Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 16.208
1.
Phys Rev E ; 109(4-1): 044404, 2024 Apr.
Article En | MEDLINE | ID: mdl-38755896

Statistically inferred neuronal connections from observed spike train data are often skewed from ground truth by factors such as model mismatch, unobserved neurons, and limited data. Spike train covariances, sometimes referred to as "functional connections," are often used as a proxy for the connections between pairs of neurons, but reflect statistical relationships between neurons, not anatomical connections. Moreover, covariances are not causal: spiking activity is correlated in both the past and the future, whereas neurons respond only to synaptic inputs in the past. Connections inferred by maximum likelihood inference, however, can be constrained to be causal. However, we show in this work that the inferred connections in spontaneously active networks modeled by stochastic leaky integrate-and-fire networks strongly correlate with the covariances between neurons, and may reflect noncausal relationships, when many neurons are unobserved or when neurons are weakly coupled. This phenomenon occurs across different network structures, including random networks and balanced excitatory-inhibitory networks. We use a combination of simulations and a mean-field analysis with fluctuation corrections to elucidate the relationships between spike train covariances, inferred synaptic filters, and ground-truth connections in partially observed networks.


Action Potentials , Models, Neurological , Nerve Net , Neurons , Neurons/physiology , Nerve Net/physiology , Nerve Net/cytology , Synapses/physiology , Stochastic Processes
2.
Phys Rev E ; 109(4-1): 044307, 2024 Apr.
Article En | MEDLINE | ID: mdl-38755926

The COVID-19 pandemic has underscored the importance of understanding, forecasting, and avoiding infectious processes, as well as the necessity for understanding the diffusion and acceptance of preventative measures. Simple contagions, like virus transmission, can spread with a single encounter, while complex contagions, such as preventive social measures (e.g., wearing masks, social distancing), may require multiple interactions to propagate. This disparity in transmission mechanisms results in differing contagion rates and contagion patterns between viruses and preventive measures. Furthermore, the dynamics of complex contagions are significantly less understood than those of simple contagions. Stochastic models, integrating inherent variability and randomness, offer a way to elucidate complex contagion dynamics. This paper introduces a stochastic model for both simple and complex contagions and assesses its efficacy against ensemble simulations for homogeneous and heterogeneous threshold configurations. The model provides a unified framework for analyzing both types of contagions, demonstrating promising outcomes across various threshold setups on Erds-Rényi graphs.


COVID-19 , Stochastic Processes , COVID-19/transmission , COVID-19/epidemiology , COVID-19/virology , Humans
3.
Bull Math Biol ; 86(7): 75, 2024 May 17.
Article En | MEDLINE | ID: mdl-38758501

The landscape of computational modeling in cancer systems biology is diverse, offering a spectrum of models and frameworks, each with its own trade-offs and advantages. Ideally, models are meant to be useful in refining hypotheses, to sharpen experimental procedures and, in the longer run, even for applications in personalized medicine. One of the greatest challenges is to balance model realism and detail with experimental data to eventually produce useful data-driven models. We contribute to this quest by developing a transparent, highly parsimonious, first principle in silico model of a growing avascular tumor. We initially formulate the physiological considerations and the specific model within a stochastic cell-based framework. We next formulate a corresponding mean-field model using partial differential equations which is amenable to mathematical analysis. Despite a few notable differences between the two models, we are in this way able to successfully detail the impact of all parameters in the stability of the growth process and on the eventual tumor fate of the stochastic model. This facilitates the deduction of Bayesian priors for a given situation, but also provides important insights into the underlying mechanism of tumor growth and progression. Although the resulting model framework is relatively simple and transparent, it can still reproduce the full range of known emergent behavior. We identify a novel model instability arising from nutrient starvation and we also discuss additional insight concerning possible model additions and the effects of those. Thanks to the framework's flexibility, such additions can be readily included whenever the relevant data become available.


