , Staphylococcus hominis/drug effects , Staphylococcus hominis/genetics , Streptogramin A/pharmacology , Streptogramins/pharmacology , Pleuromutilins
18.
Folia Microbiol (Praha) ; 60(1): 1-5, 2015 Jan.
Article En | MEDLINE | ID: mdl-24984828

Staphylococcus hominis is the third species of coagulase-negative staphylococci (CoNS) most frequently isolated from specimens of patients with hospital-acquired infections. Many infections caused by CoNS appeared to be associated with biofilms. Nevertheless, the knowledge of the ability of S. hominis to form a biofilm is limited. The aim of this study was to analyze the formation of the biofilm by 56 S. hominis strains isolated from clinical cases. The biofilm three-dimensional structure was reconstructed by confocal laser scanning microscopy. We found that most of S. hominis strains carried icaADBC genes encoding polysaccharide intercellular adhesin (PIA), which plays a crucial role in the formation of biofilms in staphylococci strains. However, only a half of the ica-positive strains had an ability to form a biofilm in vitro. In this study, we also accessed the sensitivity of biofilms of S. hominis strains to sodium metaperiodate, proteinase K and DNase. We found that polysaccharides and proteins are the major components of the extracellular matrix of the biofilm formed by S. hominis. DNase did not have a significant effect on biofilms, which suggested that nucleic acid plays a minor role in the mature biofilm.


Biofilms , Staphylococcal Infections/microbiology , Staphylococcus hominis/physiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Humans , Staphylococcus hominis/genetics
19.
Pol J Microbiol ; 63(3): 349-54, 2014.
Article En | MEDLINE | ID: mdl-25546946

Staphylococcus hominis is a part of normal skin flora, but it is also a cause of nosocomial infections. The aim of this study was to investigate the genetic relatedness of 62 strains of S. hominis obtained from hospitalised patients during an 11-year period. For the discrimination of these clinical strains we used repetitive sequence-based PCR method (BOX-PCR) and multiple-locus variable-number tandem repeat analysis (MLVA). BOX-PCR analysis revealed a large genetic diversity among clinical strains and we did not find a predominant clone with the ability to persist in a hospital environment. MLVA is not as discriminatory as BOX fingerprinting and would not be a useful method for epidemiological studies.


Staphylococcal Infections/microbiology , Staphylococcus hominis/genetics , Genetic Variation , Humans , Inpatients , Polymerase Chain Reaction
20.
Diagn Microbiol Infect Dis ; 80(4): 307-10, 2014 Dec.
Article En | MEDLINE | ID: mdl-25294302

In this work, the molecular and phenotypic antimicrobial resistance and clonal diversity of 10 linezolid-resistant Staphylococcus spp. isolates were investigated. The 7 Staphylococcus haemolyticus isolates presented Staphylococcal cassete chromosome mec (SCCmec) V and belonged to the same pulsed-field gel electrophoresis pulsotype. Their MICs for oxacillin, vancomycin, and linezolid were ≥ 256 µg/mL, 1-4 µg/mL, and 8-16 µg/mL, respectively. The 3 S. hominis presented MIC values 32 to >256 µg/mL, 2-4 µg/mL, and 12-24 µg/mL, and all carried the nontypeable SCCmec (ccr1 + mecA class) and belonged to 2 different genotypes. The cfr gene was not found, but the mutation G2603T was detected in S. haemolyticus and C2190T and G2603T in Staphylococcus hominis in 23S rRNA. This study demonstrates the spread of a linezolid-resistant S. haemolyticus genotype and, for the first time, describes the mutation C2190T among S. hominis isolates with a double mutation in Brazil.


Acetamides/pharmacology , Drug Resistance, Bacterial/genetics , Mutation , Oxazolidinones/pharmacology , RNA, Ribosomal, 23S/genetics , Staphylococcus haemolyticus/genetics , Staphylococcus hominis/genetics , Anti-Bacterial Agents/pharmacology , Brazil , Drug Resistance, Bacterial/drug effects , Electrophoresis, Gel, Pulsed-Field , Hospitals , Humans , Linezolid , Microbial Sensitivity Tests , Staphylococcal Infections/microbiology , Staphylococcus haemolyticus/drug effects , Staphylococcus haemolyticus/isolation & purification , Staphylococcus hominis/drug effects , Staphylococcus hominis/isolation & purification
...