Bayes Theorem , Computer Simulation , Mathematical Concepts , Models, Biological , Neoplasms , Stochastic Processes , Systems Biology , Humans , Neoplasms/pathology , Neovascularization, Pathologic/pathology
4.
Sci Rep ; 14(1): 10337, 2024 05 06.
Article En | MEDLINE | ID: mdl-38710802

Infectious diseases have long been a shaping force in human history, necessitating a comprehensive understanding of their dynamics. This study introduces a co-evolution model that integrates both epidemiological and evolutionary dynamics. Utilizing a system of differential equations, the model represents the interactions among susceptible, infected, and recovered populations for both ancestral and evolved viral strains. Methodologically rigorous, the model's existence and uniqueness have been verified, and it accommodates both deterministic and stochastic cases. A myriad of graphical techniques have been employed to elucidate the model's dynamics. Beyond its theoretical contributions, this model serves as a critical instrument for public health strategy, particularly predicting future outbreaks in scenarios where viral mutations compromise existing interventions.


Stochastic Processes , Humans , Immune System/virology , Evolution, Molecular , Viruses/genetics , Viruses/immunology , Biological Evolution
5.
Elife ; 122024 May 07.
Article En | MEDLINE | ID: mdl-38712832

The fact that objects without proper support will fall to the ground is not only a natural phenomenon, but also common sense in mind. Previous studies suggest that humans may infer objects' stability through a world model that performs mental simulations with a priori knowledge of gravity acting upon the objects. Here we measured participants' sensitivity to gravity to investigate how the world model works. We found that the world model on gravity was not a faithful replica of the physical laws, but instead encoded gravity's vertical direction as a Gaussian distribution. The world model with this stochastic feature fit nicely with participants' subjective sense of objects' stability and explained the illusion that taller objects are perceived as more likely to fall. Furthermore, a computational model with reinforcement learning revealed that the stochastic characteristic likely originated from experience-dependent comparisons between predictions formed by internal simulations and the realities observed in the external world, which illustrated the ecological advantage of stochastic representation in balancing accuracy and speed for efficient stability inference. The stochastic world model on gravity provides an example of how a priori knowledge of the physical world is implemented in mind that helps humans operate flexibly in open-ended environments.


Gravitation , Stochastic Processes , Humans , Female , Male , Adult , Young Adult
6.
Elife ; 122024 May 10.
Article En | MEDLINE | ID: mdl-38727722

Developmental programming involves the accurate conversion of signalling levels and dynamics to transcriptional outputs. The transcriptional relay in the Notch pathway relies on nuclear complexes containing the co-activator Mastermind (Mam). By tracking these complexes in real time, we reveal that they promote the formation of a dynamic transcription hub in Notch ON nuclei which concentrates key factors including the Mediator CDK module. The composition of the hub is labile and persists after Notch withdrawal conferring a memory that enables rapid reformation. Surprisingly, only a third of Notch ON hubs progress to a state with nascent transcription, which correlates with polymerase II and core Mediator recruitment. This probability is increased by a second signal. The discovery that target-gene transcription is probabilistic has far-reaching implications because it implies that stochastic differences in Notch pathway output can arise downstream of receptor activation.


To correctly give rise to future tissues, cells in an embryo must receive and respond to the right signals, at the right time, in the right way. This involves genes being switched on quickly, with cells often ensuring that a range of molecular actors physically come together at 'transcription hubs' in the nucleus ­ the compartment that houses genetic information. These hubs are thought to foster a microenvironment that facilitates the assembly of the machinery that will activate and copy the required genes into messenger RNA molecules. The resulting 'mRNAs' act as templates for producing the corresponding proteins, allowing cells to adequately respond to signals. For example, the activation at the cell surface of a molecule called Notch triggers a series of events that lead to important developmental genes being transcribed within minutes. This process involves a dedicated group of proteins, known as Notch nuclear complexes, quickly getting together in the nucleus and interacting with the transcriptional machinery. How they do this efficiently at the right gene locations is, however, still poorly understood. In particular, it remained unclear whether Notch nuclear complexes participate in the formation of transcription hubs, as well as how these influence mRNA production and the way cells 'remember' having been exposed to Notch activity. To investigate these questions, DeHaro-Arbona et al. genetically engineered fruit flies so that their Notch nuclear complexes and Notch target genes both carried visible tags that could be tracked in living cells in real time. Microscopy imaging of fly tissues revealed that, due to their characteristics, Notch complexes clustered with the transcription machinery and formed transcription hubs near their target genes. All cells exposed to Notch exhibited these hubs, but only a third produced the mRNAs associated with Notch target genes; adding a second signal (an insect hormone) significantly increased the proportion. This illustrates how 'chance' and collaboration influence the way the organism responds to Notch signalling. Finally, the experiments revealed that the hubs persisted for at least a day after removing the Notch signal. This 'molecular memory' led to cells responding faster when presented with Notch activity again. The work by DeHaro-Arbona sheds light on how individual cells respond to Notch signalling, and the factors that influence the activation of its target genes. This knowledge may prove useful when trying to better understand diseases in which this pathway is implicated, such as cancer.


Receptors, Notch , Receptors, Notch/metabolism , Receptors, Notch/genetics , Animals , Transcription, Genetic , Transcription Factors/metabolism , Transcription Factors/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Signal Transduction , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Stochastic Processes , Cell Nucleus/metabolism
7.
PLoS One ; 19(5): e0303300, 2024.
Article En | MEDLINE | ID: mdl-38781238

Information dissemination has a significant impact on social development. This paper considers that there are many stochastic factors in the social system, which will result in the phenomena of information cross-dissemination and variation. The dual-system stochastic susceptible-infectious-mutant-recovered model of information cross-dissemination and variation is derived from this problem. Afterward, the existence of the global positive solution is demonstrated, sufficient conditions for the disappearance of information and its stationary distribution are calculated, and the optimal control strategy for the stochastic model is proposed. The numerical simulation supports the results of the theoretical analysis and is compared to the parameter variation of the deterministic model. The results demonstrate that cross-dissemination of information can result in information variation and diffusion. Meanwhile, white noise has a positive effect on information dissemination, which can be improved by adjusting the perturbation parameters.


Information Dissemination , Stochastic Processes , Information Dissemination/methods , Humans , Computer Simulation , Models, Theoretical
8.
Am Nat ; 203(6): 668-680, 2024 Jun.
Article En | MEDLINE | ID: mdl-38781525

AbstractMaintaining the stability of ecological communities is critical for conservation, yet we lack a clear understanding of what attributes of metacommunity structure control stability. Some theories suggest that greater dispersal promotes metacommunity stability by stabilizing local populations, while others suggest that dispersal synchronizes fluctuations across patches and leads to global instability. These effects of dispersal on stability may be mediated by metacommunity structure: the number of patches, the pattern of connections across patches, and levels of spatiotemporal correlation in the environment. Thus, we need theory to investigate metacommunity dynamics under different spatial structures and ecological scenarios. Here, we use simulations to investigate whether stability is primarily affected by connectivity, including dispersal rate and topology of connectivity network, or by mechanisms related to the number of patches. We find that in competitive metacommunities with environmental stochasticity, network topology has little effect on stability on the metacommunity scale even while it could change spatial diversity patterns. In contrast, the number of connected patches is the dominant factor promoting stability through averaging stochastic fluctuations across more patches, rather than due to more habitat heterogeneity per se. These results broaden our understanding of how metacommunity structure changes metacommunity stability, which is relevant for designing effective conservation strategies.


Ecosystem , Models, Biological , Population Dynamics , Biota , Animal Distribution , Stochastic Processes , Environment , Computer Simulation
9.
Ecol Lett ; 27(5): e14438, 2024 May.
Article En | MEDLINE | ID: mdl-38783567

Species' persistence in increasingly variable climates will depend on resilience against the fitness costs of environmental stochasticity. Most organisms host microbiota that shield against stressors. Here, we test the hypothesis that, by limiting exposure to temporally variable stressors, microbial symbionts reduce hosts' demographic variance. We parameterized stochastic population models using data from a 14-year symbiont-removal experiment including seven grass species that host Epichloë fungal endophytes. Results provide novel evidence that symbiotic benefits arise not only through improved mean fitness, but also through dampened inter-annual variance. Hosts with "fast" life-history traits benefited most from symbiont-mediated demographic buffering. Under current climate conditions, contributions of demographic buffering were modest compared to benefits to mean fitness. However, simulations of increased stochasticity amplified benefits of demographic buffering and made it the more important pathway of host-symbiont mutualism. Microbial-mediated variance buffering is likely an important, yet cryptic, mechanism of resilience in an increasingly variable world.


Epichloe , Stochastic Processes , Symbiosis , Epichloe/physiology , Poaceae/microbiology , Poaceae/physiology , Endophytes/physiology , Models, Biological , Microbiota
10.
Proc Natl Acad Sci U S A ; 121(20): e2403871121, 2024 May 14.
Article En | MEDLINE | ID: mdl-38717857

DNA base damage is a major source of oncogenic mutations and disruption to gene expression. The stalling of RNA polymerase II (RNAP) at sites of DNA damage and the subsequent triggering of repair processes have major roles in shaping the genome-wide distribution of mutations, clearing barriers to transcription, and minimizing the production of miscoded gene products. Despite its importance for genetic integrity, key mechanistic features of this transcription-coupled repair (TCR) process are controversial or unknown. Here, we exploited a well-powered in vivo mammalian model system to explore the mechanistic properties and parameters of TCR for alkylation damage at fine spatial resolution and with discrimination of the damaged DNA strand. For rigorous interpretation, a generalizable mathematical model of DNA damage and TCR was developed. Fitting experimental data to the model and simulation revealed that RNA polymerases frequently bypass lesions without triggering repair, indicating that small alkylation adducts are unlikely to be an efficient barrier to gene expression. Following a burst of damage, the efficiency of transcription-coupled repair gradually decays through gene bodies with implications for the occurrence and accurate inference of driver mutations in cancer. The reinitation of transcription from the repair site is not a general feature of transcription-coupled repair, and the observed data is consistent with reinitiation never taking place. Collectively, these results reveal how the directional but stochastic activity of TCR shapes the distribution of mutations following DNA damage.


DNA Damage , DNA Repair , RNA Polymerase II , Transcription, Genetic , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Animals , Stochastic Processes , Mice , DNA/metabolism , DNA/genetics , Humans , Alkylation , Mutation , Excision Repair
11.
Bull Math Biol ; 86(6): 74, 2024 May 13.
Article En | MEDLINE | ID: mdl-38740619

Many imaging techniques for biological systems-like fixation of cells coupled with fluorescence microscopy-provide sharp spatial resolution in reporting locations of individuals at a single moment in time but also destroy the dynamics they intend to capture. These snapshot observations contain no information about individual trajectories, but still encode information about movement and demographic dynamics, especially when combined with a well-motivated biophysical model. The relationship between spatially evolving populations and single-moment representations of their collective locations is well-established with partial differential equations (PDEs) and their inverse problems. However, experimental data is commonly a set of locations whose number is insufficient to approximate a continuous-in-space PDE solution. Here, motivated by popular subcellular imaging data of gene expression, we embrace the stochastic nature of the data and investigate the mathematical foundations of parametrically inferring demographic rates from snapshots of particles undergoing birth, diffusion, and death in a nuclear or cellular domain. Toward inference, we rigorously derive a connection between individual particle paths and their presentation as a Poisson spatial process. Using this framework, we investigate the properties of the resulting inverse problem and study factors that affect quality of inference. One pervasive feature of this experimental regime is the presence of cell-to-cell heterogeneity. Rather than being a hindrance, we show that cell-to-cell geometric heterogeneity can increase the quality of inference on dynamics for certain parameter regimes. Altogether, the results serve as a basis for more detailed investigations of subcellular spatial patterns of RNA molecules and other stochastically evolving populations that can only be observed for single instants in their time evolution.


Mathematical Concepts , Models, Biological , Stochastic Processes , Poisson Distribution , Computer Simulation , Microscopy, Fluorescence/statistics & numerical data , Gene Expression
12.
Chaos ; 34(5)2024 May 01.
Article En | MEDLINE | ID: mdl-38717411

We tested the validity of the state space correspondence (SSC) strategy based on k-nearest neighbor cross-predictability (KNNCP) to assess the directionality of coupling in stochastic nonlinear bivariate autoregressive (NBAR) processes. The approach was applied to assess closed-loop cardiorespiratory interactions between heart period (HP) variability and respiration (R) during a controlled respiration (CR) protocol in 19 healthy humans (aged from 27 to 35 yrs, 11 females) and during active standing (STAND) in 25 athletes (aged from 20 to 40 yrs, all men) and 25 non-athletes (aged from 20 to 40 yrs, all men). Over simulated NBAR processes, we found that (i) the SSC approach can detect the correct causal relationship as the direction leads to better KNNCP from the past of the driver to the future state of the target and (ii) simulations suggest that the ability of the method is preserved in any condition of complexity of the interacting series. Over CR and STAND protocols, we found that (a) slowing the breathing rate increases the strength of the causal relationship in both temporal directions in a balanced modality; (b) STAND is more powerful in modulating the coupling strength on the pathway from HP to R; (c) regardless of protocol and experimental condition, the strength of the link from HP to R is stronger than that from R to HP; (d) significant causal relationships in both temporal directions are found regardless of the level of complexity of HP variability and R. The SSC strategy is useful to disentangle closed-loop cardiorespiratory interactions.


Heart Rate , Stochastic Processes , Humans , Adult , Male , Female , Heart Rate/physiology , Respiration , Young Adult , Nonlinear Dynamics , Algorithms
13.
Commun Biol ; 7(1): 573, 2024 May 15.
Article En | MEDLINE | ID: mdl-38750123

Vesicles carry out many essential functions within cells through the processes of endocytosis, exocytosis, and passive and active transport. This includes transporting and delivering molecules between different parts of the cell, and storing and releasing neurotransmitters in neurons. To date, computational simulation of these key biological players has been rather limited and has not advanced at the same pace as other aspects of cell modeling, restricting the realism of computational models. We describe a general vesicle modeling tool that has been designed for wide application to a variety of cell models, implemented within our software STochastic Engine for Pathway Simulation (STEPS), a stochastic reaction-diffusion simulator that supports realistic reconstructions of cell tissue in tetrahedral meshes. The implementation is validated in an extensive test suite, parallel performance is demonstrated in a realistic synaptic bouton model, and example models are visualized in a Blender extension module.


Computer Simulation , Diffusion , Models, Biological , Software , Synaptic Vesicles/metabolism , Exocytosis/physiology , Animals , Humans , Endocytosis/physiology , Neurons/physiology , Neurons/metabolism , Stochastic Processes
14.
PLoS Comput Biol ; 20(4): e1012054, 2024 Apr.
Article En | MEDLINE | ID: mdl-38648250

Neural organoids model the development of the human brain and are an indispensable tool for studying neurodevelopment. Whole-organoid lineage tracing has revealed the number of progenies arising from each initial stem cell to be highly diverse, with lineage sizes ranging from one to more than 20,000 cells. This high variability exceeds what can be explained by existing stochastic models of corticogenesis and indicates the existence of an additional source of stochasticity. To explain this variability, we introduce the SAN model which distinguishes Symmetrically diving, Asymmetrically dividing, and Non-proliferating cells. In the SAN model, the additional source of stochasticity is the survival time of a lineage's pool of symmetrically dividing cells. These survival times result from neutral competition within the sub-population of all symmetrically dividing cells. We demonstrate that our model explains the experimentally observed variability of lineage sizes and derive the quantitative relationship between survival time and lineage size. We also show that our model implies the existence of a regulatory mechanism which keeps the size of the symmetrically dividing cell population constant. Our results provide quantitative insight into the clonal composition of neural organoids and how it arises. This is relevant for many applications of neural organoids, and similar processes may occur in other developing tissues both in vitro and in vivo.


Organoids , Organoids/cytology , Humans , Cell Lineage/physiology , Computational Biology , Neural Stem Cells/cytology , Neural Stem Cells/physiology , Stochastic Processes , Models, Biological , Neurons/physiology , Neurons/cytology , Brain/cytology , Brain/physiology , Cell Proliferation/physiology , Neurogenesis/physiology
15.
PLoS Comput Biol ; 20(4): e1012032, 2024 Apr.
Article En | MEDLINE | ID: mdl-38683863

Public health decisions must be made about when and how to implement interventions to control an infectious disease epidemic. These decisions should be informed by data on the epidemic as well as current understanding about the transmission dynamics. Such decisions can be posed as statistical questions about scientifically motivated dynamic models. Thus, we encounter the methodological task of building credible, data-informed decisions based on stochastic, partially observed, nonlinear dynamic models. This necessitates addressing the tradeoff between biological fidelity and model simplicity, and the reality of misspecification for models at all levels of complexity. We assess current methodological approaches to these issues via a case study of the 2010-2019 cholera epidemic in Haiti. We consider three dynamic models developed by expert teams to advise on vaccination policies. We evaluate previous methods used for fitting these models, and we demonstrate modified data analysis strategies leading to improved statistical fit. Specifically, we present approaches for diagnosing model misspecification and the consequent development of improved models. Additionally, we demonstrate the utility of recent advances in likelihood maximization for high-dimensional nonlinear dynamic models, enabling likelihood-based inference for spatiotemporal incidence data using this class of models. Our workflow is reproducible and extendable, facilitating future investigations of this disease system.


Cholera , Haiti/epidemiology , Cholera/epidemiology , Cholera/transmission , Cholera/prevention & control , Humans , Computational Biology/methods , Epidemics/statistics & numerical data , Epidemics/prevention & control , Epidemiological Models , Health Policy , Likelihood Functions , Stochastic Processes , Models, Statistical
16.
PLoS Comput Biol ; 20(4): e1011975, 2024 Apr.
Article En | MEDLINE | ID: mdl-38669271

The brain produces diverse functions, from perceiving sounds to producing arm reaches, through the collective activity of populations of many neurons. Determining if and how the features of these exogenous variables (e.g., sound frequency, reach angle) are reflected in population neural activity is important for understanding how the brain operates. Often, high-dimensional neural population activity is confined to low-dimensional latent spaces. However, many current methods fail to extract latent spaces that are clearly structured by exogenous variables. This has contributed to a debate about whether or not brains should be thought of as dynamical systems or representational systems. Here, we developed a new latent process Bayesian regression framework, the orthogonal stochastic linear mixing model (OSLMM) which introduces an orthogonality constraint amongst time-varying mixture coefficients, and provide Markov chain Monte Carlo inference procedures. We demonstrate superior performance of OSLMM on latent trajectory recovery in synthetic experiments and show superior computational efficiency and prediction performance on several real-world benchmark data sets. We primarily focus on demonstrating the utility of OSLMM in two neural data sets: µECoG recordings from rat auditory cortex during presentation of pure tones and multi-single unit recordings form monkey motor cortex during complex arm reaching. We show that OSLMM achieves superior or comparable predictive accuracy of neural data and decoding of external variables (e.g., reach velocity). Most importantly, in both experimental contexts, we demonstrate that OSLMM latent trajectories directly reflect features of the sounds and reaches, demonstrating that neural dynamics are structured by neural representations. Together, these results demonstrate that OSLMM will be useful for the analysis of diverse, large-scale biological time-series datasets.


Auditory Cortex , Bayes Theorem , Markov Chains , Models, Neurological , Neurons , Stochastic Processes , Animals , Rats , Auditory Cortex/physiology , Neurons/physiology , Computational Biology , Linear Models , Monte Carlo Method , Computer Simulation
17.
Neural Netw ; 175: 106291, 2024 Jul.
Article En | MEDLINE | ID: mdl-38593557

This paper considers a distributed constrained optimization problem over a multi-agent network in the non-Euclidean sense. The gossip protocol is adopted to relieve the communication burden, which also adapts to the constantly changing topology of the network. Based on this idea, a gossip-based distributed stochastic mirror descent (GB-DSMD) algorithm is proposed to handle the problem under consideration. The performances of GB-DSMD algorithms with constant and diminishing step sizes are analyzed, respectively. When the step size is constant, the error bound between the optimal function value and the expected function value corresponding to the average iteration output of the algorithm is derived. While for the case of the diminishing step size, it is proved that the output of the algorithm uniformly approaches to the optimal value with probability 1. Finally, as a numerical example, the distributed logistic regression is reported to demonstrate the effectiveness of the GB-DSMD algorithm.


Algorithms , Neural Networks, Computer , Stochastic Processes , Computer Simulation , Logistic Models
18.
Biophys J ; 123(9): 1034-1057, 2024 May 07.
Article En | MEDLINE | ID: mdl-38594901

Stochastic models of gene expression are typically formulated using the chemical master equation, which can be solved exactly or approximately using a repertoire of analytical methods. Here, we provide a tutorial review of an alternative approach based on queueing theory that has rarely been used in the literature of gene expression. We discuss the interpretation of six types of infinite-server queues from the angle of stochastic single-cell biology and provide analytical expressions for the stationary and nonstationary distributions and/or moments of mRNA/protein numbers and bounds on the Fano factor. This approach may enable the solution of complex models that have hitherto evaded analytical solution.


Models, Genetic , Stochastic Processes , RNA, Messenger/genetics , RNA, Messenger/metabolism
19.
Microbiol Spectr ; 12(5): e0324523, 2024 May 02.
Article En | MEDLINE | ID: mdl-38602397

Microorganisms are a crucial component of lake ecosystems and significant contributors to biogeochemical cycles. However, the understanding of how primary microorganism groups (e.g., bacteria and fungi) are distributed and constructed within different lake habitats is lacking. We investigated the bacterial and fungal communities of Hulun Lake using high-throughput sequencing techniques targeting 16S rRNA and Internal Transcribed Spacer 2 genes, including a range of ecological and statistical methodologies. Our findings reveal that environmental factors have high spatial and temporal variability. The composition and community structures vary significantly depending on differences in habitats. Variance partitioning analysis showed that environmental and geographical factors accounted for <20% of the community variation. Canonical correlation analysis showed that among the environmental factors, temperature, pH, and dissolved oxygen had strong control over microbial communities. However, the microbial communities (bacterial and fungal) were primarily controlled by the dispersal limitations of stochastic processes. This study offers fresh perspectives regarding the maintenance mechanism of bacterial and fungal biodiversity in lake ecosystems, especially regarding the responses of microbial communities under identical environmental stress.IMPORTANCELake ecosystems are an important part of the freshwater ecosystem. Lake microorganisms play an important role in material circulation and energy flow owing to their unique enzymatic and metabolic capacity. In this study, we observed that bacterial and fungal communities varied widely in the water and sediments of Hulun Lake. The primary factor affecting their formation was identified as dispersal limitation during stochastic processes. Environmental and geographical factors accounted for <20% of the variation in bacterial and fungal communities, with pH, temperature, and dissolved oxygen being important environmental factors. Our findings provide new insights into the responses of bacteria and fungi to the environment, shed light on the ecological processes of community building, and deepen our understanding of lake ecosystems. The results of this study provide a reference for lake management and conservation, particularly with respect to monitoring and understanding microbial communities in response to environmental changes.


Bacteria , Biodiversity , Fungi , Lakes , Microbiota , Lakes/microbiology , Fungi/genetics , Fungi/classification , Fungi/isolation & purification , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Microbiota/genetics , Ecosystem , RNA, Ribosomal, 16S/genetics , Stochastic Processes , Mycobiome , Temperature , Hydrogen-Ion Concentration , China
20.
Neural Comput ; 36(6): 1121-1162, 2024 May 10.
Article En | MEDLINE | ID: mdl-38657971

Biological neural networks are notoriously hard to model due to their stochastic behavior and high dimensionality. We tackle this problem by constructing a dynamical model of both the expectations and covariances of the fractions of active and refractory neurons in the network's populations. We do so by describing the evolution of the states of individual neurons with a continuous-time Markov chain, from which we formally derive a low-dimensional dynamical system. This is done by solving a moment closure problem in a way that is compatible with the nonlinearity and boundedness of the activation function. Our dynamical system captures the behavior of the high-dimensional stochastic model even in cases where the mean-field approximation fails to do so. Taking into account the second-order moments modifies the solutions that would be obtained with the mean-field approximation and can lead to the appearance or disappearance of fixed points and limit cycles. We moreover perform numerical experiments where the mean-field approximation leads to periodically oscillating solutions, while the solutions of the second-order model can be interpreted as an average taken over many realizations of the stochastic model. Altogether, our results highlight the importance of including higher moments when studying stochastic networks and deepen our understanding of correlated neuronal activity.


Markov Chains , Models, Neurological , Neurons , Stochastic Processes , Neurons/physiology , Neural Networks, Computer , Animals , Nerve Net/physiology , Humans , Computer Simulation , Action Potentials/physiology
...